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APPROXIMATION BY INTERPOLATING
BLASCHKE PRODUCTS

KNUT OYMA*

Abstract.

We give a new proof of the fact that every unimodular function on the unit circle can be uniformly
approximated by the ratio of two interpolating Blaschke products. We also prove that every bounded
analytic function of small norm is contained in the closed convex hull of the interpolating Blaschke
products.

Let H” be the set of bounded analytic functions on the unit disc D, and let
T = 0D. Every function f(z) e H® has boundary values

f(€®) = lim f(re®) a.e.
r—+1

A Blaschke product B(z) is a bounded analytic function of the form

z"'ﬁ "I 22

n=1

|zz[" 1——2% where Y (1 — |z,]) < 0.

[B(e”)| =1 a.e.

A sequence {z,} < D is called interpolating if every interpolation problem
f(z,) = w, where {w,} €/* has a solution in H®. A Blaschke product whose zero
set is an interpolating sequence is called an interpolating Blaschke product.
Interpolating Blaschke products play a central role in the theory of H®. A good
reference is the book of Garnett [1]. In [3] Jones proved that every unimodular
function in L*(T) ¢an be uniformly approximated by the ratio of two interpola-
ting Blaschke products. We will give a new proof of this below. The original
proof, however, gives a better geometric understanding of the problem. The ideas
come from [2] where Garnett and Nicolau prove that every function in H* can
be uniformly approximated by a linear combination of interpolating Blaschke
products. It is not known if every function in H*® of unit norm is contained in the
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closed convex hull of the interpolating Blaschke products. Theorem 2 shows that
this is true for all very small functions.

First we need sime definitions. By a square we mean a set of the form
Q={re®1—h<r<1,0,—nh<0<6,+ nh}.

The top half of Q is T(Q) = {rei”eQ:r <1 —tzh—} and the length of Q,

£(Q) = 2zh. The pseudohyperbolic distance between two points in D is defined by
zZ— W

p(z,vv)=11_z.w .

A sequence {z,} is interpolating if and only if

inf p(z,,z,) >0 and

n¥m

Y. (1 —lz,]) < CAQ) for all squares.
z,6Q
A proof can be found in Chapter 6 of [1].
Below we consider only squares of the form

Q={rei0:4221:(~§0<@(—-];,4_—1—)~,1—2""§r<1}.

Define m(r) = min | f(z)|. Several lemmas are needed.

lzl=r

LEMMA 1. Let B(z) be a Blaschke product. Then B = BB, wherelim supm(r) = 1

r-1
for B, and B,.

ProoF. If{z,} is the zero set of B, consider the Blaschke product b(z) with zero
set {|z,|}. Then |B(z)| 2 |b(|z|)| so we may assume that the seros of B are >0 and
consider positive z only. Assume that z; <z, <.... Let "B and ,,B have zeros
{z,},v 2 nand {z,}, v < m respectively. Assume that g, €0, 1) and that a, — 1.
Choose numbers r, € 0, 1) and natural numbers m; < n;, < my ., in the follow-
ing way:

Let m; = 1. Choose r; > z,,; such that |,,;B(r;)| > a,. Choose n; such that
Z,4 > ryand ["'B(r,)| > a,. Choose r, > z,, such that |,; B(r,)| > a,, and m, such
that z,,, > r, and |"2B(r,)| > a,.

Continue inductively. If B, has zero set () {z,} and B, has zero set

k

miSv<nmg

(U  then B = B, B, solves the problem.

k
R Sv<Mp 41

Let B= B, or B= B,. Choose a small 6 >0, and let 0 <a < f <1 be
constants to be chosen later. We may assume that |B(0)| > .
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Let Q}, O}, ... be the maximal squares such that inf |B(z)| < a. The squares
T(Q)
S! . p=1,...,128 are the squares of length t35/(Q}) contained in Q.

Choose a curve I't = {z:|z| = r} 0 Q} close to T such that |B(z)| > ffor zeI'}
and such that I'} , =y NS, , £ 0.

This is possible by Lemma 1. Since |B(z)| = « at some point in T(Q}) we may
choose 50 close to 1 that the zeros of B belonging to Q; are contained in | ) S} ,.
We define R} , to be the component of S} ,\I'; , closest to 0. 4

Let Q7 be the maximal squares contamed in some S, ,\R,, such that

inf |B(z)| < a. Construct S2,, R2,,I'2,,p=1,...,128 as before.
zeT(Q)
Continue the construction inductively. If ¢ > 0 is given we may choose f so

close to 1 that
*) Y. O < eASpEY)
QnmCSp.k
See p. 332 of [1].
Let p be fixed. B, isthe subproduct of B with zerosin R, = U Rj, . Every zero

of B is contained in some R,,.

Since |B,(z)| = o at some point in T(Q¥), we may assume that | B,|isclose to 1in
T(S} ) by choosing a close to 1. We have

Y (1= |z)?) = C@)(S,, ) where C(a) > 0 when o — 1.

Bp(zy)=0
2,€S5p, k

We need

LEMMA 2. Assume that Q is a square and that & >0 is small. If the curve
= {z:|z| = r} N Q is sufficiently close to T, there exist points z,eT, equally
separated such that

1
(@) m % nimplies p(z,,z,) > 1/log3
(b) The associated Blaschke product B satisfies |B| <don T
1
© L0~ k) < 55 AQlog g

For technical reasons we carry out the proof in the upper half plane and
1 1
assumethatI' = {i + x,0 < x £ K)where K > [?T log —6—:| = N. B(z) has zeros

zy=i+-—n=1,...,NK.
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23
N 1 . .
For n £+ m p(z,, zn) > 5 > 1 so (a) is satisfied.
logg

<] 2 nZ __ ,MmZ
In the proof of part (b) we need that [ | (1 + %) = e—z—nj——which is easily
n=1

o 2
obtained from the well known formula sin nz = nz H (1 — %)

Max|B(z)| = |B(i) = ,———— 2 ﬁ
zel 4 + n= (2N) n=1

4nN

e2™N _ g 21N

This proves (b).
In the unit disc 1 — |z, corresponds to Imz, in the upper half plane so we

obtain ¥ (1 — |z,2 <23 (1 — |z,]) < == [(Q)log (15

We may now choose I', , close to T and finitely many points z,, = z,,’7*" on
I'; , such that(a), (b) and (c) are satisfied. Denote the associated Blaschke product
by B, x, .. Using the subharmonicity of log | B, x, »| and an easy harmonic measure
estimate we obtain |B, ; ,| < 8* on R}, ,

< ¢ if 6 is small.

Let B} = ]_IB,, k.- By Lemma 2 and (*) Bj is interpolating and |Bj| < 5% on
R

p*

2
Y (1=l £ CAQ) + 37468, )log A+e+e2+..)
BpBy(z,)=0
z,eQk

+ 127{(S';,,k)log-(ls—(6 +et+..)

The first term comes from the zeros of B, the second term takes care of the zeros
of By in S}, , and the last term comes from the zeros of B} in S} , for r & p.

Note that £(S5.) = t3s/(Q%). If & is small and « is close to 1 we ob-
in % (1~ lzf) < rhrlog5 40D

BpBp(z,)=0
zpeQk, .
Ifz=relet Q,={pe:1 —41 -n<p<1,o—0 22 —r)
Assume that z satisfies
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1— 1z
1000

() 0N Q. +0=4(Q5) <

Then ¥ (1= &) < @1 — ) + rdoll — b log 5 < (1 — eblog-

BpBp(z,)=0

zpeQz
An easy calculation proves that if z,¢Q, then arg zl = 0, satisfies
2y — 2
cos 6, > 55.
Define p(z, R,) = inf p(z,w)

weR,

LEMMA 3. There exists a constant A = A(6) < 1 such that if p(z,R,) = A and

B, BX(z)| = 6 then (1 — |21 |(B,B2)(2)| > —5——log (15

Proor. If A4 is large then (%) is satisfied.
1 - (@ = 121 = |z,
2log— 5 =log|B,BX(z) "% ~ Y, Tz = Z + Z where {z,} are

the zeros of B,B¥,Y = ) and ~ is close to equality when A-1,
1 Q.

1
T (1=l < #log.

szQz

2
Z<1|

1 1
Therefore Y, > (3 — &) logb— = %log’g.
2

We have that

1
— Zl)
(B, B3 =21 =zl 2 ' ,
— 21 : =)'+
(=12 B, B* ; 1 —1z;2)? z—2z, 2;‘ ;

where Yo=Y,

Therefore
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. 1
g&( 784 L >log 5 > (,S, log(lS

12 *Y| = 5t
(1 — |z )l(Bpo)l o 25'235 A Ed

Z/ + Zr
1 2
when A is close to 1. This completes the proof of Lemma 3.

By a theorem of Frostman, see [1] p. 79, there exists y such that |y| = 5* and
BPB; -7
1 — jB,B}
|B,B}| = 6*. Lemma 3 and an easy calculation proves that (1 — |z|%)|C)(z)| >
o*(1 — &%)

200

p(w,z) < Aand |B,Bj(w)| < 5%, Hence there exists w’ such that p(w',z) < 4 and

(1 = WI)IC,w)l > n(4,) > 0.

By Lemma 1 in [2] C, is a finite product of interpolating Blaschke products.
Therefore we have on the unit circle B,B} = C,(1 + y,(e”®)) where [y,| < 3[y|ifyis
small.

Let H B¥ = B*and H C, = C. Then we obtain BB* = C(1 + &(e")) where ¢ is

C,= is a Blaschke product. Assume that C,(z) =0. Then

log — 5 if p(z,R,) 2 A. If p(z,R,) < A there exists we R, such that

small whcn y is small.

C and B* can be uniformly approximated by interpolating Blaschke products,
since finite products of interpolating Blaschke products have this property, see
[4]. Hence every Blaschke product can be uniformly approximated on the unit
circle by a quotient of two interpolating Blaschke products. By a theorem of
Rudin and Douglas, [1] p. 192, every unimodular function on T can be approxi-
mated by a quotient of two Blaschke products. Hence we obtain

THEOREM 1 (Jones). Every unimodular function in L°(T) can be uniformly
approximated by a quotient of two interpolating Blaschke products.

If A is a unimodular constant and B is an interpolating Blaschke product we
include 4 and AB among the interpolating Blaschke products. By K we mean the
closed convex hull of the interpolating Blaschke products. K is closed under
multiplication. In [2] Garnett and Nicolau proved that for any fe H® there
exists a constant c, such that f e c, - K, but they did not give any estimate of ¢, in
terms of f. We will prove

THEOREM 2. Any fe H® of sufficiently small norm is contained in K.

Our proof is essentially a repetition of the argument in [2], but we prove that
the parameter o there depends on J only.

In the proof of Theorem 1 we found a constant 7, |y] = é* such that

B,B}
C,= 1—_——5’—1—373—*EK Therefore
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C,+7v
1+7C,

L+
1=

B,BY = K = ¢,(O)K.

p

=(C, + N L(=TC,)'e
0

B —
By Lemma 1.4, p. 404 in [1] B** = 2 ——
y Le P. 404 in [1] By* = T
product if ¢ is sufficiently small. We claim that ¢ depends on & only. The proof of
this is postponed. The zeros of Bj* are close to the zeros of B¥ in the

pseudohyperbolic metric.

is an interpolating Blaschke

B,Bp* — *

1 — y*B,B**

[y*| depends on 6 and ¢ and hence J only. As above we obtain B,B}* e c,()K.
1+ o

Subtracting B, Bj* from B, B leads to B,,e(T c,(0) + cl(é)) K = c3(0)K.
128

Hence B = || B,ec}?®K for each of the two subproducts of Lemma 1.
=1

Therefore‘J every Blaschke product belongs to ¢33¢K. This proves Theorem
2 since every f € H” of norm 1 belongs to the closed convex hull of the Blaschke
products by a theorem of Marshall, [1], p. 196.

It remains to prove the claim. Let {z,} be the zeros of B} and let ,,B} be the
Blaschke product with zeros {z,}, v + m.

By Lemma 1.4, p. 404 in [1], it sufficies to prove that

) InB3(zn)l Z K(3) > 0.

Repeating the argument with B}* we obtain C} = € K where

The zeros of B} lying on I'}, , consist of K consequtive groups each consisting of
N zeros. See the proof of Lemma 2. Consider such a group z,,...,Zm+n-1. Let
L be the part of I'} , lying between z,, and z,,+ . I is the radial projection of
L onto T and Q is the set of points in D between L and 1.

By the construction of B}

Y AT <edl)
k
g 'no40
Therefore we can find N disjoint sets E,, ..., En+x- contained in I\ Q¢ "' of
k

|

measure > ——. In this way we can associate disjoint sets E, = T to each z,. Let

,(z) be the harmonic measure of E, with respect to D. An estimate of the Poisson
kernel shows that w(z,) = a(N) = a(8) > 0 since N depends on 6 only.
Let arg z, = h,. We have that

1 -z |E,|

1
SN dt :
a0) £ @z) = 2 f 1= 2lzlcos@,— 0+ Izl — al—lza)
EV

IIA
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lEu|
na(d)

2
. Consequently Y (1 — |z,|) < w0 since the sets E,

Therefore 1 — |z,| <

are disjoint.
The statement (E) is conformal invariant, so we may assume that z,, = 0. By

Lemma 2(a) |z,| = = b for v + m. Finally

10g ‘5‘

loghb
[T ol = exp( ) loglz,,|> 2 oxp (—1%32(1 - mn)

vim
logh 2
> —_—— | =
=e"p<1—b a(5)> K(0)>0

REMARK. A long and technical numerical calculation shows that f(z) belongs
to K if || f(z)|| < 1071000,
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