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AMENABILITY OF CONVOLUTION ALGEBRAS

A.T.-M. LAU and R. J. LOY

Abstract.

The amenability of the Banach algebra ¢'(G) of a discrete semigroup G, and its implications for the
structure of G has been much studied over recent years. In this paper we investigate implications of
amenability of the algebras M(G), M(G)** and LUC(G)* on the structure of G for locally compact G.
The general thrust of the results is that taken together with mild algebraic hypotheses, such
amenability necessitates that G satisfy some finiteness restrictions, and to be close to a group.

0. Introduction.

The amenability of the Banach algebra #(G) of a discrete semigroup G has been
considered by a number of authors, in particular [9], [16], [10]. Recently the
second author, with others, [14], showed that L'(G)**, G a locally compact
group, is amenable if and only if G is finite. Some results were also given there for
certain discrete semigroups. The purpose of the present paper is to continue this
investigation by considering the implications of amenability conditions on vari-
ous algebras defined over locally compact groups and semigroups on the struc-
ture of the underlying groups and semigroups.

Amongst other results we show (Theorem 2.4) that for any connected locally
compact group, M(G) amenable necessitates the group be trivial; that a com-
mutative, weakly cancellative, locally compact semigroup with M(G) amenable is
a finite lattice of groups, these groups necessarily finite if M(G)** is amenable
(Theorem 3.3), and that a cancellative locally compact semigroup G with M(G)
amenable must be a topological group, necessarily finite if M(G)** is amenable
(Theorem 4.7).

A readable account of many of the ideas used here can be found in the first two
chapters of [27], see also the survey articles [1,24].

This paper was written while the first author was visiting the Australian
National University in May/June 1994. We acknowledge with thanks the sup-
port for this visit provided by a Faculty Research Fund grant. The first author
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1. Notation and preliminaries.

Throughout this paper, unless otherwise stated, G will denote a locally compact
semigroup, that is, a semigroup with a locally compact Hausdorff topology
under which multiplication is separately continuous. If the multiplication is
required to be jointly continuous, that is, as a function from G x G - G, G is
alocally compact topological semigroup. Note that this distinction does not arise
if G is a group: in a locally compact semigroup which is algebraically a group,
inversion is necessarily continuous, and multiplication necessarily jointly con-
tinuous, [12]. We will denote by G, the semigroup G taken with the discrete
topology.

We shall require a hierarchy of cancellation properties. If the left version is
defined, the right is analogous; one-sided will refer to either left or right. A semi-
group G will be called

(1) left cancellative if for all a, x, y € G, ax = ay implies x = y;

(i) left weakly cancellative if for all x, ye G, {ze€ G: zx = y} is finite.

(i) compactly cancellative if

C'D = {xeG:cxeD for some ceC}
DC™!' = {xeG: xceD for some ceC}

are relatively compact for compact sets C, D < G.

For discrete semigroups property (iii) coincides with being weakly cancellative,
and the latter term will be used in that case. We will not use the related notion of
being topologically cancellative, see [1].

For a locally compact semigroup G, we write C(G) for the algebra of contin-
uous bounded complex-valued functions on G with the supremum norm; C,(G)
for the subalgebra of functions in C(G) vanishing at infinity; LUC(G) for the
subalgebra of left uniformly continuous on G, that is, those functions in C(G) such
that x+— ¢, f: G - C(G) is continuous. Here 7, f(y) = f(xy) is the left translate of
the function f, r, fwill be used for the right translate. The measure algebra M(G)is
the space of bounded regular Borel measures on G, with total variation norm and
convolution product.

A closed translation invariant subspace X of £*(G) is left introverted if given
me X*, feX, and setting m,(f)(x) = m(£.(f), then m,(f)e X. For such X, X*
with the dual norm is a Banach algebra under the product n-m(f) = <{n,m,(f)).
This is exactly the left Arens’ product inherited from £1(G)** via the adjoint map
ZY(G)** —» X*, and X*, as the kernel of this map, is a weak*-closed ideal of
1{(G)**.

The algebra LUC(G) is always left introverted, so that LUC(G)* is a Banach
algebra with the above product. The topological centre of LUC(G)* is
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Z,(LUC(G)*) = {ne LUC(G)*: m—> n-m is weak*-weak* continuous}.

If G is commutative this is the centre of LUC(G)*; it is generally strictly larger
than the canonical image of M(G) in LUC(G)*.

A discrete semigroup G is left amenable if the space /*(G) admits a functional
m such that m(1) = 1 = ||m|| and m(Z, f) = m(f), x€G, fe£*(G). Similarly for
right amenable. If G is both left and right amenable, it is amenable. In the case of
a group, or even an inverse semigroup, left (or right) amenable implies amenable.
These notions go back to [7].

A Banach algebra U is amenable if every derivation D: U — X* is inner, for
every Banach U-bimodule X. If one only considers the bimodule X = 2, one has
the notion of weak amenability.

There are many alternative formulations of the notion of amenability, see [20,
2, 19, 6]. For our purposes here we only need some specific consequences of
amenability. Suppose that 2 is amenable, and .7 is a (closed, two-sided) ideal in
A. Then
o A has a bounded approximate identity;

e AU /7 is amenable; and
e if .# has a Banach space complement in U, or has a bounded approximate
identity, then .# is itself amenable.

We shall need the following elementary result, [11, Corollary 8.7.4]. The
authors had difficulty finding a simple direct proofin the literature, so we give one
here for the reader’s convenience.

LeEmMMA 1.1. Let T: X — Y be a continuous linear surjection between Banach
spaces X and Y. Then T**. X** — Y** s surjective.

Proor. If me Y**, Goldstine’s theorem gives a bounded net (y;) in Y with
y; <2k, . By the open mapping theorem there is a bounded net (x;) in X with
T(x;) = y,. If nis a weak*-cluster point of (x,), weak*-weak* continuity of T**
shows that T**(n) = m.

LEMMA 1.2. (i) For G a compactly cancellative locally compact topological
semigroup, Co(G) is a translation invariant, left introverted subspace of LUC(G).

(ii) Conversely, the inclusion Co(G) = LUC(G) always implies G is a topological
semigroup.

PRrOOF. (i) It suffices to show LUC(G) contains any continuous function f of
compact support. Let F be the support of f, and suppose (x,) is a net in
Gconvergingtox. If ||£,,f — ¢+ f || + 0, we may suppose, by passing to a subnet if
necessary, that there exist ¢ > 0 and a compact neighbourhood N of x such that
(x,) € N and ||Z,,f — £f|| 2 ¢ for all «. The function t=l ) —£:f(2) van-
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ishes outside the compact set K = N~ 'F, so that for each « there is t, € K such
that

Ifxaf(tat) - [xf(ta)l = “/xaf - /xf”

By passing to a further subnet if necessary, suppose that ¢, — t for some te K.
Since G is a topological semigroup, x,t, — xt, so that

O<e é Ifxaf(ta) - fxf(ta)l é |f(xata) - f(xt)l + |f(Xt) - f(xtat)I -0

which is absurd.

Invariance of Cy(G) follows from the assumption of compact cancellation.
Now take feCo(G) with [f| Z1, meCy(G)* with |m|| £1. Then
m,(f) e LUC(G) since the latter is left introverted. Take u € M(G) representing m.
Given ¢ > 0, take compact sets C, D such that |u| (G\C) < ¢, and | f(x)| < ¢ for
x¢D. Then

+e=< 2

Im (YN = I j . Fx)du(x)| = I L S(yx)du(x)

for y¢ DC~1. Thus m,(f)e Co(G).
(i) Finally, suppose that Co(G) = LUC(G), let x, = x,y; — y in G, and sup-
pose that f € Co(G). Then ||£,, — £,.f| = 0, so that

[f(x2yg) — FOYN S xS (yp) — £xS(Wp)l + [€xAyp) — £ )
S e — LS 1 + 1 f(xyp) — f(xy)
-0

If x,y5+ xy then a subnet stays outside a compact neighbourhood of xy, and
choosing a nonzero f € C(G) vanishing outside this neighbourhood gives a con-
tradiction.

We remark that use of (i) greatly simplifies the proof of Lemma 4 of [ 23]. Note
also that if G is itself compact, (i) implies that LUC(G) = C(G), (see [26]).
For pe M(G), define jie LUC(G)* by p: f+ [f(x) du(x), f e LUC(G).

LemMMA 1.3. Let G be a compactly cancellative locally compact topological
semigroup. Suppose that G satisfies

(i) there exists a non-zero ve M(G) with v = 0 and x+ v * §, continuous;
(i) Z,(LUC(G)*) = {@: ne M(G)}.
Then if LUC(G)* is amenable, G is compact and M(G) is amenable.

Proor. By [23, Lemma 4(c)]
LUC(G)* = {u: ue M(G)} ® Co(G)*
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where, by earlier remarks, Co(G)* is a weak*-closed ideal in LUC(G)*. This latter
being amenable, Co(G)* is itself amenable. In particular Co(G)* has a bounded
approximate identity {e;}, and without loss of generality we may suppose that
{e;} converges weak* to some EeLUC(G)*. Necessarily Ee Co(G)*. For
x € Co(G)* we have

ex —H, x and  ex ke, Ey,

the second by weak*-continuity of product in the first variable. Thus E is a left
identity for Co(G)*. But then for x € Co(G)*, xE = lim(xE)e; = lim x(Ee;) = x, so
that E is a two-sided identity for Co(G)*. Thus for ne LUC(G)*,
En = (En)E = E(nE) = nE,since En,nE = Cy(G)*, and it follows that E is central
in LUC(G)*. By hypotbhesis (i), E € {f: ue M(G)}, so E = 0 and hence X* = {0}.
Thus LUC(G) < Cy(G), so that 1€ Cy(G) and so G is compact. In that case
M(G) = Co(G)* = LUC(G)* is amenable.

ReMARKS. The hypotheses (i) and (ii) here are satisfied if G is a group, or
a weakly cancellative discrete semigroup, see [23]. The identity argument is
analogous to [14, Theorem 1.3].

LEMMA 1.4. Suppose that G is a weakly cancellative locally compact semigroup
with M(G) amenable. Then £*(G) is amenable, and G, is amenable.

Proor. We have M(G) = M,(G) @ M,(G) as Banach spaces, where My(G) is
the closed subalgebra of discrete measures and M,(G) is the closed subspace of
continuous measures on G; M,(G) is isometrically isomorphic to #*(G). Thus it
suffices to show that M,(G) is an ideal, for then 7}(G) = M(G)/M.(G) is amenable,
whence G, is amenable by [9, Lemma 3]. Now for , ve M(G), then

(u*v)(4) = J MAx™ ) dv(x) = J Wy~ ' A)du(y)
[29]. So for pe M,(G) and z€G,
(u*)({z}) = J p({z}x ™) dv(x) = 0, (v p)({z}) = J pu(x~H{z})dn(y) = 0,
by weak cancellation, so that u*v, v* ue M(G).

2. Locally compact groups.

Throughout this section G will denote a locally compact group. For L}(G), the
situation is well understood, L!(G) is amenable if and only if G is amenable, [20],
and is always weakly amenable, [21, 8]. However the implications of amenability
of other algebras on groups are much more fragmentary. It has been known for:
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some time that M(G), G a non-discrete locally compact abelian group, admits
point derivations, [3], and so is not even weakly amenable. The situation for
non-abelian groups is unresolved in general; however recent results [22] have
shown the Fourier algebra need not be amenable for compact G. The major
thrust of the results in this section is towards the conjecture that M(G) is
amenable only if G is discrete and amenable, the converse being trivial.

Note that if N is a closed normal subgroup of G, then LUC(G/N) can be
identified with the closed subspace of LUC(G) consisting of those functions
which are constant on the cosets of N.

THEOREM 2.1. Let N be a closed normal subgroup of G. Then if Tu is the
restriction of i to LUC(G/N), the map u— Tu is a continuous homomorphism of
M(G) onto M(G/N).

PrOOF. It is clear that T is a norm decreasing homomorphism of M(G) into
LUC(G/N)*. Let q: G —» G/N be the quotient map. For ue M(G) positive with
compact support C, T(u) defines a positive Borel measure on A(G/N), the
spectrum of the commutative C*-algebra LUC(G/N). Since G/N is open in
A(G/N), Borel subsets of G/N are Borel subsets of A(G/N). Thus

IT@WI 2 T(u)q(C)) = LN du = J‘C dp 2 | T(w

whence ¢(C) contains the support of T(u). Thus T(u)e M(G/N). Since such
measures y have dense span in M(G), continuity shows that T(M(G)) = M(G/N).

Now let v = G be positive with compact support X. Choose a compact set
Y =G with ¢g(Y) = X. With ¢' = q|Y, consider the subalgebra U = {f-q"
feC(X)} of C(Y). As the range of a *~homomorphism C(X) — C(Y), U is closed.
Define a functional ¢ on U by

of-q)= L J(x)dv(x)

Then ¢ is positive, so ¢(1) = | ¢|. By the Hahn-Banach theorem, there is y on
C(Y) extending ¢, such that ||| = |¢]|. Since Y(1) = ¢(1), Y| = Y¥(1) so that
¥ is positive.

If ne M(Y) is the Borel measure implementing y, 4 can be considered as
a measure on G, and for f e LUC(G/N) we have

(Tw),f> = L S auy) = L S du(y) = J . J(x)dv(x) = L/N S (x) dn(x),

that is, T(u) = v. Further, |[p|l = [y = ll¢]l = [v]l.
For general positive ve M(G/N), regularity shows there is a countable pairwise
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disjoint sequence (X,) of compact subsets of G/N such that for any Borel set
E < G/N,

Z (E N X,),

Defining measures by v,(E) = WE n X,,), let u, be the measure on G construc-
ted above for v,. Then

© ©
2l = 3 fivall = vl < o0
n=1 n=1

so that p = Y ®_, u, is defined, and T(x) = v is clear.

COROLLARY 2.2. Let N be a closed normal subgroup of G. Then if M(G) is
amenable, so is M(G/N).

COROLLARY 2.3. Let N be a closed normal subgroup of G such that G/N is
abelian. Then if M(G) is amenable, N is open.

Proor. By Corollary 2.2, M(G/N) is amenable, and so by [3] G/N must be
discrete, that is, N is open.

THEOREM 2.4. Suppose that G is connected. Then M(G) is amenable if and only if
G is trivial.

Proor. First consider the case that G is a connected Lie group. If M(G) is
amenable, then G, is amenable by Lemma 1.4. So by [27, Theorem 3.9], G is
solvable. Let

G———'GlDGzD...DGk:{e}

be a normal series for G with each G;/G;,, abelian. Then certainly G,/G, is
abelian, so by Corollary 2.3 G, is open in G. But G is connected, so that G; = G..

That G = {e} now follows by induction.

For a general connected group G, there is a directed set (N;) of compact normal
subgroups of G such that each G/N; s a connected Lie group,and N; | {e},see [25,
§4.7]. But by Corollary 2.2 each M(G/N;) is amenable, hence trivial by Corollary
2.3. Thus G = N, for each i, and so G is trivial.

COROLLARY 2.5. Suppose that LUC(G)* is amenable. Then G is compact and G,
is amenable. If, further, G is connected, then G is trivial.

PRrOOF. The first follows from Lemmas 1.3 & 1.4 and [23, Theorem 1]. Since
LUC(G) = C(G) when G is compact, Therem 2.4 completes the proof.

1
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We conjecture that LUC(G)* is amenable if and only if G is finite. Using
Lemma 1.3 and Theorems 2.1 and 2.4, this would include the result that M(G)
amenable implies G finite in the case where G is compact and totally discon-
nected. And even this we have been unable to answer.

Although of somewhat different nature, we conclude this section with the
following result.

THEOREM 2.6. G is compact if and only if LY(G) is a left (or right) ideal in
LUC(G)*.

Proor. If Gis compact then LUC(G)* = M(G), and L!(G)is even a two-sided
ideal in M(G).
For the converse, we have

LUC(G)* = M(G) ® Co(G)*

where Co(G)* is anideal, [13, Lemma 1.1]. If G fais to be compact, let (K,,) be the
net of compact sets of G directed by set inclusion. Take x,4 K,, and let ¢ be
a weak*-cluster point of the net (8,,). Then ¢ € Co(G):, $€0, ||¢|| = 1. For any
feLXG), fo, ¢f € Co(G)*, and if LY(G) is either a left or right ideal, then one must
also lie in L}(G), and hence be zero. Butfor £ = 0, || f|| = 1 both ¢f, f¢ are also of
norm one.

We remark that it is well known that L'(G) is a left or right ideal in L}(G)** if
and only if G is compact. See, for example, [5, 18].

3. Semigroups: the commutative case.

Let G be a commutative semigroup, such that #*(G)** is amenable. Then 7(G)is
also amenable, [14, Theorem 1.8], so by [17, Theorem 2.7], G is a finite
semilattice of groups, that is, there is a finite semigroup of idempotents S such
that
G= )G,
aeS

where, for each «, €S, G,Gg = G-

The first result of this section uses this structure, but does not presuppose
commutativity.

THEOREM 3.1. Let G be a finite semilattice of semigroups, each of which is either
weakly cancellative, or one-sided cancellative with identity. Then G is finite if
£Y(G)** is amenable.

PROOF. Let S be the semilattice, and set z = [[{s: s€ S}. Then sz = z for all
s€S§, so that z is a zero for S.
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It follows that G, is an ideal in G. Thus as Banach spaces,

%%k
£{Gy* = (G @ £ ( U Ga) :
atz
where £'(G,)** is a complemented ideal in the amenable algebra #!(G)**, and so
is itself amenable. Thus G, is finite by [14, Corollary 1.9].
Suppose inductively that G is finite whenever |S| < k; we know this is true for
k=1.1f|S| = k + 1, define

T = {0eS: |aG| £ k},

Necessarily ze T, so certainly T + 0.

For any ae T, B€S, |afS| < |aS| £ k, so that afe T. Thus T is an ideal in S.
Further, S\T is clearly closed under products, and so is a subsemigroup of S.
Thus S\T is a finite semilattice with at most k elements.

For ae T, |aS| < k, so that S is a proper ideal in S. Thus U {Gy: fe«S} is the
union of at most k semigroups, and is an ideal in G. But as Banach spaces,

L G)** = /1< U Gﬁ>** @/1< U Gﬂ)**

PeaS peS\aS
50 that £!(Uge,s Gg)** is a complemented ideal in /'(G)**, and so is amenable.
But then by the inductive hypothesis, we have G, is finite for f e «S. Since a € aS
we have G, finite, and this holds for all ae T.
Finally,

/1< U Ga>** = /HG)**/1 ( U Ga)**

aeS\T aeT

isamenable, so by inductive hypothesis again U,.s 1 G, is finite. We thus have G,
finite for each a € S.

COROLLARY 3.2. Let G be a commutative semigroup such that /*(G)** is amen-
able. Then G is a finite semilattice of finite groups.

PROOF. As noted earlier G satisfies the hypothesis of the theorem with the
semigroups being groups.

THEOREM 3.3. Suppose that G is a commutative, weakly cancellative locally
compact semigroup. If M(G) is amenable then G is discrete, and is a finite semilattice
of groups. If M(G)** is amenable then G is a finite semilattice of finite groups.

PrOOF. By Lemma 1.4, £(G) is amenable, so as above G is a finite semilattice
of groups Gy, ..., G,, where we may suppose that G, is an ideal of G. Let V be
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a compact neighbourhood in G of the identity e of G, and let U be the interior of
V. Then

eeeUnNG)=UnG, S VnG =eVnG)ceV e,

so that, by separate continuity, eV is a compact neighbourhood of e in G;. Thus
G, is a locally compact group. Since M(G,) is a unital ideal in an amenable
algebra, it is itself amenable, whence G, is discrete.

Now for each 2<j<n, G;=U,,x '{e}nG; If xeG, is such that
x~!{e} N G; % O, such x necessarily existing for each j, then this is a non-empty
open finite set in G, so that G; is discrete.

If M(G)** is amenable then by [ 14, Theorem 1.8] so is M(G), hence G is a finite
semilattice of discrete groups. These are then finite by Corollary 3.2.

ExamrLE 3.4. Let R be the additive group of real numbers with the usual
topology, and take G = R U {0} to be the one-point compactification if R, with
oo an absorbing element. Then G is a commutative locally compact semigroup,
which is a semilattice of the groups R and {co}. However M(G) is not amenable,
since otherwise M(G)/C =~ M(R) would be amenable.

4. Semigroups: the general case.

For the non-commutative case there is no longer any characterization of amena-
bility of #1(G), in terms of G, except in the case of inverse semigroups [9]. See also
[10].

We recall some further standard notions from semigroup theory, for more
details see [4]. Again only the left versions will be defined.

(a) A semigroup G is left reversible if for all x, ye G, xG N yG + @;

(b) H < Gis a left ideal group if H is a left ideal in G, as well as being a group
under the semigroup operation.

For future reference we summarize some known structural implications of
amenability.

LEMMA 4.1. Let G be a semigroup with £*(G) amenable. Then

(i) G is amenable, [9, Lemma 3],

(i) G is (left and right) reversible, [15; 28, Lemma 1],

(i) G is regular and has a finite (and non-empty) set of idempotents, [10,
Theorem 2].

If G is left reversible, define a relation ¢ on G by xoy if there exists ze G such
that xz = yz. This relation is a congruence, and the semigroup G/o is right
cancellative. Similarly, one defines a congruence p on a right reversible semi-
group such that G/p is left cancellative.

Finally we note that if H is a semigroup, and #: G — H preserves products and
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maps onto H, then the map J,— dy(, extends in the obvious way to a continuous
homomorphism @ of £}(G) onto ¢!(H), and then @**: £}(G)** — /' (H)** is an
epimorphism by Lemma 1.1.

The first result is well known for inverse semigroups, [9, Therem 8], and in fact
can be obtained from Theorem 2.3 and Corollary 1.3 of [16].

LEMMA 4.2 (Gronbak). Let G be a one-sided cancellative semigroup with £ (G)
amenable. Then G is an amenable group.

PrOOF. Assume that G is left cancellative. Let & = {e,,...,e,} be the set of
idempotents of G. Since G is left cancellative it is a right group, [4,§1.11]. But
then by [4, Therem 1.27], Gis a direct product G, x & of a group G, and the right
zero semigroup &. Since & is a homomorphic image of G, it is amenable, and so
must be a singleton. Thus G is a group.

In particular, this shows that if G is a semigroup with #*(G) amenable, then
G/p, G/o, being one-sided cancellative, are each amenable groups.

LEMMA 4.3. Let G be a semigroup with £(G) amenable, & its (finite) set of
idempotents. Then there exists z€ & such that for any a, be G, asb if and only if
az = bz.

PrROOF. By definition, if x, y € G and xox, there is z € G with xz = yz. Regularity
ensures there is z* with zz* € &, so that xay precisely when xe = yeforsomeee .
Let k be the cardinality of a minimal set & = {e,,...,¢,} of idempotents imple-
menting ¢ in this manner.

The result is clear if Z is a singleton, so suppose k > 1. Since G/a is a group, the
image of any e; is the identity of the group, whence the elements of & are all
o-equivalent. Thus given i # j, choose e, such that e;e, = eje,. Now e;e, also
maps to the group identity, so there exists e,, such that e,e, = (e;e,)en, whence
e;s = e;s = s where s = ese,,.

Thus if xoy in G is implemented by either e; or ej, it is also implemented by s,
and hence by some single idempotent e, #. Hence o is implemented by
F' = F U {e,}\{ese;} which has k — 1 elements, contrary to the minimality of
Z.

THEOREM 4.4. Let G be a semigroup with ¢'(G) amenable. Then G contains
exactly one left ideal group Go. Furthermore G is amenable, it is the unique right
ideal group, G, =~ G/o = G/p, and there is an idempotent z € G such that

G = Z~1G0= Goz_l.

PrOOF. By Lemma 4.3, take an idempotent ze G which implements o. Let
H = G/o, so by Lemma 4.2 H is a group. Choose a set of coset representatives
F in G, and define G, = Fz. Then G, is a left ideal group in G.
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To see this, first note that for xe G, feF, xfzaf' for some f'eF, whence
xfz2 = f'z,and so xfz € G,. Thus xG, = G, for any x € G, so that G, is a left ideal.

Further, suppose y = fze Gy, where feF, and take any we G,. Since H is
agroup, left multiplication by the class w of wis a surjection on H, and hence there
is '€ G, withw- f* = f. But then wf’z = fz so that wG, 2 G,. Thus wG, = G,.

Also, w = gz for some g € F. Taking f’e F with f'zgog (using right multiplica-
tion in H) we have f'zgz = fz, so that ye Gyw.

Thus wGo = Gow = G, for all we Gy, and this means that G, is a group.

Now suppose that G’ is another left ideal group in G. Then G, NG’ %+ @ by
right reversibility, and is a left ideal contained in both groups, whence G, = G'.
Since G, = G/o we have the “left” statement of the lemma.

Similar consideration of G/p shows that G contains a unique right ideal group
H. Taking xe HG = Gy, n H, we have H = Hx < G, because G, is a left ideal,
and Gy = xGy < H because H is a right ideal, whence H = G,

THEOREM 4.5. Let G be a semigroup with ¢1(G)** amenable.

(i) If G is one-sided cancellative, then G is a finite group.

(ii) G/p, G/o are finite groups.

(i) G hasexactly one left ideal group G, this is also aright ideal in G, and is finite.
(iv) If G is one-sided weakly cancellative, then G is finite.

PrOOF. (i) Theorem 1.8 of [14] shows #!(G) is amenable, so if G is left
cancellative, Gis a group by Lemma 4.2. But then Theorem 1.3 of [14], shows G is
finite.

(ii) As noted earlier, G/p, G/o are amenable groups, which are finite by (i).

(iii) Theorem 4.4 and (ii).

(iv) Left weakly cancellative means that the o-equivalence classes are finite,
and we are done by (ii).

Part (iv) of Theorem 4.5 cannot be proved by the same techniques as the
two-sided cancellative case, Lemma 1.3 above and [14], because the topological
centre of £}(G)** need not be £(G). Indeed it may be all of £(G)**, [23]. Since
any finite semigroup is weakly cancellative, we certainly cannot conclude that
G is a group in (iv). And certainly weakly cancellative semigroups need not be
amenable.

ExXAMPLE4.6. Let G be a finite set of cardinality at least 2, z € G a fixed element,
and define a product on G by st = z. Then G is commutative, and weakly
cancellative with G, = {z} the only ideal group in G, however £}(G) = £1(G)** is
not amenable since G is not regular. Since for finite dimensional algebras
amenability is the same as semisimplicity, £1(G)** is not semisimple. Indeed,
writing G = {sy,...,s,}, define yY,e£}(G)** by Yi(f) = f(si+1) — f(s:) for
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fe£%(G),1 =i < n.Let . be the linear span of y,. .., ,. Then for ¢ e £ (G)**,
¢xi=y;*¢ =0,1<i<nsothat # is a nil ideal in £1(G)**.

THEOREM 4.7. Suppose that G is a cancellative locally compact semigroup. If
M(G) is amenable then G is a locally compact topological group, hence trivial if
connected. If M(G)** is amenable, G is a finite group.

ProoF. It first follows from Lemma 1.4 that #1(G) is amenable, then Theorem
4.4 and cancellation shows G is a group, hence a topological group by an earlier
observation. Now apply Theorem 2.4. The second statement then follows from
[14, Corollary 1.4].

Theorems 3.3 and 4.7 together give a partial answer to Problem 23 of [24].
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