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ON INDUCTIVE LIMITS OF MATRIX ALGEBRAS OVER
HIGHER DIMENSIONAL SPACES, PART I

GUIHUA GONG

Abstract.

kn

Suppose that 4 is a C*-algebra of real rank zero, and is an inductive limit of @ M, ;(C(Xn,)),
=1

where the spaces X, are finite CW complexes, and [n, i] are positive integers. In this note, we

will prove the following results. (1) If Mq is the UHF algebra with Ko(Mq) = Q, then 4 ® Mq
can be expressed as an inductive limit of finite direct sums of matrix algebras over C(S'). (2) If
one supposes further that the cohomology groups H'(X,;) are torsion free and that
sup{dim(X,,)} < +oo (one can replace this condition by the condition of slow dimension
nt

growth), then A itself can be expressed as an inductive limit of finite direct sums of matrix al-
gebras over C(S'). Recall that a result of G. Elliott says that the class of C*-algebras of real
rank zero, which can be expressed as inductive limits of finite direct sums of matrix algebras
over C(S'), is completely classified by K-theory (graded ordered K-group with dimension
range).

1. Introduction.

The study of the inductive limit of

A—Ay—A3— - A4,

kn
where each A, = @ M}, j(C(X,,)) is a finite direct sum of matrix algebras
i=1

over finite CW complexes X,;, was first proposed by Effros [Ef], after the
complete classification of AF algebras—inductive limits of finite dimensional
C*-algebras, by G. A. Elliott [Ell1] (see also [Glim], [Br]). In the inductive
limit, one allows that

kn

An = @Pn,iM[n,i](C(Xn,i))Pn,i )
i=1

where P,; are projections in M, ;(C(Xy;)). ,Following the terminology of

Blackadar in [Bl1], we call such an inductive limit algebra an AH algebra

(strictly speaking, the class of AH algebras also contains the inductive limits

of finite direct sums of general homogeneous algebras which may not be of
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the form P, ; M, j(C(X,;))Pn,, i.€., the Dixmier-Douady invariant of homo-
geneous algebras may not be zero). As pointed out in 4.24 of [EG2], for the
purpose of the classification in terms of K-theory, one only needs to study
the inductive limits of finite direct sums of full matrix algebras over X, (i.e.,

kn
M, 5(C(Xn,))), rather than the inductive limits of @ Py My, ;(C(Xy)) Py
i=1

Recently, the class of C*-algebras of the above form has been intensively
studied by many authors ([Bl1-2], [BBEK], [BDR], [BKR], [D], [DNNP],
[DN], [ENl1-5], [EE], [EG1-2], [EGLP1-2], [G1], [GL], [Goo], [Ku], [Lil-2],
[Lin1-3], [P1-3], [Phil-2], [Sul-2], [Th1-2], etc.). In particular, G. A. Elliott
classified real rank zero such inductive limit algebras with the spaces
X,; = S' (Su generalized the result to the case of X,,; = graph), by graded
ordered K-group with dimension range. And in [EG?2], the classification has
been extended to the case that the spaces X, ; are three-dimensional finite
CW complexes with one of the following two restrictions: (i) f{*(X,,,,-) are
torsion free; or (ii) A is simple.

All these classification results are for the case that the spaces X,,; are CW
complexes of lower dimensional (i.e., dimX,; < 3). The classification of in-
ductive limits of matrix algebras over CW complexes with dimensions larger
than three is almost completely blank (except for some special cases such as
spheres or product of spheres). In this note and the other part of the series
(see [G2]),we will fill out this blank.

As proved in [G1], the graded ordered K-group with dimension range is
not a complete invariant for general inductive limit C*-algebras of real rank
zero, even if it is assumed that dim(X,;) < 2 for all the spaces X,;. So for the
classification of real rank zero inductive limit C*-algebras in terms of graded
ordered K-group, we need some extra conditions. In this note, we will study
the case that 4 has torsion free K-theory. More precisely, we will prove the
following two results:

(1) If 4 and B are real rank zero AH algebras, then 4 ® Mg is isomorphic
to B® Mg if and only if

(K.(4® Ma),D.(4® Mq)) = (K.(B® Ma), D.(B® Ma)) ,
where D,(A) C K.(A4) is the graded dimension range (see 1.2.1 of [EG2]);

(2) Let 4 and B be real rank zero inductive limits of algebras

ky Iy
(& Mina(C(Xn)),6nm) and (@ Muy(C(Yni)), Ynm), respectively, with
i=1 i=1

~ % +o0 | ~ %
cohomology groups H (X,;) (:: @HJ(X,,,,-)) and H (Y,;) torsion free.
j=1
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Suppose that sup{dim(X;;)} < +oo and sup{dim(Y,)} < + oo (or suppose

n,i ni
that 4 and B satisfy the slow dimension growth condition,in the sense that

. . rank (¢}, (14))
lim min —— L — 0
=90 ank(@him (L ))#0 dim(X, mj)

9

where 4}, = M, 3(C(X,,)), and ¢}/, are partial maps of ¢y, from A, to 4,).
Then A4 is isomorphic to B if and only if

(K.(4), D.(4)) = (K.(B), D.(B)) -

In part II [G2] of this series, we will deal with the inductive limit algebras
without the condition that the cohomology groups H *(X,,,i) are torsion free.
But we need the condition that the limit algebras are simple.

The classification results mentioned above are proved by expressing the
algebras 4 (or A ® Mq) as inductive limits of finite direct sums of matrix
algebras over C(S') (therefore the results follow from [El12]).

In this note, H (X) = @H/(X) is the reduced cohomology group with Z
coeflicients. The term real rank zero for a C*-algebra refers to the density
of the invertible self adjoint elements in the set of self adjoint elements in
the algebra.

ACKNOWLEDGMENT. The work was done while the author was in the uni-
versity of Toronto during the 1993-1994 academic year.

2. The Proofs of the main results

The following theorem is one of the two main results in this note.

THEOREM 2.1. Suppose that A = hm (@M[,, 1(C(Xns)), qb,,m)is a real rank
zero AH algebra with cohomology groups H" (X, ( @ H/( n,i)) torsion

free and with sup dim(X,,;) < +oo('this condition can be replaced by the con-

n, i
dition of slow dimension growth of A). Then A can be expressed as an inductive
limit of finite direct sums of matrix algebras over C(S'),and hence can be
classified by its graded ordered K-group with dimension range.

2.2. When dim(X,,;) < 3, the result was proved in [EG2]. In that proof, we
make use of the followingtwo facts:

1. The Chern map K*(X) — H'(X) is an isomorphism;

2. The canonical map kk(Y,X) — KK(C(X), C(Y)) is injective (see 2.3
below for the definition of kk(Y, X)).

But these facts are no longer true when the spaces X, Y are higher di-
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mensional CW complexes. Fortunately, we have 3.5.5 of [DN] to replace
them.

2.3. Before proving our theorem, let us quote some notations and some
known results about the connective K-theory and the homomorphisms be-
tween C(X) and M, (C(Y)) (see [DN], [D], [EG2)).

In this note, all finite CW complexes are assumed to be connected.

Let X and Y be finite CW complexes.Let e,, : C(X) — C be the map de-
fined by the evaluation at the base point xo € X. The correspondence
¢—¢ @ ey, induces a map

@), Mu(C(¥))| | — [ CON, Mara(C(D)]

where [4, B]; denotes the set of homotopy classes of unital homomorphisms
from A4 to B. Taking direct limit over n, we define

Kk(Y,X) = lim [C(X), My(C(Y))], .

kk(Y,X) is a group for which the addition is induced by the direct sum of
the homomorphisms. This definition of kk is from [D] which is equivalent to
the definition in [DN]:

kk(Y,X) = Jim [Co(X), M, (Co(Y))] = [Co(X),Co(Y)@ A,

where " is the algebra of compact operators on a separable infinite dimen-
sional Hilbert space.
Let P € M,(C(Y)) be a projection.Let

el c()—C - (1-P) (S (1-PM(C(Y))(1-P))

be the map defined by the evaluation at the base point xy € X. The corre-
spondence ¢ — ¢ ® e}m"’ induces a map

[C(X),PM,(C(Y))P],—[C(X), Ma(C(Y))], -

If rank(P) > 3(dimY + 1), then by [DN], the homomorphisms in the fol-
lowing diagram

[C(X), PM,(C(Y))P],—[C(X),M,(C(Y))],—kk(Y, X)

1
are isomorphisms.We need the following proposition which is 3.5.5 of [DN].
PROPOSITION 2.4, Let X and Y be connected finite CW complexes without

torsion in cohomology. There is a natural injective map 0 : kk(Y,X) —
Hom(H"(X), H (Y)), and the image of 0 consists of all group homomorphisms
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which preserve both the graduation even-odd of cohomology and the filtration
F,H = @ H'. That is, 8(a)(H") C @ H"" for each nand o € kk(Y, X).
>0

q=m

2.5. In this paper, we use the same notation 6 to denote the above map 6
from kk(Y,X) to Hom(H (X), H (Y)) for different X, Y.

If xe kk(X X) is induced by id: Co(X) — Co(X), then
6(x) € Hom(H" (X),H" (X)) is the identity map. Let x € kk(Y,X) and
y € kk(Z,Y). Define x x y € kk(Z, X) to be the composition
(y @idg)ox: Co(X) = Co(Y) @ A

YU CZ) @ @A (= Co(Z) @ X)) .

It is true that
Ox x y) = 0(y)o0(x) € Hom(i{*(X),ﬁ*(Z)),

where 6(y) 06(x) is the composition

* 0(x) ~ x

Fo S oawm 2o,
(see 3.4.8 and 3.5.4 of [DN]).

2.6 Let X be a finite CW complex with torsion free cohomology groups.
One can construct a finite CW complex X = X 1 VXoV X;...V X;, where
each X; is a sphere S", such that H'(X) = H'(X)for each i. By Proposition
2.4, there exist [a] € kk(X, X) and [0] € kk(X, X) such that

[o] x [B] = id € kk(X, X) .

Suppose that a: C(X) — My, (C(X)) and 8: C(X) — My,(C(X)) are re-
presentatives of [a] and [(]. Equivalently, if N; and N, are large enough,
then

B®idy, ca: C(X)—Mp,n,(C(X))
is homotopic to id @ e,, which is defined by
f(x)

f(x0)
(id @ ey)(f) = f(x0)

(x0) NyN2xNi N,

In this note, e,, denotes the evaluation homomorphism of any given size
(in the above case, it is of size N1 N, — 1).
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LeEMMA 2.7. For any fixed finite CW complex X with torsion free-
cohomology groups, there is an integer N such that, if ¢: C(X)—
PM(C(Y))P is a unital homomorphism with rank(P) > N(dimY + 1), then ¢
is homotopic to a homomorphism

b : C(X)—PMy(C(Y))P

which has a factorization:
t
C(X)— €D M, (C(X;)))—PM(C(Y))P,
j=1

where the spaces X; are spheres or the set {pt}(from now on, the set {pt} is
regarded as a sphere).

PROOF. Let X = X, VX, V...V X,,Ni,N;,a, and 8 be as in 2.6. Consider
the composition map

R
where j; is the inclusion map and r; is defined by identifying all the points in

the subset X1 V...VX;_ VX ...VX;C X toa single point. They induce
two homomorphisms

* *

r 7

CX) = C(X) = C(X;) .

It is evident that ifor; =id € Hom(C(X)), C(X})). Let d:®C(X) —

M,(C(X)) be defined by

ai
a
d(alvaZa"'yas) =
as
s S
Then v :=do r;- @i}, defined by
=17 j=i
B & o, i
CX) — @PC) — CX)® - & C(X) — M(C(X)),
J=1 s—z);ies

is homotopic to id ® ey, € Hom(C(X), M,(C(X))) which is defined by



ON INDUCTIVE LIMITS OF MATRIX ALGEBRAS OVER... 47

S (x)

id@ ey (f) = S(x0)

. S(x0) ) sus

N s ~ o~
That is, [y] = [do Dr-® i;} = [id] € kk(X, X).
Jj=1 Jj=1
Let a; be the compositio
a = i/‘®ile
C(X) - MN](C(X)) - MNI(C(){])> )

where i; ® idy, 1s the canonical map from My, (C(X)) to My, (C(X))).

Let 3; be the composition

inclusion S B
C(X;) CX) — Mp,(C(X)) .
Let v: C(X) — Mn,n,(C(X)) be the composition

o <. meidy, - psidy,
C(X) — My, (C(X)) My, (C(X)) ——— Msyn, (C(X)) -

Then [y] = [id] € kk(X, X). Furthermore, 7 factors through @M y(C(X)
since ~y; factors through @ C(X;). Set N = 6SN|N;. Let ¢:C(X)—

PM;(C(Y))P (with rank(P) > N(dimY + 1)) be a unital homomorphism.
Then there exists a trivial projection Q< P with rank(Q)=
3sN{Ny(dimY + 1). Also,

[C(X), Mgimy+1)(C(Y))], = [C(X), PM(C(Y))P], =Kk(Y,X) .

Hence there exists a homomorphism ¢': C(X) — M3gimy+1)(C(Y)) with
[¢'] = [¢] € kk(Y, X). Let

é1 = (¢’ ®idyw,n,) o7 1 C(X)—OM(C(Y))Q = Mien,ny(aimr+1)(C(Y))
be defined by the composition

¢'®idsny N,

C(X) 5 My, (C(X)) Mion, Nydimy+1) (C(Y)) .
Define ¢, : C(X) — (P — Q)M(C(Y))(P — Q) by
#2(f)(x0) = f(x0)(P—Q) .

It follows that ) := ¢1 @ ¢, defines the same element as the one defined by
¢ in kk(Y,X). Hence ¢ and @ are homotopic. Furthermore, ¢; factors

5
through @ My, (X;) and ¢, factors through C. This ends the proof.
j=1
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REmMArRk 2.8. With the same N as in 2.7, if ¢: M(C(X)) —
PM;(C(Y))P is a unital homomorphism with rank(P) > kN (dimY + 1),
then ¢ is homotopic to a homomorphism 1 which factors through

GtaMk, C(X;), where the spaces X; are spheres. Furthermore, for any £ > 0
i=1

and any spaces X, there is N >0 such that, if ¢: M(C(X)) —
PM;(C(Y))P is a unital homomorphism with rank(P) > kN(dimY + 1),
then ¢ is homotopic to a homomorphism 3 which factors through a finite
direct sum of matrix algebras over spheres with an additional property
SPV(¢) < . (See the proof of Lemma 3.27 of [EG2].) As in 5.15 of [EG2],

one can prove the following:

COROLLARY 2.9. Let A be an inductive limit of (EBM[,,,](C(X,,,)) Gnm)
with torsion free H (X,;) and with slow dilénsion growth (or
sup,; dimX,; < +oo, resp.). If A is of real rank zero, then A can be written as

an inductive limit of algebras (@M{,, 3 (C(Yns)), 1[),,,,,,) where the spaces Y,
are spheres. Furthermore, the mductzve limit system {@ M3 (C(Yns)), Ynm }
can be chosen to satisfy the slow dimension growth condition (or
sup{dimY,,;} < +oo, resp.).
n,i
Theorem 2.1 follows from the above corollary and Theorem 5.17 of [EG2].
Our next task is to prove the following theorem.
THEOREM 2.10. Let A be an arbitrary inductive limit of algebras
kn
D M, 5 (C(Xy,)) with the spaces X, ; arbitrary finite CW complexes. Suppose
i=1

that A is of real rank zero.Then A @ Mq can be written as an inductive limit of
finite direct sums of matrix algebras over C(S).

(We do not need any restriction on dim(X,,), since the inductive limit
system for A ® Mq can always be made to satisfy the slow dimension growth
condition.)

2.11. The following result is the Proposition 2 of [D] (see also 3.4.7 of
[DN)).
For any finite CW complexes X, Y, there exists a canonical injective
homomorphism
9 :kk(Y,X)® Q—Homq(H" (X)® Q,H (Y)® Q)

such that the image of 6 consists of all the group homomorphisms preserving
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both the graduation even-odd of cohomology and the filtration
Fn,H = @ H’.This result can be interpreted as follows.

q=>m

(1) Leta: H(X)®Q — H(Y) ® Q be a homomorphism satisfying
a(H'(X)® Q) c PH(X)®Q,

i>n

a(H*Y(X)® Q) C HY(X) ® Q, and

a(H™(X) ® Q) C H**'(X) ® Q.

Then there exist an element [¢] € kk(Y, X) (represented by a homomorphism
¢: C(X) — My(C(Y))) and a positive integer m such that

0(j¢]) = m-a e Homq(H (X)®Q,H (Y)®Q) .

(2) If two homomorphisms ¢, ¢; : C(X) = Mi(C(Y)) (k> 3(dimY + 1))
satisfy

6([¢1) = 6((¢]) € Homo(H (X)®Q, H'(Y)®Q),
then there is an integer m such that
m[¢>1] = m[¢2] € kk( Y, X) .

That is, ¢}" is homotopic to ¢5', where ¢ : C(X) — M, (C(Y)) are defined
by

¢7'(f) = diag(si(f), -, ¢i(f) ), i=1,2.

m copies

2.12. Given any finite CW complex X. One can construct a CW complex
X=X3VX,V---VX;, where the spaces X, are spheres, with
H'(X)®Q = H'(X) ® Q. Consider the isomorphism

a:H(X)®Q—H(X)®Q
and its inverse
o H(X)®Q—H (X)®Q.

Applying 2.11 (1), there exist homomorphisms 71 : C(X) — M;, C(X) and
™ C()~() — My, (C(X)), and integers m; and my,, such that

9([7‘1]) = m -« and 9([7‘2]) = mz-a"l .

Hence
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0([r2 ® 1g, om1]) = mymyfid] =
mimyf([id]) € Homo(H'(X)® Q ,H (X)® Q) ,

where in the equation [id] = 6[id], the first [id] is in
Homq(H (X) ® Q, H (X) ® Q) and the second [id] is in kk(X, X).By (2) of
2.11, there exists m3 such that

ms[ry @ 1x, om1] = mymymslid] € kk(X, X) .

Set m = my - my - m3. Set [} = m; and L, = mym;. Without loss of generality,
we assume that /; > 3(dim(X) + 1) and &, > 3(dim(X) + 1). Then there exist
two homomorphisms 73 : C(X) — M (C(X)) and 74 : C(X) — M, (C(X))

such that [73] = [r1] € kk(X, X)and [r4] = m3[m] € kk(X, X). Hence
T4 ® 10131 C(X)— M}, (C(X)) = Myu(C(X))

satisfies [14 ® 1;, o73] = m|id] € kk(X, X).That is, 74 ® 1;, 073 is homotopic to
id™ which is defined by

f
idm(f) = .
f mxm

So we have proved the following statement: Given any finite CW complex
X, there exists m > 0 such that id” : C(X) — M, (C(X)) is homotopic to a
homomorphism which factors through a matrix algebra over C(X). (Note
that once the conclusion holds for m, it holds for any multiple of m). Fur-
thermore, for any € > 0, the above m > 0 can be chosen such that the map
id": C(X) - M,(C(X)) is homotopic to a homomorphism ¢ : C(X) —
M,,(C(X)) with the following two properties: (1) ¢ factors through a matrix
algebra over C(X); (2) SPV(¢) < ¢ . (In the constructions of 73 and 74 above,
ms3 can be changed to a large multiple of m3, and 74 can be chosen suitably to
make SPV(74) small, see 3.27 of [EG2)).

kn
LemMA 2.13. If A is an inductive limit of algebras @ M, j(C(Xy;)), bnm,
i=1

where the spaces X,; are arbitrary finite CW complexes, and if A is of real
rank zero, then A Q@ Mq can be written as an inductive limit of finite direct
sums of matrix algebras over wedges of spheres.
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Proor: Notice that, for any /,

AQM @ Mq = AQ Mo,

In
AeM; = lim (D Mpi(C(Xe) @ Mi, bum® 1) .
i=1

Furthermore, for any UHF algebra My,
AQMy@Ma = AQ Mqo.

Lete; > e3> -+ > €, -+ be a sequence of positive numbers. For 4, apply-
ing 2.12 to every block of A4;, there exists m; such that the map

id™ : Ai—AI® Mm,(C)
is homotopic to a homomorphism ; : 4] — 4 ® M, (C) with the proper-
k
ties that SPV(¢;) < €; and v, factors through GIBM{L,-}(C( Y1.)), where the
i=1

spaces Y, ; = X’l,i are as in 2.12.
Set Bi=A;, By=A,®M,,. Let t5:B; — B, be defined by
P12 = G12 @ Ly, 0ty
For By(= A; ® M, ), similarly, there exists m, such that
1d™ : B,—B, ® Mm2
is homotopic to a homomorphism ¢, : B, — B, ® M,,, with the properties
ky
that SPV(yy) < e, and 1, factors through @ My, ;(C(Y2;)), where the
- i=1
spaces Y; = X,;. Set By =A3 Q M;y, ® My, and Y23 = ¢23 @ Liyym, 092 :
B, — Bs.
We continue in this manner to get an inductive limital gebra
B = lim (B, ¥nm). By making suitable choices of ¢;, one makes B of real
n—oo

rank zero. Also, we need to change each m; to a larger one to make B of slow
dimension growth.
Recall that

P Bz(: 4;® Mmlmz..‘m,_l)“"’Bi ® Mm,

is homotopic to id™. It follows that 4;;4; is homotopic to
(Biiv1 ® Limymy...m,) 0id™:

id™ ¢l,l+l®1m1m2 m,
Ai Py MM|m2...m,_.| Ai ® Mm;mz...m,

Ai+l ®Mm|mz...m, .

Hence B =lim(B,, }/),,,,,) is shape equivalent to AQMy=
lim(4, ® Muymy-m,_,> bnm), Where My is the UHF algebra My =
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My @ My, ® -+ ® -+ -,and qg,,ym are compositions of the maps
¢i,i+l = (¢i,i+l ® 1m1m2-4-m,)°idm'»” <i<m-1

(Here the shape equivalence is the shape equivalence of inductive limit
systems in the sense of 2.1 of [EG2].) By Theorem 2.2 and Remark 2.32 of
[EG2], 4 ® My = B. Therefore, A ® Mq = B® Mg. On the other hand, B

can also be regarded as an inductive hrmt of algebras @M{,, i (C(Yni))
(notice that each 1, ,41 factors through GBM{,, i (C( Y,,,))) This ends the
proof.

Theorem 2.10 follows from Lemma 2.13 and Theorem 2.1.

REMARK 2. 14 In 3.5.5 of [DN] (see 2.4), the injective map 6 : kk(Y,X) —

Hom(H"(X), H" (Y))depends on the identification of k4(X) with @ H*%(X)
j20
in 3.4.8 of [DN]. And this identification is not natural since the splitting of

the sequence
0—k7"2(X)—kI(X)e—H(X)—0

is not natural. By # being natural, in 2.4, we mean that 6(id) =id and
6(x x y) = 0(y)-0(x) for all x e kk(Y,X) and all y € kk(Z,Y). Our 6 is
natural after we fix an identification of k?(X) with @H’”Zf (X) in 3.4.8 of

[DN)) for each X, since the map kk(Y,X) — Hom(k*( ),k*(Y)) is natural.
On the other hand, if f: Y — X is a continuous map, then f induces a
homomorphism of C*-algebras C(f): C(X) — C(Y) and a homomorphism
of cohomology groups f* : H'(X) — H"(Y). It may not be true that

o(C() =1
But we do not need this equality.

For the homomorphism ¢ :kk(Y,X)® Q — Homq(H (X)® Q,
H'(Y)®Q) in 2.11, we also need an identification of k%(X)® Q with
@, H"*%(X) ® Q. Here the identification can be chosen to be the one in-
duced by the Chern map: K*(X) ® Q — H'(X) ® Q, which is natural. Hence
in this case,

o(C() = f

if C(f) ekk(Y,X)® Q and f* € Hom(H (X)® Q,H"(Y)® Q) are induced
byasamemapf:Y — X.

2.15. Following [EfK], the definition of shape equivalence below is given
by Blackadar (see Theorem 4.8 and Definition 4.10 of [BI3]). Suppose that 4
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and B are two separable C*-algebras. 4 is shape equivalent to B if there are
two inductive limit systems 4 = lim(4,, ¢nm) and B = lim(B,, ¥ m) which
are shape equivalent, in the sense that there are two subsequences {Ak, Yooy
and {B,},>,, and homomorphisms &, : Ay, — B, and n, : B}, — Ag,,, with
the properties that 7, o£, is homotopic to ¢y, k., and 7,41 o7, is homotopic to
¥1,1,., for every n. Notice that the shape equivalence of 4 and B does not
imply that any inductive limit systems of 4 and B are shape equivalent. (One
needs to choose the inductive limit systems of 4 and B carefully to make
them shape equivalent.)

By the result in [EG2], Dadarlat proved the following: If X, Y are con-
nected finite CW complexes, then C(X)® Mg is shape equivalent to
C(Y) ® Mq if and only if K,(X) ® Q = K,.(Y) ® Q. The following corollary
is a generalization of this result.

COROLLARY 2.16. Suppose that A and B are AH algebras (not necessarily
of real rank zero). Then A ® Mq is shape equivalentto B ® Mq if and only if

(K.(4 @ Ma), Du(4 ® Mq)) = (K.(B® Mq), D.(B® MQ)) .

Proor. By 3.16 of [EG2] and the idea used in 3.26 of [EG2], one can
construct real rank zero AH algebras 4 and B which are shape equivalent
to A ® Mq and B® Mg, respectively (see the proof of 2.13). Then 4 ® Mq
(or B® My) is shape equivalent to 4 @ Mq ® Mq = A ® Mq (or B® Mg).
By Theorem 2.10,

(K.(4® Ma), D.(4 ® Mq)) = (K.(B® Ma), D.(B® Ma))
& (K.(4® Mq),D.(4 ® Mq)) = (K.(B® Mq), D.(B® Mq))
S A Mo =B Mg .

On the hand, the last isomorphism implies that 4 ® Mq is shape equivalent
to B® Mq.

REMARK 2.17. In this note, we use the fact that each cocycle in
K.(C(X)) = K*(X) can be realized as a finite sum of push forward of ele-
ments in K, (C(S™)), via some homomorphisms from C(S™) to My(C(X)).

This idea was also used in [G3], [G4]. In [G3]-[G4], the author proved (see
Theorem 4 of [G3] and Theorem 1.2 of [G4]) that each element of K'(X) can
be realized as a sum of pull backs of finitely many elements in K'(S™) via
some maps from X to S™ (equivalently, each element in K;(C(X)) can be
realized as a sum of push forwards of finitely many elements in K;(C(S™))
via homomorphisms from C(S™) to C(X)). The proof of this result is much
more difficult, since it does not allow passing to matrix algebras over C(X).



54

GUIHUA GONG

But for the purpose of [G3] and [G4] (the characterization of C,-smooth
extension of Ext(X) up to modulo torsion), it is enough to use the weaker
result (allowing passing to matrix algebras). So the proof of the main results
in [G3] and [G4] can be simplified (we omit the detail). However, the above
stronger result in [G3] and [G4] can be used to prove that an element in
Ext(X) is completely determined up to torsion by its pairing with n-tuples of
functions via Curto index [GS5]. .
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