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ON THE SELF-INTERSECTION SET AND THE IMAGE
OF A GENERIC MAP

CARLOS BIASI AND OSAMU SAEKI"
Abstract.

Let f: M — N be a continuous map of a closed m-dimensional manifold into an n-dimensional
manifold with k = n —m > 0. We define a primary obstruction to the existence of a homotopy
between f and a smooth embedding which is related to the self-intersection set of a generic map
homotopic to f. When f is a smooth generic map in the sense of [9], we show that f is a smooth
embedding if and only if the primary obstruction vanishes and the (m — k + 1)th Betti numbers
of M and the image f(M) coincide, generalizing the authors’ previous result [4] for immersions
with normal crossings. As a corollary we obtain a converse of the Jordan-Brouwer theorem for
codimension-1 generic maps, which is a generalization of the results in [3, 1, 2, 20] for immer-
sions with normal crossings. Using generic maps, we show the vanishing of the primary ob-
struction for injective maps. Furthermore, for non-generic smooth maps, we find a homology
class in the closure of the self-intersection set which corresponds to the primary obstruction.

1. Introduction.

Let f : M — N be a smooth map of a closed m-dimensional manifold into an
n-dimensional manifold with k =n —m > 0. In this paper, we consider the
following problems: Is f homotopic to an embedding? If this is the case, is [
itself an embedding?

For the first problem, we define a primary obstruction 6;(f) to the ex-
istence of a homotopy between f and a smooth embedding as a homology
class in H, x(M;Z,). This homology class is represented by the closure of
the self-intersection set of a generic map [19] homotopic to f and it is shown
that it is a homotopy invariant. Thus, if f is homotopic to an embedding,
0,(f) necessarily vanishes. Nevertheless, we warn the reader that the van-
ishing of this primary obstruction does not necessarily imply the existence of
a homotopy between f and a smooth embedding.

For the second problem, we assume that 6;(f) vanishes and want to find a
condition which guarantees that f is an embedding. This recognition pro-
blem is difficult to solve in general. Thus, in this paper, we assume that f is
generic in the sense of [9] and study the topology of the image f(M) of f.
One of the main results of this paper is Theorem 4.1 which states that such a
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generic map f is an embedding if and only if the (m — k + 1)th Betti numbers
of M and f(M) coincide. This is a direct generalization of a result in [4] for
immersions with normal crossings. As a corollary to this result, we obtain a
converse of the Jordan-Brouwer theorem for codimension-1 generic maps
(Corollary 4.6), which generalizes the results in [3, 1, 2, 20] for codimension-
1 immersions with normal crossings.

The paper is organized as follows. In §2, we define two cohomology classes
we(f),v(f) € H*(M;Z;) and give various equivalent definitions for v(f).
Using these cohomology classes we define the primary obstruction
01(f) € Hn—(M;Z;). We also give a sufficient condition for the vanishing of
this class. In §3, we recall the class of generic maps in the sense of [9] and
compare it with the class of generic maps treated in [19]. In fact, a generic
map in the sense of [9] is necessarily generic in the sense of [19] and is much
stronger. In particular, it is shown that the closure of the self-intersection set
and the image of a generic map in the sense of [9] are triangulable. In §4, we
prove our main theorem (Theorem 4.1) and give its applications. In §5, we
show that the primary obstruction class 6;(f) vanishes for maps which are
topological embeddings, using generic maps. The idea of the proof is to ap-
proximate the map by a generic map which is close enough to the original
map so that the self-intersection set is small and is null-homologous. In §6,
we consider non-generic maps and, assuming that the closure A4 of the self-
intersection set is an ANR (absolute neighborhood retract), we find a
homology class u in Hy,_x(A4;2Z>) such that i.(u) = 0,(f), where i : 4 — M is
the inclusion map. Using this result, we give an alternative proof of a result
obtained in [20] concerning the number of connected components of the
complement of a codimension-1 map.

Throughout the paper, all homology and cohomology groups have Z,
coefficients unless otherwise indicated.

The authors would like to thank du Plessis for invaluable comments about
the stratification of generic maps. The second author would like to thank the
people in ICMSC-USP, Instituto de Ciéncias Matematicas de Sdo Carlos,
Universidade de Sdo Paulo, Brazil, where this work has been done.

2. Primary obstruction.

Let f: M — N be a continuous map of an m-dimensional manifold M into
an n-dimensional manifold N. We suppose that k = n —m > 0 and that the
map f is proper. For the moment, we assume no differentiability of M, N or
/. In this section, we define a homotopy invariant of f which is a primary
obstruction to the existence of a homotopy between f and an embedding.
Let the stable normal bundle f*TN @ vy of f be denoted by vy, where vy
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is the stable normal bundle of the manifold M. Then we denote by
wi(f)(€ H*¥(M)) the kth Stiefel-Whitney class of the stable vector bundle v;.
Note that this is a homotopy invariant; i.e., if f and g: M — N are homo-
topic, then wi(f) = wi(g). This is easily seen, since wi(f) is the degree k term
of f*w(N) U w(M), where w(N) is the total Stiefel-Whitney class of N and
w(M) is the total dual Stiefel-Whitney class of M.

For the proper continuous map f : M — N, we define v(f) € H*(M) to be
the image of the fundamental class [M] € HS,(M) by the composite

Dy .
HE(M) L5 HE(N) 25 HY(N) £ HE (M),

where H¢ denotes the (singular) homology of the compatible family with re-
spect to the compact subsets ([22, Chapter 6, Section 3]), and Dy denotes the
Poincaré duality isomorphism. By the definition, it is easy to see that v(f) is
a homotopy invariant (when M is not compact, the homotopy should be
through proper maps).

We note that when M and N are smooth and f is an immersion, the above
definitions of wy(f) and v(f) coincide with those of wi(vy) and vi(f) respec-
tively given in [4]. See also [16] and [12, Proposition 4.1].

REMARK 2.1. Consider the following commutative diagram:

HaM) L w25 vy L HE

(4

OtMl (”Nl ﬂNl ﬁul
HoM) 2o meny 2N m vy D ER)
m m )

where H? denotes the (singular) cohomology with compact supports ([22,
p.323)) and ayy, an, By and By are the natural homomorphisms. When M is
compact, ayr and By are isomorphisms and we see that v(f) is equal to the
image of the fundamental class [M]e H,(M) by the composite
,BMof*oD;,l o fs.

REMARK 2.2. Consider the following commutative diagram:

~1

HY (NN —f(M)) T BR(r(m)) L R (M)

| ol |
He Dy k f k
m(N) —  HY(N) — H'(M),
where i : (N,0) = (N,N —f(M)) and i : f(M) — N are the inclusion maps,
H* denotes the Cech cohomology group (or the Alexander-Cech cohomol-
ogy group) ([22]), 6 denotes the canonical isomorphism ([22, Chapter 6]), and
~ denotes the duality isomorphism ([22, p.342]). Thus v(f) € H*(M) is equal
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to the image of [M]e€ HS(M) by the composite §of* oy loi,of,:
H¢ (M) — H*(M). Since this composite factors through HS (N, N — f(M)),
we see that v(f) depends only on the map f : M — V, where V is an arbi-
trary neighborhood of f(M) in N. Note that this is also true for w(f).

As a corollary to this observation, we have the following: given a con-
tinuous map f : M — N, if v(f) # 0, then one cannot perform surgery opera-
tions in N — f(M) so that f,[M] =0 in the resulting manifold. For example,
the inclusion RP! — RP? is such an example.

REMARK 2.3. When f(M) is an ANR, we have the following commutative
diagram:
JA Dy X
H{(M) = HY(N) — H*(N)

m

g ] 1

= /-1
Hy,(f(M)) — Hy(f(M)) *— HN,N-f(M),
where +' denotes the duality isomorphism (see [11, p.179] and [22]). Thus, in
this case, we see that v(f) € H¥(M) is equal to the image of [M] € H,(M) by
the composite f* o i* o /"' o f, : HS,(M) — H*(M).

ProBLEM 2.4. Find a geometric interpretation of wi(f) and v(f) for a
general proper continuous map f (see [4, Remark 2.1]).

As has been seen in [4] (see also [12] and [17, Corollary 11.4]), we know
that if M and N are smooth manifolds and f is a smooth embedding, then

wi(f) = v(f).

DEFINITION 2.5. For a proper continuous map f : M — N, we define the
homology class 6;(f) € HS,_, (M) by 6i(f) = Dy(v(f) — wk(f)), where
Dy : H*(M) — H’_,(M) is the Poincaré duality isomorphism. Note that
this is a homotopy invariant of f. Furthermore, if f is a proper continuous
map between smooth manifolds homotopic to a smooth embedding, then
6:1(f) vanishes.

We will see in a later section that if f is homotopic to a topological em-
bedding of a closed smooth manifold into a smooth manifold, then 6,(f)
vanishes (see Theorem 5.1).

The reason why we use the homology class 8;(f) instead of its Poincaré
dual is that, if f is a generic smooth map, then the homology class 0, (f) is
exactly the one represented by the closure of the self-intersection set of f,
which will be seen in the next section (see Remark 3.9).

EXAMPLE 2.6. Let f : K — S> be a continuous map, where K is the Klein
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bottle. Then it is easy to see that 8;(f) does not vanish, since w;(f)) does not
vanish while v(f) vanishes. Hence f is not homotopic to a smooth embed-
ding.

In some cases we have the vanishing of the obstruction 8,(f). The follow-
ing proposition will be proved in §4.

ProrosITION 2.7. Let f : M — N be a proper continuous map of an m-di-
mensional manifold into an n-dimensional manifold with k =n—m > 0. If
fo HS, (M) — H_(N) is injective, then 6,(f) = 0 in H;,_,(M).

We note that, since 6;(f) depends only on the neighborhood of f (M) (see
Remark 2.2), the above proposition is valid also when f, on the (m — k)-th
homology is injective after a sequence of surgeries performed in N — f(M).

ExaMPLE 2.8. Consider a continuous map f : T> — T? of the 2-dimen-
sional torus into the 3-dimensional one. Since they are orientable, w;(f) al-
ways vanishes. If £,[T?] = 0, then we see that v(f) = 0 by the definition. If
f[T?] # 0, then it is not difficult to see that f, : Hy(T?) — H,(T?) is injective.
Hence by Proposition 2.7, we have 6;(f) = 0. Thus, for a continuous map
f:T* — T3, we always have wi(f) = v(f) =0 and 6,(f) = 0. The same is
true for every continuous map f : S x S — SP x SP x SP with p odd.

3. Generic maps.

The purpose of this section is to define a certain class of smooth maps be-
tween smooth manifolds which are generic in the sense that every map can
be approximated by this class of maps and which at the same time have a
good behavior with respect to the self-intersection set.

Let M and N be smooth manifolds of dimensions m and n respectively.
For the moment, we do not assume that M is compact.

DEeFINITION 3.1. Define /(m,n) to be the minimum integer / such that/ > n
and that codimW'(m,n) > n, where W!(m,n) is the real algebraic variety in
J'(m,n) defined in [9, p.120]. Note that this positive integer is well-defined by
virtue of [9, Theorem (7.2) (p.121)]. Note that, for every integer /' with
I' > I(m,n), codimW" (m,n) > n (see the proof of [9, Theorem (7.2)]).

DEFINITION 3.2. Define Q(= Q(M,N)) to be Q'™ (M, N), which is the
space of the proper smooth maps f : M — N which are multi-transverse with
respect to the stratification o/ (M, N) with JI? £ (M) 0 W!mn) (M| N) =
(. (For details, see [9, Proposition (4.1) (p.146)].) We call each element of Q2
a generic map by virtue of the following theorem.

THEOREM 3.3. ([9]) The subspace Q) is open and dense in the space
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Cffr(M , N) of all proper smooth maps of M into N with respect to the Whitney
C™ topology.

DEerINITION 3.4. Let f: M — N be a proper smooth map with m < n.
We say that f is generic for the double points, if it is so in the sense of
Ronga [19, Définition (p.228)]; in other words, if the 1-jet extension
J'f : M — J'(M,N) of f is transverse to the submanifolds ¥/ for all i and if
the r-fold product map f": M" — N'" of f is transverse to the diagonal § of
N' on M" — A for every r = 2,3,4,---, where X' is the space of the 1-jets
whose kernel dimension is equal to i, §={(y,---,y) € N'} and
A={(x1, -,x;) € M'|x; = x; for some i # j}.

LemMaA 3.5. If f : M — N is generic with m < n, then it is also generic for
the double points.

Proor. In the following, we set / = I(m,n)(> n+1). It is not difficult to
show successively that the following conditions are equivalent for fixed
points y € N and (x,---,x,) € M" — A with f(x;) = y.

@) AU (i) (T M) 1)) B Ty ) = T(N) -

®) {(vi,---,v)|vi € df,(TM))} & {(v,---,v)[veTN,} = TN, @ ---®
TN,.

(©) dim{(vi,---,v)|v € dfy,(TM)} + dim{(v,---,v)[v € TN,} —
dim{(v,---,v)|v € dfs,(TM,,) for all i} =r-dimTN,.

(d) >, dim(dfy,(TMy,)) + n — dim(dfy, (TMy,) N - - Ndfy,(TM,,)) = rn.

(e) codim(dfy, (TM,,) N ---Ndfy,(TMy,)) = >, codim(dfy,(TM,,)).

Now consider the natural projection 7 : TN, — &_, TN, /df, (TM,,). Then
we see that this is surjective if and only if dim(7N,)— dim(ker7) =
>-i_; codim(dfy,(TM,,)), which is equivalent to the condition (¢). On the
other hand, since f is multi-transverse with respect to «#'(M, N), the strati-
fied set (M, (J'f) " (! (M, N))) has regular intersections with respect to f.
Hence for all y € N and all (xy,---,x,) € M" — A with f(x;) = y the projec-
tion TN, — &[_, TN, /df,(T(X,,),,) is surjective, where X,, is the stratum of
J'f )_I(A’ (M,N)) which contains x;. Since the natural projection
TN,/df(T(Xy,),) — TN,/df, (TMy,) is surjective, we see that the projec-
tion 7 is surjective. Hence the condition (a) holds for all y € N and all
(x1,7++,X,) € M" — A with f(x;) = y, and f7 is transverse to § on M" — A.

Next we show that J'f : M — J'(M,N) is transverse to ¥/ for all i. Con-
sider the following commutative diagram:

JI(M,N)=(SoUS U---US,,)UW! (M,N)
af g L
1
M MmNy =sPusiu..usm
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where 7! is the natural projection and Sy, Si,---,S,, are as defined in [9,
p.135]. Note that codimS; = i ([9, Proposition (2.3) (d) (p.136)]). Then we see
that  (x)™'(Z) — W!(M, N) = Uj»j(x4(some components of S;), where
k =n—m. Since J'f (M) N W!(M,N) = 0 and J'f is transverse to S;, we see
that J'f is transverse to ©'. This completes the proof.

We note that the converse of Lemma 3.5 does not hold in general. For
details, see [5, §4].

THEOREM 3.6. ([9, Proposition (3.3) (p.142)]) If f is generic, then (s, s/')
Thom stratifies f, where of = ((J’f)"lJz/'(M,N))f, o' ={f(X)|X € L}U
{N —f(M)} and | = I(m,n). In particular, f(M) admits a Whitney stratifica-
tion {f (X)|X € #}.

REMARK 3.7. Let (4, .97) be a locally closed Whitney stratified subset of a
smooth manifold M. Then the partition .&/¢ of 4 into the connected compo-
nents of all strata in .« is a Whitney stratification of 4. Furthermore, «/¢ sa-
tisfies the frontier condition (see [9, Theorem (5.6) and Corollary (5.7) (p.61)]).

For a generic map f:M—>N (m<mn), we set M(f)=
{x € M|f~'(f(x)) = {x,y} with x # y, and df; and df, are non-singular}.
Note that M>(f) is a union of strata of /¢, where o/ is as in Theorem 3.6.
Note that, by [19] and Lemma 3.5, M,(f)=M(f)UZ(f), where
M(f) = {x € M|f~'(f(x)) # {x}} and (f) = {x € M|dim(kerdf,) > 1}.

If f is generic, then it is not difficult to see that
(M0, (') M) Thom stratifies f[M() : Ma(f) — £ (Ma(7)),
where (o/')|f (Ma(f)) = {f(X)|X € «°|M,(f)}. Thus we have the following.

LEmMMmA 3.8. If f€Q, then My(f)(= M(f)UE(f)) and f(M,(f)) admit
Whitney stratifications. In particular, they are triangulable.

The latter result follows from [10]. Note that the image (M) is also tri-
angulable.

We note that, for maps which are generic for the double points, a result
corresponding to Lemma 3.8 does not hold. In fact, in [5, §4], an example of
a smooth map which is generic for the double points and whose image is not
even an ANR is given. The main reason that we are using generic maps in-
stead of maps which are generic for the double points is that the closure of
the self-intersection set and the image of a generic map are triangulable
while they are not necessarily triangulable for maps which are generic for the
double points.

REMARK 3.9. Let f: M — N be a proper generic map. Then by [19,
Théoréme 2.6) and our Lemma 3.5, we see that M,(f) = M(f) U £(f) carries
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a non-trivial fundamental class u(f) = [M2(f)] € H;,_,(M>(f)). Further-
more, we have j,.(u(f)) = 0:(f), where j : Mr(f) — M is the inclusion map.
In other words, j.(u(f)) is the primary obstruction to the existence of a
homotopy between f and a smooth embedding.

We also note that the above result does not hold for non-generic maps.
For example, consider the smooth map f : T> — S* as in Figure 1, where T2
is the 2-dimensional torus. Then we see easily that 6,(f) vanishes. Further-
more, (the closure of) the self-intersection set 4 = W(C T?) of f carries a
fundamental class u(f) € H,(A4). However j,(u(f)) does not vanish and does
not coincide with 6 (f). Of course f is not generic.

A - f(lA)
f
—_—
f(IH s’
Figure 1

4. A characterization of embeddings among generic maps.

THEOREM 4.1. Let f : M — N be a generic map of a closed m-dimensional
manifold into an n-dimensional manifold with k=n—-m>0. Then f is a
smooth embedding if and only if 6,(f)=0 in Hpu (M) and
Bm-i+1(f (M)) = Bu—i+1(M), where [3; denotes the j-th Betti number with Z,-
coefficient.

PrROOF. Let A be the closure of M(f) = {x € M|f~'(f(x)) # {x}} and set
B = f(A). Note that by Lemma 3.8 4 and B are compact polyhedrons. Note
also that dim4 = dimB = m — k. We suppose that f is not a smooth embed-
ding. This implies either $(f) # @ or M(f) # 0. Since 4 = M(f) U X(f) [19],
we have 4 # (. Then by the same argument as in [4, §2], we obtain the exact
sequence,

0— Hm_k+1(M) - Hm—-k+1(f(M))
— Hyi(A)>Hpi(B) ® Hp k(M) — - -,

where a = (f|4), @j. and j : 4 — M is the inclusion map. Then we have
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Bm—-it1(f (M)) = Bm—k+1(M) + dimker a.

Now consider the fundamental class u(f) = (4] € Hyu-k(A), which is non-
zZero.

LeMMA 4.2. (f|4),[4] =0 in H,_x(B).

Proor. First note that f|4 is a double cover when restricted to M (f).
Furthermore, it is not difficult to show that 4 — M,(f) is a subcomplex of A4
with respect to a suitable triangulation and that its dimension is strictly
smaller than that of 4. Hence we have the conclusion.

On the other hand, by Remark 3.9, we have j,[4] = 6,(f). Now suppose
that 0;(f) = 0. Then we have j,[4] = 0, which implies that

Bm—tr1(f(M)) = Bu—i1(M) + dim kera
> Bm-k+1(M),

since [A] € H,—«(A) is a non-zero element of ker . Thus, if /" is not a smooth
embedding, we have By_i+1(f(M)) > Bu-i+1 (M) or 6;(f) # 0.

On the other hand, if f is a smooth embedding, we clearly have
Bm—t+1(f(M)) = Bm-k+1(M). Furthermore, we have 6, (f) = 0 (see Definition
2.5). This completes the proof of Theorem 4.1.

We note that the conclusion of Theorem 4.1 (with H,,_,(M) replaced by
Hy, (M) and B k41 by B5,_,,,) holds also when M is not compact and f is
proper, provided that 3, _, (M) is finite, where 3;,_, . (X) denotes the di-
mension of the homology group Hj,_, ., (X) for a space X.

In [5], the same result as Theorem 4.1 has been obtained for maps which
are generic for the double points (in the sense of Ronga [19]), where the Betti
numbers should be replaced by the Betti numbers with respect to the Cech
homology. When the map is generic (in the sense of [9]), the image f(M) is
triangulable and these Betti numbers coincide. In other words, our Theorem
4.1 is an easy consequence of the result in [5]. However, we have included a
complete proof here, since it is much simpler than that given in [5] and it
clarifies the idea. Furthermore, we do not know if the corresponding result
for proper maps holds for maps which are generic for the double points (see
[5, #3)]).

By the same argument as in [4] (or by the definition of v(f)), we obtain the
following corollaries.

COROLLARY 4.3. Let f : M — N be a generic map of a closed m-dimen-
sional manifold into an n-dimensional manifold with k = n —m > 0. Suppose
that either f* : H*(N) — H*(M) or f, : Hu(M) — Hy,(N) is the zero map.
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Then f is a smooth embedding if and only if wi(f) =0 in H¥(M) and
Brn—k+1(f (M) = Bm-k+1(M).

COROLLARY 4.4. Let f : M — N be a generic map of a closed m-dimen-
sional manifold into an n-dimensional manifold with k =n —m > 0. Suppose
that Bx(N) = Boy-1(N) = sz_z(N) =0 and wi(f) =0. Here Bj denotes the
dimension of the reduced j-th homology group with Zy-coefficient. Then f is a
smooth embedding if and only if Boyx—2(N — f(M)) = Br_1(M).

Compare the above corollary with the results of [13].
Here we give a proof of Proposition 2.7.

PrOOF OF PrOPOSITION 2.7. By a homotopy we may assume that f is gen-
ericc. Then by Lemma 4.2, we see that f.(j.[4]) =/7.((f]4),[4]) =0 in
H; _,(N), where j': B— N is the inclusion map. Since f, is injective, we see
that 8, (f) = j.[4] = 0. This completes the proof.

Using Proposition 2.7, we have the following.

COROLLARY 4.5. Let f : M — N be a generic map of a closed m-dimen-
sional manifold into an n-dimensional manifold with k = n — m > 0. Suppose
that f : Hy_(M) — H,,_(N) is injective. Then f is a smooth embedding if
and only if Bn—i+1(f (M)) = Bm—k+1(M).

The following corollary to Corollary 4.4 is a converse of the Jordan-
Brouwer Theorem for generic maps, which generalizes the results of [3, 1, 2]
(see also [20]). Note that, when k=1 and H,(N) =0, we always have
v(f) = 0 (Remark 2.1) and w;(f) = 0 if and only if M is orientable.

COROLLARY 4.6. Let f: M — N be a generic map of a closed orientable m-
dimensional manifold into a connected (m + 1)-dimensional manifold with
H\(N)=0. Then f is a smooth embedding if and only if Bo(N —f(M)) =
Bo(M) + 1.

As a corollary to Corollary 4.5, we also have the following.

COROLLARY 4.7. Let f : M — N be a generic map of a closed m-dimen-
sional manifold into a connected (m+ 1)-dimensional manifold with
Hi(N) = 0. Suppose that f, : Hy_1(M) — H,,_1(N) is injective. Then f is a
smooth embedding if and only if Bo(N — f(M)) = Bo(M) + 1.

ProoF. By the same argument as in the proof of Corollary 1.3 of [4], we

see that Go(N — f(M)) = Bn(f(M)) + 1. Then the result follows from Cor-
ollary 4.5.

Note that a converse of the Jordan-Brouwer Theorem has been obtained
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also for quasi-regular immersions ([21]) and that a quasi-regular immersion
is not necessarily generic.
Theorem 4.1 suggests the following definition.

DEerFINITION 4.8. Let f: M — N be a continuous map of a closed m-di-
mensional manifold into an #-dimensional manifold with k =n —m > 0. We
define 6,(f) € {0,1,2,---} to be the minimum of B,—k+1(g(M)) — Bm—rk+1(M)
over all generic maps g: M — N homotopic to f. Note that this is well-
defined by Theorem 3.3 and that it is a homotopy invariant of f.

Theorem 4.1 can now be reformulated as follows: a continuous map
f M — N is homotopic to a smooth embedding if and only if 6,(f) =0 in
Hpy_«(M) and 6,(f) = 0. We do not know if there exists an effective method
to determine 6,(f). If fact, we even do not know if 6,(f) can be arbitrarily
large for a given pair of manifolds (M, N).

Here we note the following.

LEMMA 4.9. Let f: M — N be a generic map as in Theorem 4.1. Then
Br—tk+1 ([ (M) = Brtcr1 (M) if Hpi11(C;) = 0, where C; is the mapping cone
of the map f[=f:M—f(M) (C is the space obtained from
(M x [0,1]/M x {0}) Uf(M) with (x, 1) identified with f(x) for all x € M ).

ProoF. Let Z; be the mapping cylinder of fiie., Z; is the space obtained
from (M x [0,1]) Uf(M) with (x,1) identified with f(x) for all x € M. Now
consider the exact sequence

Hp i1 (M) = Hypt41(Z7) = Hmies1(Z7, M),

where i : M — Z; is the inclusion onto M x {0}. Then the map i, is equiva-
lent to the map f, : Hy_y1(M) — Hy_i1(f(M)), which is injective by the
progf of Theorem 4.1. Furthermore we see that H,,_;,| (Z], M) is isomorphic
to Hm—k-H(Cj)- Hence if Flm_k+1(ci) =0, then ﬂm_k+l(/(M)) = ,Bm_k_,_](M).
This completes the proof.

As a corollary to Theorem 4.1 and the above lemma, we have the follow-
ing.

COROLLARY 4.10. Let f: M — N be a generic map of a closed m-dimen-
sional manifold into an n-dimensional manifold withk =n—m > 0. Thenf is a
smooth embedding if and only if 61(f) = 0 in Hp_x(M) and Hy_441(C;) = 0.

In view of Corollary 4.10, for a continuous map f : M — N as in Defini-
tion 4.8, we can define @ (f) as the minimum of dimH,, x41(C;) over all
generic maps g homotopic to f and we have that f is homotopic to a smooth
embedding if and only if 6,(f) = 0 in H,,_x(M) and 6,(f) = 0.
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In some cases, we have geometric formulas for By—g+1(f (M))— Bu—i+1(M)
and dimH,,—x+1(C;) for generic f.

ProPOSITION 4.11. Let f : M — N be a generic map of a closed m-dimen-
sional manifold into an (2m — 1)-dimensional manifold with m > 3. Then if
H\(M) =0, we have B(f(M))— B2(M)=dimH,(C;) = Bo(B), where
B =f(4) =f(M(f)).

ProOOF. By the proof of Theorem 4.1, we have
Ba(f (M) — Bo(M) = dim ker((f|4), : Hi(4) — H\(B)).

On the other hand, since f is a generic map of an m-dimensional manifold
into an (2m — 1)-dimensional manifold, we know that f is an immersion with
normal crossings except at a finite number of points, where f has Whitney
Umbrellas (see [24, 25]). Hence 4 is a closed 1-dimensional submanifold of
M and B is a compact 1-dimensional submanifold of N with boundaries
corresponding to the image of the Whitney Umbrellas. Then for each con-
nected component C of B, f|f~1(C) : f~}(C) — C is equivalent to the trivial
double cover S'US! — S!, the non-trivial double cover S' — S!, or the
projection 7 : S' — [~1, 1], where 7(z) = Re(z) (z € C, |z| = 1). In each case,
we have dim ker((f|f~!(C)), : Hi(f~'(C)) — H;(C)) = 1. Hence we have
dim ker(f|4), = Bo(B). The equality B(f(M)) — B2(M) = dimH,(C;) fol-
lows from the exact sequence

0 — Hy(M) — Ha(Z;) — Hy(C;) — Hy(M)

together with the isomorphisms H>(Z;) = H(f(M)) and H;(M) = 0. This
completes the proof.

Compare Proposition 4.11 with [14, Theorem 1.2 (2)] and [2, Theorem 1.3
and Remark 2.10].

5. Vanishing of the primary obstruction for topological embeddings.

THEOREM 5.1. Let f : M — N be a topological embedding of a closed m-di-
mensional smooth manifold into an n-dimensional smooth manifold with
k=n—m>0. Then 0,(f) € Hu—r(M) vanishes.

Proor. We have a Riemannian metric on M, which we fix here. We de-
note by d(x,y) the distance between x and y in M with respect to the fixed
metric. Then there exists a positive constant € which satisfies the following:
putting

X ={(x,y,t) e M x M x Rld(x,y) <¢,|t| <d(x,y)/2},
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we have a continuous map ¢ : X — M such that, for every (x,y) e M x M
with d(x,y) <e, ¢(x,y,—d(x,y)/2) = x,(x,p,d(x,y)/2) =y and oft) =
o(x,y,t) is a geodesic curve connecting x and y parametrized by arc length
(for example, see [23, Theorem 14 (p.454)]). Note that p(x,y,t) = o(y, x, —t)
for all (x,y,1) € X.

Since M is compact and f is a topological embedding, there exists a gen-
eric map g : M — N homotopic to f which satisfies that g(x) = g(y) implies
that d(x,y) < e. Thus, for the proof of Theorem 5.1, it suffices to prove the
following.

LEMMA 5.2. Let f: M — N be a generic map of a closed m-dimensional
Riemannian manifold into an n-dimensional smooth manifold with
k=n—-—m>0. Suppose that f(x)=f(y) implies that d(x,y) <e. Then
0(f)=0in H,_(M).

PrOOF. Let F,(M) be the “‘fat square” of M as defined in [19]; i.e.,
FE(M)=(MxM— Ay)UP(TM), where Ay is the diagonal set and
P(TM) is the total space of the projective tangent bundle of M. We denote
by o: F,(M) — M x M the natural projection and by p; : M x M — M the
projection to the first factor. Put m = p; o 0. Recall that M, (f) = n(M(f)),
where M,(f) = {z € 2|S(f);) =0}, 2 is a neighborhood of P(TM) in
F,(M), ~ is a line bundle over F>(M) which extends the canonical line bundle
over P(TM), and S(f) is a section over {2 of Hom(~y,n*f*(TN)) defined by
Sy =) —f(x) for x#y and S(f),, = dfx by means of natural
identifications. For details, see [19]. Note that M;(f) is a regular submani-
fold of F,(M) of dimension m — k.

Define the involution 7: M x M — M x M by 7(x,y) = (y,x). The involu-
tion 7 can be lifted to an involution of F,(M), which we denote by 7 : F>(M) —
Fy(M). Note that 7|(M x M — Ay ) = 7|(M x M— Ap),7|P(TM) = idp(ra)
and that the diagram

RM) S BM)

o| |

MxM o MxM

is commutative. Note that M, (f) is invariant under 7; i.e., 7(Ma(f)) = Ma(f).
By our hypothesis, we have

o(My(f)) C {(x,») € M x Mld(x,y) < e}.

Define the continuous map 3: Xa(f) — M by Xo(f) = {(p,?) € My(f)x
RIlt] < d(x,)/2, (x,») = o(p)} and B(p, ) = ¢(o(p), ). Note that Xs(f) is a
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compact polyhedron. We also note that 3 is invariant under the involution
k: Xao(f) — Xao(f) defined by (p, 1) = (#(p), —t), since
Bo ’i(pv t) = ﬂ(%(p)’ _t)

= @(o(7(p)), 1)

= ¢(1(o(p)), —1)

= ¢(a(p), 1)

= ﬂ(pv t)'
Thus 3 induces a continuous map 3 : A — M, where A = X,(f)/x is a com-
pact polyhedron of dimension m —k + 1 (in fact, A is a compact smooth
manifold with corners. See the remark below). In other words, 3 can be re-
garded as an (m—k+ 1)-chain in M. Set Y ={(p,1) € X2(f)||t| =
d(x,y)/2,(x,y) = o(p)}. Then for (p,?) € Y, denoting the equivalence class
of (p,2) in A = X5(f)/k by [p, 1], we have

B(lp. 1) = B(p, 1)
= ¢(o(p),1)
=x=pioo(p) =7(p)

if t = —d(x,y)/2 and

e(o(p), 1) =y =pi(r(0(p)) = p1(o(7(p))) = =(7(p))
if t=d(x,y)/2. Thus we have B(8A) = B(Y/k) = n(M1(f)) = My(f) and
0B = M,(f) as Zy-cycles of dimension m — k. Hence we have
01(f) = Du(wi(f) — v(f)) = [Ma(f)] =

This completes the proof of Lemma 5.2 and hence of Theorem 5.1.

REMARK 5.3. Set X5(f) = {(p, 1) € X2(f)|o(p) € Apr,t = 0}. Then the pair
(X2(f), X»(f)) is locally homeomorphic to ({(x,y) € R*||y| < |x|}, (0,0))x
R™ %=1 Furthermore, the involution & :X»(f) — Xa(f) is of the form
((x,5),a)—((—x,—y),a) under the local identification. Thus A = X,(f)/k is
a smooth manifold with corner X,(f)/x. We can smooth the corner easily
and then A is a compact smooth manifold with boundary. Furthermore, the
map AA — M,(f) defined by [p,fJ—p is a diffeomorphism. Hence
m|Ma(f) : My(f) — M is null-bordant; i.e., [x|Ma(f)] =0 in 7,_t(M) (see
[7D.

As a corollary to Lemma 5.2, we have the following.

COROLLARY 5.4. Let f : M — N be a continuous map of a closed m-dimen-
sional Riemannian manifold into an n-dimensional smooth manifold with
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k =n—m > 0. Suppose that f(x) = f(y) implies that d(x,y) < ¢, where ¢ is as
in the proof of Theorem 5.1. Then 6,(f) = 0 in Hy,_y(M).

REMARK 5.5. Note that there do exist topological embeddings which are
not homotopic to smooth embeddings. For example, consider a continuous
map f:S5%— S?2x 8% such that f,[S?]=2[S?x {x}]+3[{x} xS$? in
H(S8? x §%,Z)(= m(S? x S?)). Then, by [8], f is homotopic to a topological
(locally flat) embedding. However, by [15], f is not homotopic to a smooth
embedding.

6. The primary obstruction for non-generic maps.

Let f : M — N be a continuous map and 4 C M the closure of the self-in-
tersection set of f; i.e., 4 is the closure of M(f) = {x € M|f~(f(x)) # {x}}.
In this section, we will find a class in the homology of 4 which represents the
obstruction 6, (f).

THEOREM 6.1. Let f: M — N be a continuous map of a closed m-dimen-
sional smooth manifold into an n-dimensional smooth manifold with
k=n-m>0. Suppose that A is an ANR. Then there exists a class
- U € Hy_y(A) such that j.(u) = 0,(f), where j: A — M denotes the inclusion.
Furthermore, if B=f(A) is also an ANR, then we can choose u as above so
that (f|A),(u) =0 in Hy_i(B).

REMARK 6.2. When 4 is not an ANR, we can find an appropriate class u
as above in the Cech homology of 4. Alternatively, we can find a closed
subset 4’ of M which contains 4 and which is an ANR. Then we can find an
appropriate class u in the homology of A’. However, the hypothesis on B
seems to be difficult to remove.

ProOF oF THEOREM 6.1. Since 4 is an ANR, there exists an open neigh-
borhood V of A with a retraction r: ¥ — A. Then by [11, p.175], there exists
another open neighborhood ¥’ of 4 such that V7 is contained in ¥ and that
the diagram

i

|4 — vV
er’ \ /iz
A

is homotopy commutative, where i; and i, are the inclusions. Take a smaller
open neighborhood V" of A such that V7 C V’'. Then we take a compact
codimension-0 submanifold W with boundary in M such that
V7 c IntW C W C V'. Furthermore, take a smaller codimension-0 sub-
manifold W’ in IntW whose interior contains ¥”. We introduce a Rie-
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mannian metric on M such that both W and W’ are totally geodesic.
Then there exists an € > 0 such that x € W — IntW’ and d(x,y) < € imply
that a geodesic connecting x and y with total length d(x, y) is entirely con-
tained in ¥/ — V" and that the property for M mentioned in the proof of
Theorem 5.1 is satisfied. Then there exists a generic map g: M — N homo-
topic to f such that g(x) =g(y) with x¢& V" or y¢ V" implies that
d(x,y) <e.

Now consider the map m=p;o0: F,(M) > M and its restriction to
M;(g) as in the proof of Theorem 5.1. Then there exists a compact codi-
mension-0 submanifold with boundary T of Mj(g) such that
My(g) N7 ' (M —IntW) C IntT C T C My(g) N7~ (M — W'). Then (dT)
is contained in IntW — W’. Hence, by the choice of ¢ and g, we see that
7(7(8T)) is contained in V' — V", where 7 : F,(M) — Fy(M) is the involu-
tion defined in the proof of Theorem 5.1. Furthermore, the geodesic con-
necting m(x) and 7(7(x)) is entirely contained in V' — V" for every x € 9T.
Set T=TU#T) and set Xr={(p,t) € T xR||t] <d(x,9)/2,(x,y) =
a(p)}(C Xa2(g)) (for notation, see the proof of Theorem 5.1). Then we see
that X7 is invariant under the involution x : X»(g) — X>(g) and that we can
define a continuous map 3 : Xr/k — M as in the proof of Theorem 5.1.
Furthermore, we may assume that the involution 7 is piecewise linear with
respect to a triangulation of F,(M) and that M,(g) and T are subcomplexes
of F,(M). Then T is also a subcomplex of F>(M) and B defines an
(m — k + 1)-chain in M. The boundary of this chain consists of 7(7’) and a
part entirely contained in V' —V7”. Thus we have shown that
(), o T [Ma(g)] = ('),[M2(g)] lies in the image of

(), + Hnsc(V') = Hpi(M),
where j': M(g) = M and i : V' — M are the inclusions. In other words,
there exists a class ' € Hy,_,(V’) such that ('), («') = (J/),[M2(g)]. Now, by
the choice of the neighborhoods V' and V' of 4, we have the following
commutative diagram:

Hoo V) S H, ()

o N ),
Hm—-k(A)'
Then, setting u = (r|V'), () € Hu-r(A4), we see that j.(u) = (j/),[M2(g)] =
61(g) = 6:(f). This completes the proof of the first half of the theorem.
Now we suppose that B = f(4) is an ANR. Then there exists a neighbor-

hood U of B in N such that there exists a retraction 7 : U — B. We may
assume that ¥ C f~!(U), that g(¥) C U and that f|V and g|V are homo-
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topic as maps of V into U. Let ¢ be the (m — k)-cycle in M given by
c = m(My(g)) — 0F'. Note that ¢ is contained in ¥’ and that ¢ = ¢ + ¢,

where ¢ =7n(My(g) - T), 2 =0(X"), X' = {(p1)e€dT x R|| <
d(x,)/2,(x,y) = o(p)}/x and 8T = (8T — 7(IntT)) U (F(8T) — IntT). We
first show that (g|V"),[c] = 0 in Hy,_x(U). Since g(c) and g(c,) are (m — k)-
cycles in U, we have only to show that each of them is null homologous in
U. For g(cy), this is proved by an argument similar to the proof of Lemma
4.2. As to g(c2), we can construct an (m — k + 1)-chain in U whose boundary
is g(cy) as follows. We may assume that U is the interior of a compact co-
dimension-0 submanifold U’ of N. Then we introduce a Riemannian metric
on N such that oU’ is totally geodesic. Then, choosing ¢ > 0 sufficiently
small, we may assume that, for every point a € 8T, the image g(~,) of a
geodesic 7, connecting 7(a) and 7(7(a)) in M is contained in an open set U,
in U such that any two points of U, are connected by a unique geodesic
contained in a larger open set U, such that U, C U, C U. Note that g(v,) is
a closed curve in U,. Let P, be the union of the geodesic segments in U,
connecting g(m(a)) and the points in g(~y,). Note that P, is the image of a
continuous map of a 2-disk into U. Then let P be the (m — k + 1)-chain in U
defined by the union of all P, over all a € 8T in other words, P is the image
of a continuous map of a 2-disk bundle over AT. Then it is easy to see that
the boundary of P coincides with g(c;). Hence we have shown that
g(c) = gl(e1) + g(cz) is null homologous in U.

Using the fact that |V and g|V are homotopic, we have the following
commutative diagram:

Hoi(06E) 9 b, (s(06E)

(0. (.|

Hoxv) L% H, ()
(iz).I (fs).I
(f14).
Hm—k(A) — Hm—k(B),

where i3,i; and is are the inclusions. Then by Lemma 4.2, we see that
(g|M2(g)),[M2(g)] =0 in H,,—(g(M>(g))). Furthermore, by the proof of the
first half, we see that (i), (1) = (i3),[M2(g)] holds for u constructed as above.
Thus we see that (is), o (f|4),(u) = (f|V), o (i2),(u) = 0. Note that (is), is
injective, since B is a retract of U. Hence we see that (f|4),(u) = 0, com-
pleting the proof.

LEMMA 6.3. In Theorem 6.1, suppose that B is an ANR and that
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u € Hy_(A) as in the second half of the theorem is not zero. Then if 6,(f)
vanishes, then f, : Hy_j11(M) — Hp i (f(M)) is not surjective.

Proor. Using the hypothesis that 4 and B are ANR’s, as in the proof of

Theorem 4.1, we have the exact sequence
") &fs
Hyk11(A) = Hpk+1(B) © Hp k+|(M) A m—k+1(f (M)
— Hm-—k(A) = m—k(B) @ Hm—k(M)a

where a is defined as before and j” : B — f(M) is the inclusion map. Then by
Theorem 6.1, ker « is not zero, and hence f, : Hy_y11(M) — Hpi (f (M)
cannot be surjective. This completes the proof.

Note that in the above lemma, if H,,_4.(4) =0, then f, : Hy_4+1(M) —
Hp_i41(f(M)) is injective.
As an application of Theorem 6.1, we prove the following.

PROPOSITION 6.4. Let f: M — N be a continuous map of a closed or-
ientable connected m-dimensional smooth manifold into a connected (m + 1)-
dimensional smooth manifold with H)(N) = 0. Suppose that A and B are
ANR'’s. Then if f has a normal crossing point of multiplicity 2, then
Bo(N —f(M)) >3

For the definition of a normal crossing point of multiplicity 2, see [20].
Note that the fact that Go(N — f(M)) > 2 has been obtained in [18] without
the assumptions on A4, B, the orientability of M, and the existence of a nor-
mal crossing point. They only need the assumption that A4 is not the whole
manifold M. We also note that the above result has been obtained in [20]
without the assumptions on 4 and B by using a method completely different
from ours. In fact, in [20], it is shown that, if f has a normal crossing point
of multiplicity m, then we have Gy(N — f(M)) > m+ 1. We do not know if
we can prove this result using our method.

PrOOF OF ProPOSITION 6.4. First note that 4 # M, since f has a normal
crossing point of multiplicity 2. Then we see that H™(A4) = 0 (see [22, p.342])
and hence that H,,(4) = 0 by the universal coefficient theorem.

Consider the following exact sequence of the pair (N, N — f(M)):

H\(N) = H\(N,N ~ f(M)) — Ho(N ~ f(M)) — Ho(N).

By our hypothesis, we see that H(N,N —f(M)) is isomorphic to
Ho(N —f(M)). On the other hand H;(N,N — f(M)) is isomorphic to
H™(f(M)) by [22, Theorem 10 (p.342)]. Note that f(M) is an ANR, since
f(M) is obtained from the disjoint union M U B of two ANR’s by identifying
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the points in 4 and B using f|4 : A — B and 4 is an ANR (see [6, Chapter
V, Theorem (9.1)]). Thus we see that H”(f(M)) is isomorphic to the singular
cohomology H™(f(M)) (see [22]), which is isomorphic to H,,(f(M)) by the
universal coefficient theorem. Thus we have shown that Gy(N — f(M)) =
dimHp, (f(M)) + 1.

We also note that 6, (f) vanishes, since H'(N) = 0 implies v(f) = 0 and M
and N are orientable.

Thus, using Lemma 6.3 together with the remark just after the lemma, we
see that we have only to show that the class u € H,,_;(A4) does not vanish.
Let p € f(M) be a normal crossing point of f. Then we may assume that the
generic map g which we used in the proof of Theorem 6.1 satisfies that
glg"'(U) is an immersion with normal crossings having a double point at p
for some neighborhood U of p in N. Choosing U smaller if necessary, we
may assume that (U, U N g(M)) is homeomorphic to (R™"!, H, U H,), where
H; and H, are distinct hyperplanes of R™"!. Furthermore, choosing g suffi-
ciently close to f in f~!(U), we may assume that (f~'(U),f~'(U)N A4) is
homeomorphic to (f~'(U),f~'(U) N M(g)) by a homeomorphism which is
close to the identity map of f~!(U). Since the class u € H,_y(A) is con-
structed from [M(g)], we see easily that u # 0, since the image of u in
Hyu—1(A,A — p') is non-zero, where p’ is a point in 4 which corresponds to p
in f(A). This completes the proof.

We note that, as a corollary to Proposition 6.4, we obtain a converse of

the Jordan-Brouwer theorem for codimension-1 generic maps, i.e., Corollary
4.6.
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