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RANDOMLY WEIGHTED SERIES OF CONTRACTIONS
IN HILBERT SPACES

G. PESKIR, D. SCHNEIDER and M. WEBER

Conditions are given for the convergence of randomly weighted series of contractions in Hilbert
spaces. It is shown that under these conditions the series converges in operator norm outside of
a (universal) null set simultaneously for all Hilbert spaces and all contractions of them. The
conditions obtained are moreover shown to be as optimal as possible. The method of proof re-
lies upon the spectral lemma for Hilbert space contractions (which allows us to imbed the initial
problem into a setting of Fourier analysis), the standard Gaussian randomization (which allows
us further to transfer the problem into the theory of Gaussian processes), and finally an in-
equality due to Fernique [3] (which gives an estimate of the expectation of the supremum of the
Gaussian (stationary) process over a finite interval in terms of the spectral measure associated
with the process by means of the Bochner theorem). As a consequence of the main result we
obtain: Given a sequence of independent and identically distributed mean zero random variables
{Zi}4»; defined on (£2, #, P) satisfying E|Z,|* < 0o, and & > 1/2, there exists a (universal) P-
null set N* € # such that the series:

S Zie(w) T*
k=1 ke

converges in operator norm for all w € £2*, whenever H is a Hilbert space and T is a contraction
in H.

1. Introduction.

The purpose of the paper is to investigate and establish conditions for the
convergence in operator norm of the randomly weighted series of contrac-
tions in Hilbert spaces:

o0

(L) > Wi(w) T

k=1
where {W;},>, is a sequence of independent mean zero square-integrable
random variables defined on the probability space (£2,#,P), and T is a
(linear) contraction in the Hilbert space H, while {px},>, is a non-decreasing
sequence of non-negative integers, and w € £2. Our main aim is to find suffi-
cient conditions (and in this context to prove that they are as optimal as
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possible) for the convergence of the series in (1.1) which is valid simulta-
neously for all Hilbert spaces H and all contractions 7" in H. More precisely,
we find conditions (see (3.1) in Theorem 3.1 and (3.1’) in Remark 3.2) in
terms of the numbers p; and E| Wkl2 for kK > 1, under which there exists a
(universal) P-null set N* € &, such that the series in (1.1) converges in op-
erator norm for all w e 2\N*, whenever H is a Hilbert space and T is a
contraction in H. (This is the main result of the paper.) Then we specialize
and investigate this result when W; = Z;/k* for k > 1 and a > 0, where
{Zi}i>) 1s a sequence of mdependent and identically distributed mean zero
random variables satisfying £ |Z|| < oo (see Theorem 3.4), and in particular
we obtain that for o > 1/2 the series:

(12) i Z’;&“’) T*

k=1

converges in operator norm for all w € 2\ N*, whenever H is a Hilbert space
and T is a contraction in H (see Corollary 3.5). In the end (see Remark 3.6)
it is shown that the conditions obtained throughout are as optimal as possi-
ble.

The method of proof may be described as follows. First, we use the spec-
tral lemma for Hilbert space contractions (Lemma 2.1), and in this way im-
bed the initial problem about the series in (1.1) into a setting of Fourier
analysis (see [4] and [7]), which concerns expressions of the form:

N
(1.3) sup WePer
—T<ALT k=1
for some Wi,..., Wy € R with 0 < p; <... < py being integers for N > 1.

Second, by performing a standard procedure of Gaussian randomization we
imbed the problem about (1.3) into the theory of Gaussian processes. The
Gaussian process which appears as the product of the randomization proce-
dure is given by:

(1.4) Z Wi (g (o) cos(ped) + gi (") sin(picA))

for A € R, (w’,u/’) G.Q;@.Qg, Wi,...,Wyn€eR,and 0 <p; <...<py with
N > 1. (Here g = {g;}+>; and g” = {g}},>, are (mutually independent) se-
quences of independent standard Gaussian (~ N(0,1)) random variables
defined on ({2, # o Pp) and (§2;, ¢, Py) respectively.) The problem in this
context is reduced to estimate the expression:
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(1.5) E( sup [G,\l).
—<ALT

For this, we apply an inequality due to Fernique [3] which estimates (1.5) in
terms of the spectral measure associated with the process G = {G,},cg by
means of the Bochner theorem (see Lemma 2.2). It turns out that the spec-
tral measure can be found explicitly, thus allowing to obtain an accurate es-
timate of (1.5) which suffices for our purposes. The optimality of the condi-
tions deduced is proved by using Kolmogorov’s three series theorem.

To conclude the introduction, we find it convenient to mention that we are
unaware of similar results, and to the best of our knowledge the sort of series
which appears in (1.1) and (1.2) has not been studied previously. It should be
also remarked that our emphasis is on the method of proof which seems to
be flexible enough to admit applications in the study of various problems
having a similar character (see [10]).

2. Preliminary facts.

In this section we find it convenient to recall and display some results and
facts which will be used in the proof of the main result of this paper (Theo-
rem 3.1).

We begin by recalling a useful fact (called the spectral lemma for Hilbert
space contractions) which allows us to transfer the norm operator problems
into the setting of Fourier analysis. For this, we should first clarify that a
linear operator T (defined in a (complex) Hilbert space H) is called a con-
traction, if |T(f)| < ||f|| for a f € H (see [2]). Given a contraction T in H
and f € H, denote P,(f) = (T"(f), f) for n > 0, and put P,(f) = P_,(f) for
n<0. Then the sequence {P,(f)},. is non-negative definite
Ok > zkz1Pei(f) > 0, for all zx € C with |k| < N and N > 1), see [5] (p.
94-95). Thus by the Herglotz theorem [5] there exists a finite positive mea-
sure p on %B(] — 7)) (called the spectral measure of f) such that:

(2.1) (1), f) = /j e ur(d))

for all n > 0. From this fact, by induction in degree of the polynomial, one
can deduce the following remarkable inequality. (This proof was commu-
nicated to us by M. Wierdl.)

LEMMA 2.1 (The spectral lemma). If T is a contraction in a Hilbert space H,
.and f is an element from H with the spectral measure py, then the inequality is
satisfied:

[
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™ 1/2
(22) IP(T)()] < ( [ |P(e"*>|2uf(dA))

whenever P(z Zk —0 axz* is a complex polynomial of degree N > 0.

ProoFr. The proof is carried out by induction on the degree N of the
polynomial P(z). If N =0, then we have equality in (2.2), since it follows
from (2.1) that |f]]* = =pr(] - 7r]) Suppose that the 1nequahty (2.2) is true
for N —1>0. Denote Q(z) = Y_r, &z and R(z) = 3p_, az*"!. Then by
(2.1) we find:

23) PO = llaof + QTN = laoPIf I + {aof, AT)())
+(Q(T)(), aof) + IQT)NI = laoIIf 1 + /_1r aoQ(e*)pr(dX)

+ / " @0y (@) + 12(T) (I

Since T is a contraction, then by the assumption we get:
24) 1T = ITRENOI < IR

< [TIREPu@n) = [ 106 P (an.
From (2.3) and (2.4) we conclude:

IP(T)(NIF < / W(laolz+aoQ(e’“)+?16Q(e“)+lQ(e“)|2)uf(d/\)

= [ oo+ o) Ps(an = [P Fay(an.

It should be noted from (2.4) in Lemma 2.1 that if T is an isometry in
H (|T(|| = |If]| for f € H), then we have equality in (2.2). (It also follows
more directly by (2.1).) It allows us to deduce the inequality (2.2) in a
straightforward way by using the (oldest and best known) dilation theorem of
Sz.-Nagy (see Theorem 1 in [9] (p. 2)): If T is a contraction in a Hilbert space
H, then there exists a Hilbert space K and a unitary operator U in K such that
H is a subspace of K and T"(f) = Z(U")(f) for alln > 0 and all f € H, where
Z is the orthogonal projection from K into H. (It remains to apply the equality
in (2.2) to the isometry U, and then use the preceding identity and the fact
that |Z|| < 1.)

However, if |T|| < 1, then the error appearing in the estimate (2.2) may be
noticeably large. To see this more explicitly, take for instance P(z) = z" with
n > 1. Then the left-hand side in (2.2) equals ||7"(f)|| which is bounded by
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ITI"If|l, and thus arbitrarily small when » increases. On the other hand, the
right-hand side in (2.2) equals |f||, thus being arbitrarily large as f runs
through H. We will come back to this sort of analysis later on in section 4.

Our next aim is to display an inequality due to Fernique [3] which is
shown to be at the basis of our results in the next section. For this reason we
shall first recall the (wide sense) stationary setting upon which this result
relies (see [1]).

Let G={G)},cg be a (wide sense) stationary process defined on the
probability space ({2, #, P) and taking values in the set of complex numbers
C. Thus, we have:

(2.5) E|G)* < o0

(2:6) E(G)) = E(Go)

(2.7 CoV(Grhy Gyn) = Cov(G), Gy)

for all \,n,h € R. As a matter of convenience, we suppose:
(2.8) E(G),) =0

for all A € R. Thus the covariance function of G is given by:
(2.9) R(N) = E(G\Go)

for all A € R. By the Bochner theorem there exists a finite positive measure u
on #(R) such that:

[o¢]
(2.10) RO\ = / e pu(dx)
—00
for all A € R. The measure y is called the spectral measure of G. The spectral
representation theorem states if R is continuous (which is equivalent to the
fact that G is continuous in quadratic mean), then there exists an orthogonal
stochastic meaure Z on (2 x %#(R) such that:

(2.11) Gy = / ” e Z(dx)

00

for all A € R. The fundamental identity in this context is as follows:

2

- / " o) Puld)

(2.12) E’/_: o(x)Z(dx)

whenever ¢ : R — C belongs to L?(y). Hence we find:
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(2.13) E|G\ -G, =2 /_ 00(1 — cos((A — n)x))u(dx)

for all A\;n € R. The result may be now stated as follows.

LemMa 2.2 (Fernique). Let G = {G\},cg be a stationary mean zero Gaus-
sian process with values in R and the spectral measure u. Suppose that G is
separable and continuous in quadratic mean. Then there exists a (universal)
constant K > 0 (which does not depend on the Gaussian process G itself), such
that the inequality is satisfied:

0<A<1

(2.14) E( sup GA) < K(,/_:(xz/\ 1)p(dx) l/2+ /Ooo |u(]e"2,oo[)|l/2dx>.

Proor. It follows from (0.4.5) in Theorem 0.4 in [3] upon taking
¢y =by =1and ¢x = by =0in (0.4.4) for k > 2.

In order to make use of the inequality (2.14) we shall denote I = [k, k + 1]
for k € Z. Let I C R be any bounded interval, then I C | J;, Ix for some fi-
nite 4 C Z. Let K; denote the number of elements in 4. Then by the separ-
ability, stationarity, and symmetry of the Gaussian process G = {Gr},c5 ,
we easily obtain:

215) E G)| ) = E{ maxsup|G,| | £ E G
19 E(swl6) (keA sup| u) <y (SUPI u)

keA €l

= K[E( sup fG)\l) < K; (EIGol + ZE( sup G)\)>.
0<A<! 0<A<1

We will apply Lemma 2.2 with (2.15) in the proof of Theorem 3.1 (next sec-
tion) to the following Gaussian process (obtained by the randomization
procedure described below);

N
(2.16) Gr(W,W") = Z Wi (gi(w') cos(prA) + gy (w") sin(px )
k=1

with X € R, (o./,w") E-Q;@-Qg, Wi,...,Wn €R, and 0 <p;... <py with
N > 1. Here g’ = {g} }4>, and g" = {g}},>, are (mutually independent) se-
quences of independent standard Gaussian (~ N(0,1)) random variables
defined on the probability spaces (2, #y, P;) and (§%, #, P;) respectively.
It is easily verified that the orthogonal stochastic measure associated with
G = {G)},cg is given by:
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217)  Z(W,u),4) = Z Wi () (8(-p} (A) + 613 (4)) /2
k=

+IZ Wie gl (") (61-pe () = 8153 (A))/2

for (/,u") € Q; ® 2; and A € #(R). From (2.12) and (2.17) it follows ea-
sily by independence that the spectral measure of G is given by:

N
(218) HA) = 3 IVl (6 (A) + 6 (A))/2

k=1
for A € #(R). Having this expression in mind, one might observe that the
right-hand side of inequality (2.14) (applied to the Gaussian process (2.16))
gets a rather explicit form which is easily estimated in a rigorous way. This
will be demonstrated in more detail in the proof of Theorem 3.1.

In the remaining part of this section we describe the procedure of Gaus-
sian randomization. It allows us to imbed the problem under consideration
(which involves expressions (1.3) and appears by applications of (2.2)) into
the theory of Gaussian processes. It will be used below in the proof of our
main result (Theorem 3.1). It should be observed that the Gaussian process
in (2.16) appears precisely after performing Gaussian randomization as de-
scribed in the next lemma.

LEMMA 2.3 (Gaussian randomization). Let W = { Wy}, be a sequence of
independent mean zero random variables defined on the probability space
(02,7 ,P), let g ={g,}i> and g" = {g}}x>\ be (mutually independent and in-
dependent from W) sequences of independent standard Gaussian (~ N(0,1))
random variables defined on the probability spaces ((2’ F ;, Py) and
(Q” F ;’,Pg) respectively, and let py > 1 be non-negative integers for k > 1.
Then the inequality is satisfied:

N
(2.19) E ( sup WiePit )
—T<ALT k=1
< VSTFE( sup Z Wi (g, cos(piA) + g sin(px X)) )
—mAST J—

forall N > 1.

(It should be clarified here that the sequences W,g’ and g”, initially de-
fined on £2, (2, and (2, respectively, might be well-defined as the projections
onto the first, second and third coordinate of the product probability space
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N2, FRF,F, PP, ®F,), thus being mutually in-
dependent. The second expectation sign in (2.19) denotes the P ® P, ® P;-
integral. Moreover, this probability space is to be enlarged in the proof be-
low as follows. The Rademacher sequence € = {€};-, (ex’s are independent
and take values +1 with probability 1/2) appearing in the proof below, in-
itially defined on the probability space ({2, %, P.), is understood to be de-
fined as the projection onto the fifth coordinate of the product probability
space (R, Q%LNXN.FRF,QF,F @F,PQ P, ®Py®
P' ® P,), thus being independent of W,g’,g"” and W', where W' = {W}},- is
an independent copy of W defined on (2, %', P') and thus, as the projection
onto the fourth coordinate, independent from W,g’,¢” and ¢.)

Proor. First note that by the triangle inequality we have:

N N
(220) E[ sup Wie?? | <E[ sup Z Wi cos(pr )
—<ALT k=1 —T<ALT k=1
N
+ E| su Wi sin(pA)| ).

In the remainder, as a matter of convenience, we shall write cs instead of
either cos or sin function. Let W’ = {W,},., be an independent copy of W
defined on (2, #', P'), and let € = {ek}k>1_be a Rademacher sequence de-
fined on the probability space ({2, #., P.) and understood to be independent
from both W and W’. Then {ex(Wix — W;)},>, and { Wi — W} },~, are iden-
tically distributed for any given and fixed choice of signs ¢, = +1 with k > 1,
and since W’s are of mean zero, we get:

)zE( sup
—r<AT

N
> Wics(pi)
k=1

N
> (Wi~ E'(Wy))es(pe))

k=1

(2.21) E( sup

—<ALT

N
< EE'( sup Z(Wk — Wi)es(piA) )
—T<AST| ]
N
= EE'( sup ch(Wk — Wy)es(pr)) )
—r<ALT k=1

Taking the P.-integral on both sides in (2.21), and using the triangle in-
equality, we obtain:

N N
(2.22) E( sup Zchs(pk,\)) 52EE€< sup | e Wics(pe)) )
—m<ALT| ] —n<A<T| 2y
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On the other hand, since {e|gk|};»; and {8k}x>1 are identically distributed,

we have:

—<A<T
- N
= \/%EEe sup Z exEg (|85 Wics(piX)
—<ALT k=1
e
< «/=EE.E su

= ﬁEEg( sup
2 —<ALT

Now from (2.20), (2.22) and (2.23) we easily conclude:

N

Z (373 WkCS(pk)\)
k=1

(2.23) EE, ( sup

N
D exlgklWes(ped) )
k=1

N
Z g Wi cos(p )

)

N
Z g5 Wi cos(pk) + g Wi sin(pi )
k=1

N
> g Wics(pih)

k=1

N

E| sup W e'PeA
(—w</\§1r Z

)
)

For convenience of the reader we shall conclude this section by recalling
the Lévy’s inequality (for proof see [6] p. 47-48) which is used in the proof of
our main result in the next section.

k=1 —T<ALT

) < \/EEE31< sup

N

+V2nEEg ( sup

—T<ALT

g;é Wi sin(pk)\)
k=1

S;ZVAEEEEQZQH< sup

—m<ALT

This is precisely (2.19), and the proof is complete.

LeEMMA 2.4 (Lévy’s inequalities). Let {Xi},», be a sequence of independent
and symmetric random variables with values in a separable Banach space B.
Denote S, = Y__, X; for all n > 1. Then we have:

< n

224 Pl 54 > 1} <2P(11 > )
Pl < n 14

225) (Il ) < 2E(15i)

SJorallt>0,all0<p<oo,andalln>1.
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3. The main results.

In this section we present the main results of the paper. We begin by the next
fundamental theorem which should be read together with Remark 3.2 fol-
lowing it. In the subsequent part of this section we pass to a more elaborate
analysis of this result.

THEOREM, 3.1. Let W = {Wy},-, be a sequence of independent mean zero
random variables defined on the probability space (92, %, P), and let {pi};~, be
a non-decreasing sequence of non-regative integers (with p; > 1). Suppose that
there exist integers 0 :=ny < ny < ny..., such that the following condition is
satisfied:

&) Niyy 1/2
(3.1) > Jlog(pnm)( > K Wk|2) ) < 0.
i=0 k=n;+1

Then there exists a (universal) sequence of P-integrable random variables
M = {My}y, defined on (2, %, P) which converges to zero P-a.s. and in P-
mean, such that for any Hilbert space H and any contraction T in H we have:

R
(3.2) sup (| D Wilw)T?|| < My(w)
R>ny k=ny+1

forall we 2 and all N > 1. In particular, there exists a (universal) P-null set
N* € & such that the series:

00

(3.3) > Wi(w) T

k=1

converges in operator norm for all w € 2\N*, whenever H is a Hilbert space
and T is a contraction in H.

ProoF. Given R > ny > 1 for some N > 1, there exists (a unique) /x >0
such that:

(3.4) nN+1R < R S nN+[R+1.

Let f € H be given and fixed, and let x, be the spectral measure of f. Then
by the triangle inequality and the spectral lemma (see (2.2) in Lemma 2.1) we
get:
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R N+IR‘1 Ny )
(3.5) Yo WO < Y0 || Y Waw) ()
k=ny+1 i=N k=n,+1
R 00 Myl
Al S mwme] <35 3 WkwmmH
k=ny.1p+1 I i=N ||k=n+1
(e R

+ z sup Z Wi (W) TP (f)

=0 M+ <REAN41 || jpy .|

00 | Mitl 2 172
: ZN(/ 3 e Nf(d/\))
i= T k=n+

) 1/2

0 T R
3| s |3 e iy

"N+I<RSnN+]+1 T k.:nN+]+l

< ( sup ) A1
i=N —m<ALT

00 R
+Z( sup sup | > Wk(w)ei”*A))llfll

Ny

S Wiw)er

k=n,+1

M I

j=0 nNy<RSANi 41 \ —7<A<T k:n/v+,+l

for all w € Q. In order to control the last term in (3.5), we shall generate
W' = {W|};>, an independant copy of W = {W;},., and apply Lévy’s in-
equality (2.25) with p =1 to the sequence of independent and symmetric
random variables {(Wj — W))e* },, with values in the separable Banach
space B of all bounded continuous complex valued functions on ] — , 7] with
respect to the sup-norm. In this way we obtain:
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R
(36)  E{ sup | sup | S W
AN <RSAN441 \ —T<AST k=npn4j+1
R .
=E sup sup | D (Wi—E'(Wy))eP
Ny <RSANi41 \ —m<A<n k=ny;+1

)

R
(Wic— W) e

k=ny4,+1

for all j > 0. Taking supremums in (3.5) first over all f € H with ||f|| < 1 and
then over all R > ny, it is clear that the proof of (3.2) will be completed as
soon as we show that:

) < 00.

o0
3.7 E| su
Note that once (3.7) being proved, the variables My appearing in (3.2) may
be defined as follows:

(3.8) My(w) = i( sup
Wk(w)eip"'\

< EE' sup sup
NN <RSAN4j1 \ —T<ALT

<2EE'| su nfl — W) e

—<ALST k=nN+j+1

NN+j+1
<4E| sup Z We'P
—m<ALT k=n1v+,-+l

Nit1
Wkeip kA
k=n;+1

i1 .
Wi(w)ePer
k=n;+1

=N \ —T<A<T
R

+ sup sup

IZ; (HN+j<RS"N+j+1 (—W<«\S7\' k=ny4j+1 ))

for all w € 2 and all N > 1. The proof of (3.7) is carried out in two steps.
First, by performing the standard Gaussian randomization (see (2.19) in

Lemma 2.3) we get:
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Nyl
(3.9) E( sup WieP )
—T<AST | g 41
11
< \/87rE< sup Z Wi (g cos(pi) + g1 sin(piA)) )
LA S P

for all i > 0, where g’ = {g} },>, and g’ = {g]}-, are (mutually independent
and independent from W) sequences of independent standard Gaussian
(~ N(0, 1)) random variables defined on (£2,, #, P;) and (§2;, %, P}) re-
spectively.

Second, we apply Lemma 2.2 to the stationary Gaussian process:

Myl

G\(, ") = Z Wi(w) (g5 (w') cos(piA) + g5 (") sin(pic X))

k=n,+1

for A € Rand (J,u") € 2,® .Q;’, where w € 2 and i > 0 are given and fixed.
Thus by (2.15) and (2.18) we get:

- 1/2
+2K(< S W) g A 1))

k=n;+1

M1

D Wi(w)(gi cos(pr) + gy sin(pe))

k=n;+1

Nty

(3.10) E( sup
Z Wi(w)gh
k=n,+1

—T<A>T
<8 (E
Rit1 1/2
/ ( Z [ Wi(w)| 1{y|1rfk>exp(y2)}(x)> dx
k=n+1

where K > 0 is the (universal) numerical constant from (2.14) not depending
on the given and fixed w € 2 and i > 0. The first term on the right-hand side
of the inequality in (3.10) is easily controlled by Jensen’s inequality and in-
dependence:

My iy 1/2
(3.11) E| Y Wilws| < | E| Y Wil w)g”k
k=n;+1 k=n;+1

. 12
= ( Z |Wk(w)|2)
k

=n;+1

To estimate the last term on the right-hand side of the inequality in (3.10),
we shall again use Jensen’s inequality. In this way we get:
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(o] Myt | 1/2
(3.12) / ( > |Wk(w)lzl{y|pk>exp(y2)}(x)) dx
0 k=n,+1
R e o\
< \iog(en..) | [ W1 pesenpirty () e
( 0 k:;q {1 pe>exp(3?)} Aog(Pn.,

Mot 1/2
_ (1og(pn,+.))”4( 3 ]Wk(w)|2\/logpk>

k=n,+1

for the given and fixed w € 2 and i > 0. From (3.10), (3.11) and (3.12) we
obtain the estimate:

M1

(3.13) E( sup Z Wi(w) (g}, cos(prX) + g1 sin(pr))) )
~M<AST | fe=p, 41
- 1/2 - 12
< 8(1+2K) (( > |Wk(w>|2> +\/1og(pn,+,>( > |Wk(w)|2> )
k=n,+1 k=n,+1

for the given and fixed w € {2 and i > 0. Now, taking the P-integral in (3.13)
and applying Jensen’s inequality to the second term on the right-hand side,
we see by (3.1) and (3.9) that (3.7) holds. From this, by (3.6) and (3.8), we
see that E(My) < oo for all N > 1, and hence from the specific form of My’s
we conclude My — 0 P-a.s. and in P-mean as N — oo. This completes the
proof of (3.2). The last statement about the series in (3.3) follows clearly
from (3.2). O

REMARK 3.2. The proof of Theorem 3.1 shows (see (3.12) above) that
condition (3.1) might be weakened to the following condition:

o - 1/2
(3.1) Z((log(pn.ﬂ))”“E( > \/IOngIWklz) ) < oo.
i=0 k=n,+1

Under (3.1') we have again (3.2) and (3.3). In this context it should be ob-
served that (3.1) follows straightformward from (3.1’) by Jensen’s inequality.
While apparently weaker as stated in (3.1’), the condition seems to be most
convenient in the form given in (3.1).

REMARK 3.3. In the context of condition (3.1') in Remark 3.2 it is worth
recalling that (3%, |x;|*)"/* < 3°%°, |xi| whenever x; € R for i > 1. Hence we
see that if the conditions (3.1) and (3.1') are aimed to go beyond the
straightforward estimate (which is easily obtained by the triangle inequality):
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< ST < (iw) il
k=1 k=1

then i~ n; must be of a considerable growth. (The estimate (3.14) also in-
dicates that the main emphasis of the result in Theorem 3.1 is on the cases
where |T|| = 1; see also Remark 3.6 below). Moreover, if (3.1') is satisfied,
then we have:

(.15) 3 (Vio8lon. B Wi, ) < o0

i=0

(3.14)

S ()
k=1

This indicates that in order to apply (3.1) or (3.1'’) we must have
E|\W,,,| > 0asi— oc.

Motivated by the last fact in Remark 3.3, in the remaining part of this sec-
tion we invetigate:

(316) Wk :Zk/rk

for kK > 1, where Z;’s are independent and identically distributed mean zero
random variables satisfying E |le2 < 00, and ry’s are positive real numbers
tending to infinity as k — oo. More explicitly, we take r, = k* with a > 0,
but other choices are possible as well. The result of Theorem 3.1 may be then
refined as follows.

THEOREM 3.4. Let Z = {Zy},>, be a sequence of independent and identi-
cally distributed mean zero random variables defined on the probability space
(02, %, P) such that E|Z, {2 < oo, and let {pi};>| be a non-decreasing sequence
of non-negative integers (with p; > 1) satisfying condition:

(3.17) i Viog(pn.)

i=1 (nl)a 12

for some integers 1 <ny < ny <... and some o > 1/2. Then there exists a
(universal) sequence of P-integrable random variables M = {My} >, defined
on (2, %, P) which converges to zero P-a.s. and in P-mean, such that for any
Hilbert space H and any contraction T in H we have:

£ Zk(w)

(3.18) sup TP|| < My(w)

R>ny

k=ny+1

for allw € 2 and all N > 1. In particular, there exists a (universal) P-null set
N* € &F such that the series: ‘
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(3.19) Zz’;iw) TP

k=1

converges in operator norm for all w € 2\N*, whenever H is a Hilbert space
and T is a contraction in H.

Proor. We apply Theorem 3.1 with W), = Z, /k® for k > 1. By the iden-
tical distibution of Z;’s we see that in order to verify condition (3.1) we have
to estimate the expression:

(320) fj(\/@— ( 5 E|Wk|) )

i= k=n;+1
00 M1 1/2
= (EIZI |2)1/2 ZO ( V IOg(an ( Z kza> ) :
i=l k=n,+1

For this, a simple integral comparison shows that:

3 m ] 1 1 1
(321) A ( - )
k—n1+1 k2 ni 2a -1 ("i)2 : ("i+1)2 :

< L 1
2(1— 1 (ni) -

for all i > 1. Inserting (3.21) into (3.20), and using (3.17), we get:

0 nit] /2
(322) Z(N/log(pnﬁ. (Z E|Wk|) )

i=1 k=n;+1

< (E|zl |2) E\/“log(pn,:,

20— 1 =1 nl)a 172

Thus (3.1) is satisfied, and (3.18) and (3.19) follow from (3.2) and (3.3). This
completes the proof.

COROLLARY 3.5. Let Z = {Z},-, be a sequence of independent and identi-
cally distributed mean zero random variables defined on the probability space
(2, %, P) such that E[le2 < oo, and let a > 1/2 be a given number. Then
there exists a (universal) P-null set N* € & such that the series:

(3.23) i-zik%—) T*

=1
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converges in operator norm for all w € 2\N*, whenever H is a Hilbert space
and T is a contraction in H.

Proor. We apply Theorem 3.4 with p; = k and n; = 2. For this, note that
we have:

V 1 Mt i /
Z Og(1({1/2 Zzl(a 1/2)

Thus condition (3.17) is fulfilled, and (3.23) follows from (3.19). This com-
pletes the proof. O

REMARK 3.6. The conclusion of Theorem 3.4 (and Corollary 3.5) fails for
0<a<1/2, unless Zy =0 P-as. for all k> 1. Indeed, if the conclusion
would be true with a = 1/2 for instance, then upon taking T = I we would
have:

Zawm Il <

_ Zi(w)
$a

k=1

for P-a.s. w € £2. Thus by Kolmogorov’s three series theorem we would ob-
tain:

o0
1
ZVar(\/_ {|Zkl<C\/_}) = ;;Var(zkluzusc\/l?}) < o0

for all C > 0. Hence (with C = 1) we would easily get:
Var(Z1 5 z.1) — 0

as k — oo, so that we could conclude Zy =0 P-as. Thecase 0 <a<1/2is
treated in exactly the same manner. This completes the proof of the claim.

It should also be observed by triangle inequality that the result of Theo-
rem 3.4 (and Corollary 3.5) follows easily either for « > 1 or ||T| < 1 (pro-
vided that a > 0 and pi’s do not tend to infinity too slowly when k& — o0).
This shows that Theorem 3.4 (with Corollary 3.5) treats essentially the cases
(up to the simultaneity) where |T|] =land 1/2<a < 1.

4. Some remarks on the proof.

In the remaining part of the paper we shortly analyze optimality of the in-
equalities used in the proof of our main result in Theorem 3.1. Our motiva-
tion for this direction relies upon two facts. Firstly, we feel that the method
of proof presented is instructive and can be modified to treat similar ques-
tions. Secondly, we see from Remark 3.6 that the conditions obtained
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throughout are as optimal as possible, but up to the fact that the assertions
implied are valid simultaneously for all Hilbert spaces and all contractions
of them. Thus the information to be given below might clarify the scope and
lead to an improvement when something similar (in such a generality) is not
required.

The first inequality in (3.5) is a consequene of the triangle inequality and
reflects our basic idea of passing to the blocks of random elements under
consideration. Since the length of the blocks is not fixed and may vary, the
error appearing in (3.5) can be made arbitrarily small.

The third inequality in (3.5) may contain a noticeable large error (when
|IT|| < 1) as already recorded following Lemma 2.1. It is also mentioned
there that this inequality becomes an equality if 7 is an isometry. Thus, in
the context of our results where the convergence is to be obtained simulta-
neously for all contractions of Hilbert spaces, the third inequality in (3.5) is
as optimal as possible. It should be kept in mind, however, that this is not
the case in general.

In the context of the fourth inequality in (3.5) it could be worthwhile to
record the following. By Jensen’s inequality (applied twice) we find:

Rit1 N4l 12
(41) > E|Wk1<( — > (EIWk|>2>
it Tk

n‘+1 ni k=n,+1 =n,+1

" 1/2
l 1+1 E‘ W I2
< ———
~ \Riy1 — nth k

=n;+1

This can be rewritten in the form:

Nt Nt 172
(4.2) Z E|Wi| < v/nip —ni( Z E| Wk|2) :
k=n,+1 k=n;+1

Consider moreover the case when the sequence {pi},-, is lacunary, which
means pyi1/pr > A for k > 1 with some A > 1 (taken to be strictly less than
p1 > 1). Then p; > Xk, and thus log(pi) > klog()) for all k > 1. Hence from
(4.2) we easily get:

/2
Niy1 Riy)

(4.3) > E|w] < 108(Pn,.,) (Z E| Wk|> :
k=n;+1 k=n;+1

The inequality (4.3). shows that condition (3.1) in Theorem 3.1 implies that:
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o0 o0
(4.4) E(Z|Wk|> =Y | Wi| < oo.

k=1 k=1
This clearly indicates that the result of Theorem 3.1 (and Theorem 3.4 with
Coroallary 3.5) does not go beyond a triangle inequality argument in the
case when the sequence {px},, is lacunary. We think that this fact is by it-
self of theoretical interest.

To explore the Gaussian randomization inequality (3.9) (see Lemma 2.3),
we could note that by (3.27) + (3.31) in [8] (together with Lévy’s inequality
and a passage to W, — W;, where {W/},., is an independent copy of
{Wk}i>1,> independent of {g; },, as well) we get the inequality:

k=n,+1

2 Myl iy
< 324/- E{| sup
i+ 1\ _re<r

> Wics(pe)
k=n,+1
where cs stands for either cos or sin. This shows optimality of (3.9). Finally,
the inequality appearing in (3.10) (see Lemma 2.2) is known to be sharp (see

(3D.

Niy1

(4.5) ( sup | Y g Wics(pi))

—m<ALT
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