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A CHARACTERIZATION OF HARDY-ORLICZ
SPACES ON C"

CAIHENG OUYANG" and JUHANI RITHENTAUS

1. Introduction.
Recently Stoll [7, Theorem, p. 1032] gave the following result:

THEOREM A. Let D be a domain in C that has a Green function G, and let ¢
be a strongly convex function such that ¢"(t) exists for all t € R. A holo-
morphic function f € H,(D) if and only if

é G(to,2)¢" (log |f (2)]) Ul;(( ))ll dxdy < 0

for some ty € D. Furthermore, if f € H,(D) then

hms// (loglf (2) lf(( ))II dxdy

where D. = {ze D: G(to,z) >e}

Recall that ¢ : R — R is strongly convex, if 1 is nonnegative, convex and
nondecreasing with ¢(t)/t — oo as t — co. (As a matter of fact, Stoll does
not need this last condition in his proof.) We also recall here the definition of
Hardy-Orlicz class. Let ¢ : R — R be a convex, nondecreasing function. In-
terpret

p(—00) = lim ¢(1).

t——00

Let §2 be a domain in C", n > 1. A holomorphic function f in 2 is said to
belong to the Hardy-Orlicz class H,(£2) if there exists a harmonic function
on {2 for which
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p(loglf(2)l) < h(z)

for all z € §2. Taking ¢(t) =" gives the usual Hardy class H?({2),
0 <p <oo. The Nevanlinna class N(f2) is the class of holomorphic
functions f on {2 for which there is a harmonic function 4 on 2 for which

(1) log™|f(2)| < h(2)

for all z € £2. Here we use the notation log*r = max{logr,0}, when r > 0.
Observe that (1) is equivalent with the condition that, for any 0 < p < oo,

log(1+f(2)F) < h(z)

for all z € £2. In the sequel we also use the following notation: If D is a do-
main in R, k > 2, then a subharmonic function u on D is said to belong to
the class S(D), if there exists a harmonic function £ on D for which
u(x) < h(x) for all x € D. Observe that we consider the function —oco as
subharmonic. The Riesz measure of a subharmonic function u will be de-
noted by .

Restricting then attention to domains D in C, whose Green function
G(t,z) is comparable to §(z), the distance of z to the boundary of D, Stoll got
the following corollary to Theorem A:

Let D be a domain in C, D # C. A holomorphic function f € H,(D) if and
only if

7 I(2)
(2) //6(2 (log|f (2)) =5 P 5 dxdy < oo.
Furthermore, if f € H,(D) then
')
(3) hms// (loglf (2) P dx dy

where Dy ={z€ D:§(z) > s}.

Since in the case of the unit disc U one has §(z) = 1 — |z|, the relations (2)
and (3) contain Yamashita’s results [12, Theorem 1, p. 69] and [13,
Theorem 3, p. 116].

Using the invariant gradient Stoll gave in a subsequent paper [8] analo-
gous results to the cited Yamashita’s results for functions in the Hardy class
H?(B) on the unit ball B in C", n > 1. Stoll’s main result there was [8,
Theorem 1, p. 127]:
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THEOREM B. A holomorphic function f belongs to HP(B), 0 < p < oo, if and
only if

/ (1= 12"l @)% £(2) P dA(z) < oo

B

Furthermore, if f € H?(B) then

r—1

lim(1 — ) /1/ @ £ ()2 dANz) =
where B, = {z € B: |z| < r}. Here V denotes the invariant gradient on B,

& 4
950f = iy - (X Zal),

and ) is the invariant measure on B,

Z

62,

_ n+1 ,
d\(z) = ———————(1 e dm(z).

Observe that Beatrous and Burbea [1, Theorem 5.2, p. 49, and
Corollary 5.3, p. 50] have also obtained related results.

Stoll’s proofs to Theorem A and to the results (2) and (3) above rely
strongly on the fact that » = 1, and cannot thus be generalized for n > 1, see
[8, p. 136]. In Theorem 1 below we present a proof which applies for all
n >1. Our proof also avoids the use of Green’s formula, unlike Stoll’s proof.
(Observe that Stoll assumes in Theorem A that ¢”(7) exists for all 1 € R,
whereas the standard form of Green’s formula requires the considered func-
tions to be %%; however, there exist more general forms of Green’s formula!)
Our result, Theorem 1, improves Stoll’s Theorem A not only by giving the
result for all # >1, but also by weakening the differentiability assumptions
of .

Stoll also conjectures [8, p. 136] that for ¢ as in Theorem A, f € H,(B) if
and only if

. Frap
4) B/ (1= Y6 log ) S22 ) <

Below in Corollary 2 we verify the if part of this conjecture (and, in fact, for
more general ¢) by proving, in Corollary 1, that f € H,(3)(f # 0) if and
only if



28 OUYANG CAIHENG AND JUHANI RITHENTAUS

) S L P
(5) / (1= 2" (og /@) = B dm(@) < o

Observe that the condition (4) is stronger than our condition (5). Moreover,
our condition (5) applies also to more general domains than just balls: Only
replace in 1 — |z| by é(z) in (5).

The notation we use is fairly standard. In addition to the notation already
given, we mention here only the following. We use the standard convention
0-00 = 0. The Lebesgue measure on R is denoted by my or just by m.
Moreover, if 4 C R* is measurable, then we write |4| = m(A4). The char-
acteristic function of a set 4 is denoted by x 4. The a-dimensional Hausdorff
measure is denoted by #*. We write z = x + iy = (x,y) for points of the
complex plane C. The terms ,,harmonic” and ,,subharmonic” are with re-
gard to the usual laplacian A in R¥, k > 2. Similarly is the Green function
for a domain of R¥, k > 2.

We want to thank the Referee for careful reading of the manuscript. We
also thank the Editor for a useful discussion.

2. Hardy-Orlicz class and Nevanlinna class.

The following lemma is more or less known; for the proof see [7,
Proposition 1, p. 1033].

LEMMA 1. Let D be a domain in R, k > 2, with Green function G. Let
u # —oo be subharmonic in D. Then u € S(D) if and only if there is wy € D
such that

(6) G(wo, 2)dpy(z) < oo.
/

The next lemma is just a special case for continuous, nondecreasing func-
tions of the classical de la Vallée Poussin’s Decomposition Theorem, see [6,
Theorem (9.6), p. 127, and Theorem (13.3), p. 100] or also [10, Théoréme 53,
p. 475].

LEMMA 2. Suppose F : (a,b) — R is continuous and nondecreasing. Let
Ew ={t€ (a,b) : F'(¢) exists,and F'(t) = +o0 }.

Then for all gy and t, a < a; <t < b,
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F) = Fla) = [Pl 00 E)| + [ F(0dr.

a
Thus, if |F(E)| = 0, then F is absolutely continuous.

Also the next lemma is due to de la Vallée Poussin, see [10, pp. 467-468]
and also [15, p. 48].

LEmMMA 3. Let u: (a,b) — R and g : (c,d) — R be absolutely continuous.
Suppose that u((a,b)) C (c,d). Then g ou : (a,b) — R is absolutely continuous
if and only if (g' ou)u’ € £'((a,b)), and then the chain rule

L leu(v)] = £ WO)()

is valid almost everywhere in (a,b).
For the next lemma see [7, Proposition 2, p. 1034}

LEMMA 4. Let D be a domain in R%, k > 2, with Green function G. If
g € S(D)and g # —oo, then

lim 115 (D (w0)) = 0
for all wy € D, where D.(w,) ={z€ D : G(z,w,) > ¢ }.

In the sequel we will use the following notation. Let ¢ and {2 be as in
Theorem 1 below. If f is holomorphic in (2, then we write fj : 2 - R,

2

a
S| 2 ()
[ (z) =4 ¢"(loglf (2))) /L if this expression is defined,
If (2)] otherwise.

)

In the proof of Theorem 1, we will show that A[p(log |f(z)])] exists for a.e.
z € {2 and is equal tofj(z) for a.e. z € f2.
We then give our main result:

THEOREM 1. Let ¢ : R — R be a nondecreasing, convex function that is
bounded from below and differentiable. Let E., be the set of points t in R for
which " (t) exists and equals +oc (and which set is of Lebesgue measure zero).
Suppose further that |¢'(Ex)| = 0. Let 2 be a domain in C", n > 1, with Green
Sunction G. Then a holomorphic function f on 02, f # 0, belongs to the Hardy—
Orlicz class H,(02) if and only if
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(7 /G(wo,z)ff(z) dm(z) < oo

? .
for some wy € £2. Furthermore, if f € H,(12), f #0, then

?.E%E /ff(z) dm(z) =0,
i

where 2. ={z € 2:G(wy,z) > ¢e}.

Proor. We show first that f € H,(f2) if and only if the condition (7)
holds. Recall that f € H,(£2) if and only if g(z) = p(log|f(z)|) belongs to
S(£2). Since by Lemma 1 we know that f € H,(f2) if and only if

[ G0w0.2)diglz) < o0
(0]

for some wy € 2, it is sufficient to show that

/ G(wo,2) dpag(z) = / G(wo, 2)fF(2) dm(z).

[ 1)

Using then the definition of the Riesz measure p, of g, we see that it is suf-
ficient to show that

(8) / ¢(2)AY(z) dm(z) = / FH(@)0(z) dm(2)
n

n

for all ¢ € €3°(£2). The method in proving (8) is to use Fubini’s theorem,
Federer’s results and partial integration. Observe already now that the left
hand side of (8) is finite, since spty (support of ) is compact.

We first introduce some notation. Write

Eo={ze:f(z)=0}, Ej={z€(2:g—£(z)=0}, Jj=1,...,n,
J
E=FEyUE U...UE,.

Since f is holomorphic, then for each j=0,1,..., n either E; =1 or

]fz"'z(Ej N K) < oo for each compact K C §2. If E| = {2, say, then 6%}: =0,
1
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and so f and thus also g does not depend on z;. But then

/g(zl,zz,...,z,,)Azlw(zl,zz,...,z,,)dm(zl,zz,...,z,,)
n
2

E’l'(zlsZZ,"-’zn)

If (z1,22,. . .,z,,)|2

dm(z|,22, .o ,Z,,) = 0.

_ /@”(log lf(zl’zb . ,Zn)|)

n

¥(z1,22,- - -, 2n)

Therefore, remembering also that f #0, we may suppose that
H2HENK) < oo for all K C 2 compact.

For the sake of clarity we divide the rest of the proof into separate steps.

Step 1. " (log|f (z)|) > 0 for a.e. z € £2.
Write

2 ={zen:¢"(loglf(2)|) is defined, and ¢” (log |f (2)])
Since ¢ is convex (and differentiable), " exists and " >
|Ki| = 0. Write

0}, F=0\n.
in R\ Kj, where

2
0
Ky={efecR:xecK}, Kz={weC:|weky}, F=f1K).

Then F C F). One sees easily that |K;| = 0 and |K3| = 0. To see that |F;| =0,
we proceed as follows.
Take an arbitrary domain f2; such that 2, C 2 is compact. Write
FE,=F N, Ey = EN{, and
H=1{(z2,...,2,) €C""' : (Cx{(22,...,2n)}) N Ey is finite }.

Since %2""2(E1) < oo, it follows from [2, 2.10.25, p. 188] that
#¥-2(C" '\ H) = 0. Since F, is measurable, it follows from Fubini’s theo-
rem that

|F| = /sz(z)dm(z) = / |:/xp2(zl,22,...,z,,)dm(zl)} dm(zy, ..., 2,).

H LC

If we show that for all (z,,...,2,) € H,

/XF2(21,22, ey Zn)dm(z;) =0,
C

it follows that |F;| = 0, and thus also |F;| =0, since {2, was arbitrary. So
take (zy,...,2,) € H arbitrarily, and write
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2y ={z1€C: (z1,22,...,zn) €1}, Fy={z1€C: (21,22,...,20) € 5 },
E]] = {Zl eC: (21,223"'3211) € E }

Since xr, (21) = xR (21,22,...,24) for all z; € C, it is sufficient to show that
|F21] = 0. Since F5; C 211 and E; C (2 is finite, it is sufficient to show that

each point z{ € {2, \ E;; has a neighborhood Uz C 211 such that
[P N Uz‘;l = 0. For this purpose take z{ € {2y, \ Ej; arbitrarily, and define

h: 8 — C, h(z1) =f(21,22,...,2zn). Since z{ ¢ Ejj,
19)
H(z9) =5—L(z‘l’,zz,...,z,,) #0.

Thus there is a neighborhood Uzo of z{ such that iy —h|Uzo is biholo-
morphic. Since F; N Uz = hy (K3 ﬂh(Uzo)) we see that indeed
|F21 N Uz | = 0, concluding the proof of Step 1.

Before going to Step 2, we observe, that using Fubini’s theorem, our de-
cisive claim (8) above can be written into the following form:

/.../[/g(Z)Az,iﬂ(Z)dm(z]): dm(za, ... za) + ...
/ /[/ 2)Aq,3(z) dm(z )} dm(zy,...,24-1)

2|
/ // loglf(z)l)mz—w(z)dm(zl) dm(zy,...,zs) + ...

of
522(2)
/ / / (loglf(z )])Ww(z)dm(zn) dm(zy,...,2Zu-1).

Using moreover [2, 2.10.25, p. 188] (in the way indicated above in the proof
of Step 1), we may therefore suppose that » =1 and that E is locally finite
in 2 (and also by Step 1 above, ¢”(log|f(z)|) > 0 for a.e. z € £2). Since g is
bounded from below and spti) is compact, we see that

// 2)A(z) dm(z) // (log |f (2) llj”,(())llz() m(z)

if and only if
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) //ﬂg(x,ywxx(x,y) dxdy = //ngx(x,y)zﬂx,y) dxdy,
//(lg(x,Y)wyy(X,y) dxdy = //ngy(x,y)zj;(x,y) dx dy

for each ¢ € €5°(£2), and if moreover

(10) Ag(2) = gux(x,) + 8yy(x,¥) = ¢" (log |/ (2)]) lfl;((z))llz

for a.e. z € {2. It is clearly sufficient to show that (9) and (10) hold.
Write
=inf{y € R: (Rx {y}) N spty# 0},
b, =sup{y€eR:(Rx {y})N sptyp # 0 }.
Step 2. If ‘

B ={y€ [b11b2] : (R X {y})ﬂE=@},

then ml([b1,b2] \ B]) =0

This is clear, since E is locally finite in (2.

For yeR, set A(y)={xeR: (x,y)€ spty} and 2(y)={x€eR:
(x,y) € 2}.

Step 3. If

By ={y € [b,ba] : ¢"(log|f (x,y)]) = 0 for ae. x € 2 (y)},

then my (b1, b2] \ B2) = 0.
This follows by Fubini’s theorem and by Step 1 above.

Step 4. If

B ={ y € [b1,by]: there is a bounded open set A'(y) such that A(y) CA'(y)

!
c A() c 2y and/ log[fxy)l)lf( Il dx<oo}
If (. 9

then ml([bl,bz] \ B3) =0.

In the sequel we will use the following convention.: If y € B;, then A'(y)
means always a set described in the above definition of Bs.

For the proof of Step 4, take an arbitrary yo € B; N B,. Since A(yo) is
compact and E is closed in {2, there are real numbers b] = b} (o), b, = b,(»0)
such that b} < yo < b} and that
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K = ([b],b5] x R)Nspty C 2\ E.

Since K is compact, we find a finite number of discs B(z;,r;), j=1, ..., m,
such that
(11) K C U:=B(z1,n)U...UB(zmrm) CUCN\E,

and that f|B(z;,r;) is biholomorphic, j = 1,..., m. By (11) we find constants c*
and C* such that

0<c<|f(z2)| < C*" <@

whenever z € U. We have then for eachj=1,..., m,

VEE 4y gy~ log |w]) — d.
//Bu,,r,) (el @D 7o &% //f(B(zm)) (g'w')u edn

2n c*
/ / "(logr) - drdH 27r/ "(logr)?

log C*
= 27r/ " (1) dt < 2m[¢' (log C*) — ¢ (log ¢*)] < 0.
I

og c*

Above we have used the fact that ¢’ is nondecreasing, and also the notation

w = £ + in. Hence
" ')
Z/go (logf (2)]) T dxdy < oo.

But then we see with the aid of Fubini’s theorem that for a.e. y € [b, b))
there is a bounded open set 4'(y) such that A(y) € 4'(y) C 4'(y) C £2(y) and

, )l
A [ o tostrea) 2 o< oo
')

(For example, the set U(y) = {x € R : (x,y) € U} is such an open bounded
set.) Since yo € By N B, was arbitrary, it follows that for a.e. y € [b;, b,] there
is a bounded open set 4'(y) such that 4(y) c 4'(y) c 4'(y) C 2(y) and

) L)l V)l
If (x, )

dx < oo.

¢" (log|f (x, )
A'(y)
Thus ml([bl,bz] \ Bg) =0.

Write then B* = BN B, N B;. It follows from Steps 2, 3 and 4 that
m([by,b2] \ B*) = 0.
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Step 5. The function

t—¢'(1)

is absolutely continuous on each finite interval I C R.

This follows from Lemma 2, because of the facts that by [5, Corollary
25.5.1, p. 246] ' is continuous, that ¢ is clearly nondecreasing and that
¢ (Ex)| =0, by the assumption of our theorem. (Another, rather short
possibility to see the absolute continuity of ¢’ is just to refer to [9,
Theorem (45.2), p. 105, and Corollary (43.4), p. 103].)

Let y € B* be fixed. Write 4 = A(y) and 4" = 4'(y). Since A’ is open in R,
one can write 4’ = U°°1A’ , where A}, Jj=1,2,..., are pairwise disjoint and
open intervals in R.

Step 6. The function

(12) x—gx(x, ) = (3loglu(x, )" + v(x,»)’))
u(x, y)ux(x,y) + v(x, y)vx(x, y)
u(x,y)* +v(x,y)*
is absolutely continuous on each A, j = 1,2,.... Moreover, for a.e. x € A',

(13) gxx :{‘P” (log lf')(”ux + VVX)2 + ‘Pl(lOg lfl) [(u“xx + "VXX)(“2 + Vz)
—( + V3 + V) + 2y — vvx)z]}/(u2 + V)2
Fix j arbitrarily and write 4" = A]. Since the function
,u0x y)ux(x, ) + v(x, y)va(x, y)
u(x, )’ + v(x,y)’

is ¥ and the set A’ is compact, this function is also absolutely continuous
on A'. Hence, in order to prove that the function (12) is absolutely con-
tinuous on A4”, it is sufficient to prove that the function

(14) x—¢' (Jlogu(x, y)* + v(x,)%)

is absolutely continuous on A4”.
To see this, it is by Lemma 3 sufficient to show that the function

ux7 u x’y +vx? Vx x7y
P 4 (o)) D) ()
u(x,y)” +v(x,y)
is integrable over A’. (Observe that this function is defined a.e. in 4’, since

¥ € B,.) The other assumptions of Lemma 3 are namely satisfied: the func-
tion

x— " (% log[u(x,y
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x> Sloglu(x, ) + v(x, )]

is absolutely continuous on A/, since it is ¥ and A’ is compact; also the
function n—¢/(t) is absolutely continuous on each finite interval I C R, by
Step 5.

Since y € B* C B; N B3, we know that

) (e y)P
(15) | og P 22 dx <,

and that there is m; such that

(16) IF'(x, )| = mi >0

for all x € A’. Using moreover the facts that the functions
x—u(x, ), x—ux(x,y),  x—v(x,p),  x—vx(x,y)

are > and the set A’ is compact, we see with the aid of (15) and (16) that

dx < 00,

" Iu(xa}’)ux(xvy) + v(x,y)vx(x,y)l
/A, ¢" (log [f (x, »)1) ) v )

so the function (14) and thus also the function (12) is absolutely continuous
on A” by Lemma 3.

By Lemma 3 one can use the chain rule when computing the derivative of
the function (14). Using this and other standard rules of differentation, we
see that (13) holds, thus concluding the proof of Step 6.

Step 7. / / g5, 7)AY(x, y) dxdy = / Ag(x,y)¥(x,y) dxdy, and

Ir'(z)
Ag(z) = ¢" (log |f (2)]) ==
IF(z)1°
for a.e. z € 2N spt 9.
To prove the first claim, we integrate by parts twice. For the first partial

integration, we observe that the function

x—g(x,y) = (L loglu(x, »)* + v(x,)?])

is in fact a €' function. (As above in the proof of Step 5, we see that the
function n—¢'(¢) is continuous.) Therefore we get for each j = 1,2,...,

/g(xay)"»bxx(xa,V)dx:—/gx(x>y)¢x(xa}’)dx'

/ o/
Aj Aj
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Because of Step 6 we can once more integrate by parts, and then we get for
eachj=1,2,...,

/g(X»J’)l/)xx(X,)’) dx = /gxx(x,y)w(x,y)dx.

’ '
A/ A!

Thus also

[ seater)dx= [ gulx vy dx

A 4
Since here y € B* was arbitrary, and m([b1,b5] \ B*) =0, we get, by in-
tegrating this with respect to y and using Fubini’s theorem,

a0 [[ ety = [[ gutxpvix dra

Proceeding as in Steps 2 — 6 and interchanging the roles of x and y, one can
similarly show that

19 [[snwnnara = [[ g, xnvix dray

Adding then (17) and (18), and using also (13) and a corresponding formula
for g,,, one sees that Step 7 holds, thus concluding the proof of the first part
of Theorem 1.

To prove the second part of Theorem 1, suppose that f € H,(f2) and
S #0. But then g € S(£2) and g # —o0, and so by the above Lemma 4,

(19) lim 11 (2. (wo)) = 0

for all wy € £2, where 2.(wp) = {z € £2: G(wo,z) > £}. On the other hand,
we know by the above proof that

pe(@m) = [ 1@ am(a)
12.(wo)
So combining this with (19), we see that the proof of Theorem 1 is complete.

COROLLARY 1. Let ¢ be as in Theorem 1. Let §2 be a domain in C",
2+# C", n > 1, with Green function G satisfying the following condition: For
each wy € (2 there are positive constants c; = c¢1(wp) and ¢y = ca(wo) such that

(20) c16(z) < G(wo, 2) < 26(2)
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for all z € 2\ B(wo,}6(wo)). Then a holomorphic function f on £, f # 0, be-
longs to the Hardy—-Orlicz class H,(2) if and only if

/amﬁ@mm<m.
0
Furthermore, if f € H,(§2) and f £ 0, then

lims ff(z) dm(z) =0,
2

5—0
where 2, = {z € £2:6(z) > s }.

The proof follows immediately from Theorem 1 (where the Riesz measure
of the function g(z)=¢(log|f(z)|) was computed) and from [7,
Proposition 3, p. 1035], since its proof extends verbatim to the general case
of R¥, k > 2.

REMARK. There are a lot of important examples of domains which satisfy
the condition (20) in Corollary 1. To name just a few of such domains, we
mention 4 domains and Liapunov-Dini domains, see [3, pp. 325-331], [11,
Theorems 2.3 and 2.5, pp. 21, 27], [14, Lemma, p. 117] and also [4,
Theorem 1, p. 269, and (vi), p. 270].

Next we give another corollary to Theorem 1, a special case of which
verifies the if part of the cited conjecture of Stoll [8, p. 136]:

COROLLARY 2. Let ¢ be as in Theorem 1. Then a holomorphic function f
on B, f #0, belongs to the Hardy-Orlicz class H,(B) if

¥V f(2)P
f(2)f

The integrand in (21) is defined to be 0 in the case when its expression is not

defined.

1) / (1 - 22" (log f (2)]) dA(z) < oo,

B

Proor. Using the Cauchy-Schwarz inequality we get
~ ) _ 4 ) n 6f 2 n af 2
B = 0= D (X 0] |2 55 )

Jj=1

4 n
> S-S

j=1

2

of
B_zj (2)

By this inequality, by (21) and by the definition of the invariant measure ),
one obtains easily



A CHARACTERIZATION OF HARDY-ORLICZ... 39

[ (1= 1Pyt 2 dm(a) < o
B
But then it follows from Corollary 1 that f € H,(B), concluding the proof.

As the last result we give a characterization for the Nevanlinna class, see
also [7, Proposition 4, p. 1037] and [8, Proposition 6, p. 136]:

THEOREM 2. Let 2 be a domain in C", n > 1. A holomorphic function f in 2
belongs to the Nevanlinna class N(£2) if and only if for some wy € {2,

S &)
(22) G(wy,z) ————— dm(z) < oc.
! (1 +1F)P)°

PROOF. As observed before, f € N(2) if and only if the subharmonic
function g;(z) = log(1 + [f(z)lz) has a harmonic majorant in f2. Since g; is a
%> function, one sees by a simple computation that

diig, () = éA[log(l +Y(@P)] dm(z) = s v 22

Here ¢, and C, are constants depending only on n. Using this equality and
Lemma 1 we see that f € N(f?2) if and only if (22) holds.

dm(z).

dzj
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