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SPECTRAL ESTIMATES FOR MAGNETIC OPERATORS

MICHAEL MELGAARD and GREGORY V. ROZENBLUM

Abstract.

The well-known CLR-estimate for the number of negative eigenvalues of the Schrédinger operator
—4 + Vis carried over to a class of second order differential operators, generalizing the magnetic
Schrodinger operator. The coefficients in the magnetic operators are variable, they may be non-
smooth, unbounded and some degeneration is allowed.

I. Introduction.

Estimates of the spectrum of differential operators have been attracting attention
for a long time both in physics and mathematics. They find applications, in
particular, in studying the asymptotics of eigenvalues, some characteristics in the
scattering theory and in the analysis of stability of matter (see e.g.[14], [9], [2],
(3D

An important result here is the so-called CLR-estimate for the number of
negative eigenvalues N _(V) of the Schrodinger operator —4 + Vin R, d 2 3:

(1.1) N_(V) = Cf (V_(x))"? dx,
Rd

where V_(x) = (|V(x)| — V(x))/2. In this estimate, the constant ¢ depends only on
the dimension d of the space and holds for any potential ¥ for which the
right-hand side is finite. One of the reasons why (1.1) finds a number of applica-
tions is the fact that the integral in (1. 1) is proportional to the volume of the region
in the phase space where the classical Hamiltonian H(p, x) = p? + V(x) is nega-
tive. This implies, in particular, that (1.1) behaves correctly when one includes the
Planck constant & in the operator or introduces the coupling constant (replacing
V by tV).

The estimate (1.1) has been proved by four, completely different methods. The
original proof in [15] (the result was announced in [16]) was based on the
piece-wise polynomial approximations in Sobolev spaces, refining the ideas by
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M. Birman and M. Solomyak [3]. The proof by E. Lieb [10] uses the representa-
tion of heat kernels by means of path integration (the Feynman-Kac formula). M.
Cwikel’s proof [5] was based on the ideas, actually belonging to the theory of
interpolation of linear operators. The latest proof, by P. Li and S. T. Yau [8],
probably the most simple one, uses some analysis of heat kernels.

Different methods of proof lead to different constants in (1.1) (for some
applications, the value of the constant is crucial); in particular, for d = 3 the best
cis obtained in [10]. On the other hand, the proofs admit different possibilities of
generalization of (1.1). The methods in [10] and [8] seem to be the most specific;
the method in [15] — the most general. In particular, the latter method provides
one with estimates for differential operators of any order, probably degenerate,
and also for some integral operators.

The Schrédinger operator describes behaviour of a particle in the electric field
with potential V. The natural question in the case when a magnetic field is also
present leads to spectral estimates for the “magnetic Schrodinger operator”

(L.2) Hy = —(V — i(x))* + V(x)

with magnetic vector potential @ = (a,,..., a,). Phase space considerations hint
that for the negative eigenvalues of (1.2), the same estimate (1.1) must hold, with
a constant not depending on a (this by no means implies that the estimate cannot
beimproved for some classes of magnetic potentials). In fact, such an estimate has
been proved. Usually, it is attributed to E. Lieb, but the first published version
appeared in [ 17]. This proof uses the original approach by Lieb, representing the
magnetic heat kernel by means of a path integral, this time, It6’s one. In
discussing this, in [1], the question was asked whether it is possible to carry over
other proofs of the CLR-estimate to the magnetic case. However, up till now no
such proofs appeared. So, we have a somewhat unnatural situation: an analytical
result lacks analytical proofs.

In the present paper we give an alternative proof of the estimate of the form
(1.1) for a class of second order magnetic operators, generalizing (1.2). The
coefficients are variable, they may be nonsmooth, unbounded, some degener-
ation of ellipticity is allowed. Making some speculations, one may say that our
operators describe behaviour of quantum particles in a curved space, with
a non-Euclidean metric, thus taking some general relativity effects into account.
Here, a point of the degeneration of ellipticity of the operator corresponds to the
zero speed of light. The light, having reached this point, canot leave it, so we have
something like a “black hole”. Thus, our results show that provided the degener-
ation is not too severe, in other words, if the black hole is “not too black”, then, for
any magnetic field, only a finite number of bound states of the particle (e.g. an
electron) can be generated by a given electric potential. On the other hand, if the
speed of light increases at infinity quickly enough then, for any magnetic field, the
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whole spectrum of the operator is discrete, as it is to be expected in the closed
model of the Universe.

In Sec. 2 we give exact definition of our operators. We cannot follow the
pattern of [18], [1], where operators (1.2) were considered, in our general
conditions. In fact, for variable coefficients operators in dimension d > 2, the
results on the coincidence of maximal and minimal Schrédinger forms and on
essential self-adjointness do not hold (see, e.g. [ 11]), even without magnetic field.
It is by the method of quadratic forms, that the magnetic operators are defined.
Some approximation are used in obtaining the estimates, so we show strong
resolvent continuous dependence of the operator on the magnetic potential. OQur
method is based on the combination of ideas of [15] and [8]. Since [15] was
published in a quite obscure and virtually unaccessible Russian journal, in Sec. 3,
we reproduce from [ 15] the original proof, as applied to second order operators.
The spectral estimates are proved in Sec. 4.

We do not touch applications of our estimates. Nowadays, it is a matter of
routine to derive results on the spectral asymptotics from spectral estimates,
provided the latter ones are exact enough,; see e.g., [14], [15], [2], [3], [12].

This paper had its origin in a M.Sc.Thesis by M.M. and R. Ravnstrup under
the supervision of G.R., where the alternative proof of the magnetic
CLR-estimate was found. Later, the general results were obtained by G.R. and
M.M.

2. Magnetic Operators.

We define our operators by means of quadratic forms. Let g(x) = {gx(x)},
1 <j,k<d be a (possibly, complex-valued) matrix function defined on R4,
positive-definite a.e.: there exists a function y(x) = 0, y > 0 a.e. such that

d d
2.1 Z Z gjk(x)éjzl:g V(X)I€I2
j=1k=1

forany & = (&,,..., &) €C%if y(x) = yo > 0the matrix (and, correspondingly, the
operator) is called uniformly elliptic; otherwise we deal with degeneration.

The magnetic field will be described by the real magnetic vector potential
a(x) = (ay(x),. .., as(x)). To be able to define the magnetic operator, we impose the
following condition on the coefficients.

CONDITION A. gyelf,a€ L, p ' +207 ' =1
Let Q be some open set in R, and let P; = 0/0x; — ia;. We define

4 d o
(2.2 Agaoldl=| X X guPidPiddx.

Qj=1k=1 )
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Condition A quarantees that the quadratic form (2.2) is defined on C§(£2). We
shall omit some (or all) subscripts in the notation of this (and other) quadratic
forms, provided this does not produce ambiguity.

For the form A[¢] to enjoy nice properties, we have to control the degener-
ation.

CoNDITION B. 7y 1eL?(Q), p = max(d/2,1).

2.1. The Free Magnetic Operator. Our aim is to associate a self-adjoint
operator in L2(RY to the form A. To do this, one has to know that the form is
closable in L*(RY) (we remind that this means that if ¢, — 0 in L*(R% and
Al¢, — ¢m] — 0 then A[ ¢, ] — 0).

PROPOSITION 2.1. Under conditions A and B, the form A[¢] is closable.

PrOOF. We begin by establishing an inequality which will be useful through-
out the paper. It follows from (2.1) and the Holder inequality that, forany G <= Q,

2p

d
(2.3) Agle] 2 J %) Y 1Pl dx Z Iy il IV — i@)dl1E 8 = ——
G k=1 p+1

Consider the space H, of vector-functions v = (vy,...,v;) on Q such that
2.4 a[v] = Z Z g (x)vi(x) dx < oo.
Rj=1k=1

Since g is a symmetric nonnegative matrix for all x, there exists a unitary
matrix-valued function &(x) such that

9(x) = {g;(x)} = B(x)” ' D(x)P(x)

with a real diagonal matrix D(x) = diag(d,(x),...,d4(x)). Denote by w(x) the
vector function &(x)v(x), w(x) = (W(x),. .., ws(x)). Then (2.4) takes the form

d
(2.5) afv] = J;) .; 8;(x) [w(x)|? dx = ag[w].

Now, suppose some sequence v"(x)e H, satisfies a[v" — v™] — 0. Then, corre-
spondingly, we have ap[w" — w™] — 0 and, according to (2.5),

(2.6) J 8;Iwi — wi|>dx — 0.
2
For any given j, the expression in (2.6) is the norm of wj — w} in the L?-space with

respect to the measure du; = 8,(x)dx; since such L*-spaces are complete, it
follows that there exists limit w; of wj in this space, and therefore, due to the fact
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that §;(x) > 0 almost everywhere, there exists some subsequence of w} converging
to w; a.e. Such a subsequence may be taken the same for all j, and we keep the
notation w’ for this subsequence. Moreover, we have v" = @~ 'w and therefore
v" converges to v = &~ 'w a.e., and a[v"] — a[v].

Now, let Ag[¢n — bl =0, ¢, ¢, CX(R) and ||, || — 0. Take v; = P;¢p,.
The sequence v" € H, fits into the previous consideration. Therefore, for some
subsequence and some element v e H,, we have

@2.7) Agl¢a] = ao[v]; P, — v; ace.
On the other hand, due to (2.3),
(2.8) | Pi(bw — dm)llL 2 — O.

Introduce ¢)(x) = exp(—ip;(x))Py,

Xy

29) Hj= JO aj(xls"-axj~layaxj+1,~~-’xd)dyj'

The later integral makes sense and defines a function in H,. in the x; variable for
almost all xj = (xy,...,%j— 1, Xj+1,...,X,). Using [18], we get

Py, = eMid(e"i¢,)/0x; = e*1o)/0x;,

and so, from (2.8), it follows that, for almost all X',

I

where Q;(x}) is the one-dimensional cross-section of  in the direction of x;, for
" a given x|. Due to completeness of the Sobolev spaces there exists, for any j,
a function w’ such that

J) + o5 — &b, “LZ(Q,(x;» -0,
L3(2,(x})

+ 165 — WL, = 0
Le(9,(x))

— w))

for almost all x. Moreover, since, for any n, we have exp(iy P = exp(iyk)tz?ﬁ, t}'le
functions w’ are consistent in the same sense, exp(iu;)w’ = ¢. This implies, in
particular, that (again for some subsequence) P;¢, — P;¢, ¢, — ¢ a.e. The latter
relation, together with ||¢@,| .. — 0, give that ¢ = 0. So, we have P;¢, — 0 a.e.
Now, (2.7) gives us that v; = 0, a[v] = 0 and finally, Ao[¢,] — 0.

Due to Proposition 2.1, the form A4, ,  generates a self-adjoint nonnegative
operator Hy , o o in L*(R2) (again, some or all subscripts may be omitted).
The following inequality is useful in obtaining estimates for the form A.
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PROPOSITION 2.2. Suppose that conditions A and B are satisfied. Then

’ dx, $eC=(Q).

d

0
(2.10) A9l 2 J "x) ¥ oLl

Q k=1] 0%k
Proor. To show (2.10), one has to note that AJ[¢]= A,[¢]=
fay(x)|P;¢|*dx. Now (2.10) follows from the well-known fact that
0
ax;
An immediate consequence of Proposition 2.2 is the following estimate.

[Pl 2 ’ lol}.

PROPOSITION 2.3. Under conditions A and B, we have

2.11) Agld1 = Cly ™M, M 915, deCF(Q),

where q* 1 =1/2 — 1/d = 1/2 — 1/d + 1/(2p), with a constant C depending only
ond, p.

ProoF. To show (2.11), we combine (2.10), (2.3) and the Sobolev inequality
IVolls = C |lv]l, for v = |@| with a compact support in Q.

2.2 The Magnetic Operator. Let V be a real measurable function. We will define
the operator H, = H, + V by the method of quadratic forms.

ConprmioN C. VeLl .(Q); (V + 1) = ([V + 1| — (V + 1))/2 € [4(LQ) for some
1,9 '+pt=2/dg>1

PROPOSITION 2.4. Let the conditions A, B and C be fulfilled. Then the form

d d
(2.12) Av[¢l=| ¥ Y g;uPidPdpdx + LV}d)Ide

Qj=1k=1
defined on C3(Q) is closable.

ProOOF. We can suppose that 7 = 0, moreover, that the L7-norm of V_ is small
enough. Then, according to the Holder inequality and Proposition 2.3, we have

(2.13) L VolglPdx < IV_ll 1ol < CIV-llg Iy~ 4,041,

for e C(R). So, if |V_|, is small enough, then [ V_|¢|* dx < aA[¢], with
¢ < 1, and this, according to the KLMN Theorem (see [13]), implies that the
form A,[¢] — [V_|¢|* is semi-bounded and closable. The positive form
[Vi19l% (V4 = (V]| + V)/2 can be added to the later one with no trouble since
C&(R) is a common core for these forms.

As a result, we obtain a self-adjoint operator Hy.
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2.3 Operator Properties. It is convenient to study the properties of the oper-
ators in question first for the case of some nice magnetic and electric fields. As in
[18], this proves to be sufficient for general spectral estimates, due to the
continuous dependence of the operators on the potentials.

Lﬂ
PROPOSITION 2.5. Let a,, aclLi,, V,, Vel\_. and suppose a, "<, a,

loc>

1
L .
V, ¢, V. Then, the operators Hy, , converge to Hy , in the strong resolvent
sense.

ProoF. The proof follows the pattern of the one in [18] for the case of the unit
matrix g. We take V, = V fixed; the continuous dependence on V is proved
exactly as in [18]. Let feL? ¢, = (H, + i)~ 'f. Then ||$, |12, and also

I £1lc2 Z (Ha@w, du)rz = llg""*(V — ia)allZ, + IVi2allE, — IV,
2 31"V — ia,)pu 17, + I1VIV2$ulI7,).
Hence, we can take a subsequence (denoted still by ¢,) such that
Yu = g"*(V — ia,)p—> ¥, ¢, —> ¢, and [V|2¢, —*— |V|'24.

Consider the space of vector functions Z = g~ 2Cg n L3; it is obviously dense
in I2. Take any he %. Consider the operators g'/%(V — ia,), g"/*(V — ia) on
CZ (due to Proposition (2.1), they are closable). A standard calculation shows
that

he D((g"*(V — ia,)*),he D((g"*(V — ia))*)
and
(gY3(V — ia,))*h = (—V + ia,)g'*h,(g"*(V — ia)*h = (—V + ia)g'*h.
Thus, we have strong convergence (g"/%(V — ia,))*h—— (¢"/*(V — ia)/*h, and

(9"2(V — ia)*h, )2 = lim ((¢"2(V — ia,)*h, b,)y2

n—o

= lim (h’ gl/Z(V - ian)¢n)¢n)L2 = (h’ ‘/j)Lz'

n—-+x

This means that ¢ € D((g"/2(V — ia))**) = D(g"*(V — ia))and g'*(V — ia)¢ = y.
Next, take ue C2. Then g*/A(V — ia,Ju—— g"/*(V — ia)u, and so

(u? f)L2 = (gl/Z(V - ian)u7 gl/z(V - ian)¢n)l,2 + (Vl/zu’lV|1/2¢n)L2 + i(ll, ¢n)L2
S (gVHV — iayu, g P(V — ia)g)p2 + (V17u, [V )Lz + i(u, dp)a.

According to the definition of the operators by means of quadratic forms, this
implies that ¢ e D(H) and (H + i)¢ = f. Thus, any weak limit point of ¢,is’
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(H + i)~ 'f. By weak compactness of the unit ball we see that (H, + i)~ ! con-
verges weakly to (H + i)~ !. The same holds for the operators (H, — i)~ !. As
usual, this implies strong resolvent convergence of H, to H.

As a result of our proposition, it will be sufficient to prove the spectral
estimates for smooth and/or bounded electric and magnetic potentials, provided
the estimates would imply only itegral norms of the data of the operators.

A special role in our considerations will be played by operators with matrix
¢ having a special form, namely

(2.14) g(x) = y(x)I.

It is for these matrices and smooth magnetic fields, that we obtain a nice
representation for the heat semigroup. Let g(x) have the form (2.14). Then for
eachk,1 < k < d,for Q = Q (acube) we can define a nonnegative quadratic form
2

dx

ou .
— —iau

0xy

halul = L %)

with D(h¥) = C(Q). This formis closable and defines a selfadjoint operator H¥ in
L2 In the sense of quadratic forms, we have h, = Y , k.

PROPOSITION 2.6. Let a, e CJ(R2) and let

Xk
.uk(x)=J ak(xl’---9yk,~-"xd)dyk‘

= 0

Then

(2.15) e~ ID(H¥) = D(HY)
and

(2.16) HYe™mi®) = o= imx)ppk

REMARK. For y(x) = 1, this is the result of [18]. We must use another way of.
proving, since, as in many instances above, we do not have any essentially
selfadjoint operators and so we can only manipulate with quadratic forms.

PrOOF. Let Y eD(HY) and y, = 0y/0x,. This means that L(u,y)=
(7(x)(Ou — iazu), (Y, — iaxy)) is a linear bounded functional in L? with respect to
the variable ue C3(Q). Taking ¢ = e~ ™y, we have

Lwuy) = f)’ (5% — iaku> e gj; dx

_ ou 0¢ v 0¢
= px — —_r — i S
J\ye <6xk lak“) axk dx Y axk axk dx’
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where v = e~ . Now (and this is the only place we use it), for smooth a,, the
functions u and v belong to CP(Q) simultaneously, and so, %, considered as
a functional in ve Cg, is continuous which means that ¢ € D(HX). The opposite
inclusion of domains and the equality (2.16) follow now in an elementary way.

3. Non-Magnetic Spectral Estimates.

In this section we reproduce, with some minor modifications, the original proof
of the CLR-estimate, for the particular case of second-order operators.

3.1 The Spectral Estimate. Let Q = R and the function y satisfy condition B.
Let b(x) be a real function,

(3.1) belXQ),q ' +p ' =241

For any set G = Q we introduce the quadratic form
(3.2) Blu] = J b(x) |u(x)|? dx.
Q

Sometimes, G and b will be included in the notation, as subscripts of B.

To the quadratic form Ag[¢] given by (2.2), with @ = 0, we associate the space
H, = H,(Q), the closure of C(€) with respect to the norm (A[¢])"/%. It follows
from (2.13) that the form B is bounded with respect to A and thus B generates
a bounded self-adjoint operator T = T, p in H,. We denote by n;(4, T) the
number of points of spectrum of + T in (4, 0); 4 > 0.

THEOREM 3.1. Let the condition B hold with 1 < p,q < o0;ifq = 1, it is possible
that p= 00. Let 0~ = 2d™ . Then

(3.3) ne(ALT) S A Iy~ Iy b= 15,
with a constant ¢ depending on p, q, d but not on b, g, Q.

REMARK. Theorem 3.1 is generalized to the case of forms (and operators)
defined in the space of vector-functions in Q. The formulation is obvious: the
coefficient g; ;, b become s x s matrices; the ellipticity condition takes the form:

& giakilenm> Z y(x) L2 Inl?
for {;eC% neC®, and it is the norm of g(x)~* which is denoted by |ly ™. The
proof goes through without any changes.

PrOOF. We start by stating an inequality for the forms A and Bg for the case
when G has a rather special form. We shall call a parallelepiped in R?a brick if the
ratio of the longest and shortest edges is not greater than 2. Then, for G being
a brick and for any function u e C*(G) satisfying [ u(x)dx = 0, we have
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3.4 Bglul = cylly” ! 5.6 “b"q,GAG[u]

withsome ¢; = ¢,(p, ¢, d). To show (3.4), recall the inequality (2.3) (this time, with
a = 0). However, instead of using the Sobolev inequality to obtain (3.4) (as it was
used in proving (2.13)), we apply the fact (actually, a form of the Poincaré
inequality) that for G being a unit cube, the expression ||Vu||, is, on functions with
zero mean value over G, equivalent to the usual norm in the Sobolev space
W,!(G). On the other hand, there is a continuous embedding of W,'(G) into L,,(G);
the latter two results and (2.3), taken together, give (3.4) for the unit cube, the
constant ¢, being the product of constants in the Poincaré inequality and the
embedding theorem. Under dilations (x — tx) both parts in (3.4) have the same
order of homogenity in ¢; this provides us with (3.4) for any cube, with the same
constant. Finally, to pass to a brick G, we make non-uniform dilation x;+ t;x;,
1 £t; < 2,0facube to G. This gives us (3.4), with ¢, getting an additional factor
2(d - 1)/s.

In this proof and in the next section, we shall use the min-max principle for the
eigenvalues of self-adjoint operators (see e.g. [14] [Th. XIIL.1]). As applied to
our operator T = T, g, this principle gives

(3.5) n4(4, T) = mincodim{X < CJ(Q), + B[u] < AA[u], ueH\{0}},
or in the usual formulation
(3.6) n:(4, T) = maxdim{& < C3(Q), + Bu] = AA[u], ueZL}.

So, to prove (3.3), it suffices to find, for any given 4, such a subspace " = ¥ for
which (3.5) holds and which has a codimension less than cA~° ||y ~1(|% ||b]5.
Introduce the function of sets

0/p 0/q
(3.7) J(G)=<J Ig“!"dX> (J Ibl") .
G G

This function, as it easily follows from the Holder inequality, is lower
semi-additive, i.e. for disjoint sets G, G,:

J(Gy L Gy) 2 J(Gy) + J(Go).

Also, this function is continuous in the sense that continuity of the Lebesgue
measure of a monotone family G, implies continuity of J(G,). The proof of the
following lemma will be given in the end of this section.

LEMMA 3.2. Let on Borel subsets in a cube Q a lower semi-additive and continu-
ous function of sets J(G) be given. Then, for any n 2 1, there exists a covering E of
Q by bricks 4 = Q such that the number |E| of bricks is not greater than n, each point
of the cube Q belongs to not more than d bricks and for any A€ E
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(3.8) J(A) S kn~1J(Q), K = 24+1,

We apply Lemma 3.2 to the function J(G) defined in (3.7). As a result, we
obtain, for a given cube Q, the covering Z. Introduce the space Xy consisting of
functions in C3(Q) for which the integral of u over each of 4, € = equals zero. In
other words, on Jy exactly N functionals vanish, so the codimension of Ay
equals N. Next, we show that for ue Ay, we have

Bo[u] < ci™*J(Q)Ag[ul.

Enumerate the bricks in Z: 4,,...,4y and define G, = 4,, G, = A\ <4}
Denote by u, € C*(4,) the restriction of u onto 4,, b* = Xc, be LP(4,), where y is
the characteristic function. We have

(3.9) Bo[u] = ZL b¥(0) u(x)1* dx = 3. By, s [t4]-

Next, since any point in Q belongs to not more than p bricks 4,,
(3.10) Ag[u] 2 p 'Y, Ay [

According to (3.4), By, [u] < ¢,J(4,)""° A4, [,]. Summing this over k and using
(3.9) and (3.10), we come to

ABy[u] < ¢, dJ(Q) (kN ~ 1) A5 [u].

So, for A = ¢,dJ(Q)"°(xN ~!)'”®, we have constructed the subspace of codimen-
sion N where the inequality B[u] < A4[u] holds. According to (3.5), this implies
that n, (4, T) £ N and this takes care of our theorem for the case Q = Q. As for
the general case, note first that the min-max principle allows one to consider only
the case Q= R% We use it in the form (3.6). Suppose that on some
finite-dimensional subspace % = C®(RY) the inequality in (3.6) holds. Then
supports of all functions in % are contained in some cube Q, therefore, as it is
already proved, its dimension is not greater than ny(4, Ty o) =
clly™H5 o 1618 oA~° which gives us the required estimate for n.(4, Tra). Finally,
replacement of b by b, in the estimates is implied by the fact that
—By_[u] < By[u] < By, [u].

3.2 The Covering Lemma. Now, we prove Lemma 3.2. There are several ways

of establishing this lemma. It may be derived from the general covering principle
by M. de Guzman [7], or from a covering theorem due to Besicovich. We give

a somewhat simplified original proof from [15].

ProOF. SetJ(Q) = 1. Wecalltheset G = Q “poor” if J(G) < kn~ ‘ aqd ,rich” if
J(G) 2 kn™! (in the case of equality, G is both rich and poor). Our aim s to cover
Q by not more than n poor bricks.
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Suppose 4 is some rich cube and let its edge have length [. Then at least one of
the following possibilities takes place:

(i) 4 can be covered by not more than 2 poor bricks 4; = 4;

(ii) 4 can be cutinto m; poor cubes and m, rich cubes, where m; < 24, m, > 2;

(iii) there exists a rich cube 4" < 4 such that the set 4\ 4’ is also rich but can be
covered by not more than d poor bricks.

To justify this assertion, we cut 4 into 2? equal cubes with edge //2. If they are all
poor, we have the case (i); if at least two of them are rich, we have the case (ii).
Hence, suppose that only one of small cubes, namely 4, is rich and all the other
ones are poor. If the set S; = 4\4, is rich, we have the case (iii). Otherwise,
introduce the family of cubes 4,, with edge tl/2, which are cut out of the same
corner of A4,as 4,; S, = 4\4,. For any 0 < t £ 1, as one can easily see, S, can be
covered by d bricks, lying in S,. When t decreases from 1 to 0, the function J(4,)
decreases continuously to 0 and the function J(S,) grows. Set t; = sup{t, 4, is
poor}, t, = inf{t, D, is poor}. If t; = t,, then 4, , S,, are both poor, and we have
the case (i), since all bricks covering S, are also poor. Ift; < ¢, then 4,,and S,, are
both rich and we have the case (iii).

To conclude the proof of the Lemma, assume n = k (otherwise the trivial
covering of Q by itself can be taken), and suppose that we already have a partition
of Q into cubes (both rich and poor) and rich sets of the form S, asin (iii). We apply
the previously described construction to those rich cubes for which the cases (ii)
or (iii) take place, getting a new partition, the continuation of the previous one.
So, starting with the trivial partition, we apply the continuation procedure
successively. At each step, the quantity of rich elements of the partition increases,
and due to semi-additiveness of .#, it cannot exceed x ~ 'n. This means that after
several steps, in our partition there will be only poor cubes (r, in number), n, rich
cubes satisfying (1), and n; rich sets S;, as in (iii).

Wehaven; < (2¢ — 1)n,,since in our procedure, poor cubes are produced only
in the case (ii), and one new rich cube produces no more than 2? — 2 poor ones.
So, the inequality n, < x~*n implies n; < (2* — 2)x ™ !n. Finally, we cover all
remaining rich cubes and sets S; by poor bricks, which produces no more than
2%n, + n3) < 2% 'n poor bricks; there are no more than 2¢*'x~*n < n bricks
altogether, giving us the desired covering. Our bricks start overlapping only on
the final stage (we dealt only with partitions before), so, any point of Q belongs to
no more than d bricks.

4. Estimates for Magnetic Schrodinger Operators.

Let Hy = A, + V be the Schrédinger operator defined in Sec. 2, H, denotes the
operator with magnetic potential . We consider first the case of operators
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defined in a bounded domain € (e.g. a cube) in R? and then pass to the general
case.

4.1 Bounded Domains. Suppose V = — W, with smooth bounded W, W 2 1, >
0, so the operator of multiplication by W is bounded and invertible in L2
According to the Birman-Schwinger principle, (see e.g. [19]), the number of
negative eigenvalues of the operators H, equals the number n(1, To(V)) of the
eigenvalues greater than 1 for the operator Ty(V) defined by quadratic forms
Aolu], Blu] = _[9 W(x) |u|* dx, which is the same as the number N(1, X, ;) of the
eigenvalues in (0, 1) for the operator X, , = W~ Y24,W ~!/2 (the latter operator
is similar to To(V)~'). We denote the eigenvalues of X, by 4(Xo,y). Similar
relations hold for the eigenvalues of the magnetic operator H,, with correspond-
ing operator X, y.

Consider the heat equation
4.1) % = — Xy yl,
with self-adjoint operator X, ,. We can represent the solution of (4.1) as
u(t) = e ¥ov'u(0) with Go(t) = e *°* being the heat semigroup. Suppose that the
conditions of Theorem 3.1 are satisfied for the form Ay[u], B[u]. Then, in
particular, since the eigenvalues of X, , have at least power order of growth, the
operator Go(t) is Hilbert-Schmidt for any ¢ > 0 and, therefore, an integral
operator. These facts are stated more precisely in Proposition 4.1.

PROPOSITION 4.1. For the Hilbert-Schmidt norm |G,(t)|,, t > 0, we have

4.2) Go(®)l3 < Ct=¥2 Iy~ M52 W11,

PROOF. 4j(X,,y) are inverses of eigenvalues of T, y. So, due to Theorem 3.1,
(4.3) A(Xow) Z G Iy~ Ml HIWIG
Therefore

|Go(®)I3 = Y e 240" < Fexp(—2¢™ Iy, " Wy )
SCe iy, anq)“f e”*"ds
0

(the latter equality is the result of the change of variables in the integral).

This result, in particular, implies that Go(¢) has an integral kernel Go(t, x, y) and

[Go(®)l3 = J |Golt, x, y)|* dxdy
NxN
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Along with H,, Hy, we consider operators H}, H}, which are defined in the same
way, with matrix g(x) replaced by the diagonal matrix y(x)I where y(x) is the
ellipticity constant at the point x e Q2 (see Sec. 2). Of course, the estimate (4.2)
remains valid for the heat operator corresponding to H§. Next, consider the
magnetic operator H,. From (2.1), it follows that H, = H?, and similarly,
X, v 2 X} . We are going to obtain spectral estimates for operators of the form
H], and this will imply similar estimates for H,.

Consider the magnetic heat operator G,(t) = exp(—tX] ;). Apriori we know
very little about it, since we even do not know that (X7 )~ ! is compact. The main
step in proving this and then the spectral estimates for H} , is the following:

THEOREM 4.2. Let acl?, ., v~ 1, g, V, V" 'eL®. Then the operator G,(t) is
Hilbert-Schmidt and for its integral kernel G,(t, x, y) the estimate

(4.4) 1Ga(t, %, y)| < Golt, x, )
holds for almost all (x,y)eQ x Q.

ProoF. Take ae C{ first. The inclusion G, € B, is clear: the term correspond-
ing to the magnetic field in the quadratic form of the operator X}, is
a form-compact perturbation — here it is crucial that y ! € L* — and so not only
the order of the eigenvalues of X ,, and X} , is the same but even the asymptotic
behaviour is the same (see e.g. [2], [3]). This means, in particular, that G, is
Hilbert-Schmidt. So here one has only to prove the estimate (4.4).

. 0 5}
The operator X§ , is the form sum of operators: 9, = — W ~1/2 F i w12
k k
so0, according to the Trotter-Kato formula,
@4.5) e~Xby = s-lim (e~ n?". .. e n29y".
n-* o

On the other hand, the operator X} , is the form sum of
gk,a = — Wl/z(a/axk - ia,,)y(@/axk —_ iak)W_l/Z
and therefore

. _t _t
(4.6) e~ ™ay = s-lim (e™nP1e, e nPaay
n-*w

s o, _t . 1 .
Now, according to Proposition 2.6, we have e n%xa = gihrxlg =y Pig~inkx) and
hence

e Moy = s-lim (e“"e"'_"“"e"(""_‘“)e‘ﬁg2 . .e’ﬁg"e_“")‘

n— o

It remains to note that the operators e~ /" are integral operators with positive
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kernels in x, variable (cf. [6]) and the operators e*** are multiplications by
functions with absolute value 1. This gives us the inequality

4.7) Galt, x, y)l = Go(t, X, y),

where G and G§ are operators under the limit sign in (4.5) and (4.6). As in [17]
strong convergence of integral operators implies convergence of their integral
kernels almost everywhere, and this gives us (4.5). a

Finally, we dispose of the condition ae CP(Q). Take a sequence a* € CJ (),
a* — ain L. Then, due to Proposition 2.5, there is strong resolvent convergence

of the operators X. ,, to X ,, which implies strong converence of corresponsing
exponents and therefore convergence of heat kernels a.e.

The first consequence of Theorem 4.2 is the spectral estimate for y ™! e L™.
PROPOSITION 4.3. Let y~ ! € L® and the conditions of Theorem 3.1 hold. Then
(4.8) XL Z Gy, It
with constant ¢ depending only on p, q, d.

Proor. Due to the pointwise majoration of integral kernels,

|Ga(t, x, y)|* dxdy < j |G(t, x, y)I* dxdy = |Go(1)l3.
2

2x2

4.9) 1G.0)I3 = J

Qx
So, according to Proposition 4.1,
(4.10) G013 = Y exp(—2t4;(X]) < et~ |y I IW 112,

Setting, for given j, t = (24;) ", we get e~ 'j < cA¥2 |y~ |4? |W|§?, which is
equivalent to (4.8).

REMARK. We could not use here the pointwise domination of integral kernels
to estimate the trace norm of G,(t) in a similar way to [12]. The reason is that
pointwise domination of kernels is sufficient for domination of trace norms of
operators only provided the operators are positive and the kernels are continu-
ous. The former condition is satisfied in our case but the latter one cannot be
guaranteed for a discontinuous y (discontinuities of @ and ¥ can be dealt with, as
in [17]).

Our next step will be disposing of the conditiony ™ le[® Lety, = max(e,y). Of
course, y, —y in L® and y; ! -y~ ! in L. We were not able to prove strong
resolvent convergence of corresponding operators, so the trick just used cannot
be applied here. However, we can use another approach.

PROPOSITION 4.4. Let 3~ 'eI7(Q), ye L2(Q), acLi,, V<0, V™ U Vel®,
p = d/2. Then for the operator X_., the estimate (4.8) holds.
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PrROOF. According to the min-max principle, for the distribution function N(4)
of the operator X/ ,,, we have

@.11)  N(3) = maxdim{£ = C2(Q), A[u] < iBy[ul, ue £\{0}.

Let, for given 4, £ be some finite-dimensional subspace where the inequality in
(4.11) holds. Consider the form A,[u] corresponding to y,. As ¢ — 0, for any fixed
ue C3(Q). the integrand in A,[u] converges pointwise and monotonely to the
integrand in A[u]. Therefore, we can pass to the limit under the integral sign, so,
for 6 >0 fixed and ¢ small enough, A,[u] < A(1 + 6)By[u]. Since & is
finite-dimensional, one can find common ¢, serving all u € . This means that, for
¢ small enough, on the subspace % the inequality 4,[u] < A(1 + 6)By-[u] holds,
so the dimension of .# cannot be greater than N(A(1 + d), X:,). For the latter
quantity, Proposition 4.3 provides us with an estimate (equivalent to (4.8)):

N, X3ey) £ cM1+ N2 [y, G2 VG < (A1 + )2 1y~ 192 (VIS
Therefore the same estimate holds for N(4, X} ).

4.2. The General Case. After Proposition 4.4 is proved, only quite standard
steps lead to the proof of the result generalizing Theorem 3.1.

THEOREM 4.5. Let y '€ I!(R%), yeL®,, Wel%, acl?, p ' +q 1 =2d",
p,q > 1;p 2 1if g = 0. Then the estimate

(4.12) ne(uw, T) < cp™ 2 Iy~ g2 W g2

holds for the operator T = T, p defined by the quadratic forms

Ou , ou .
Ajlul = Jgj'k<—a;1: — zaku> (—é;c— - laju) dx,
J

Blu] = fWIuIz dx.

Proor. To prove (4.12) having Proposition 4.4 already at our disposal, we
must first go over from bounded invertible W to general W e I” and secondly
from the cube Q to the whole space R

The first step is taken care of by the fact that only Lf- norm of W enters in the
estimate (4.8), so we can approximate in [ a given nonnegative WeL?! by
bounded invertible functions and pass to the limit in the spectral estimate, just as
if was made when proving Proposition 4.4. If W changes sign, the min-max
principle implies that since the form B ,, with W, replacing W in B, majorates the
form B, so n(u, Ty 5,) = n(u, Ty, p), and for T, , we already have the estimate
involving only norm of W..
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The second step, passing from the cube to R, is performed exactly as when we
were proving Theorem 3.1, again by min-max principle.

Now, the generalization of the CLR-estimate follows from Theorem 4.5 by
a standard application of the Birman-Schwinger principle, as e.g. in [14].

THEOREM 4.6. Let the conditions A, B and C be satisfied. Then, for the number of
negative eigenvalues of the operator H, , v, the estimate

(4.13) N_(Hgav)<cly IsIv-ls
holds, with constant ¢ depending only on p, q and d.

In particular cases, one can choose suitable exponents p, ¢. In the case of
a uniformly elliptic operator, (in particular, for the unit matrix g) we take p = oo,
q = d/2 and obtain

N_(H, ) £ CJV;‘/Z dx, d=3,

i.e. the usual CLR-estimate. The other interesting case is ¢ = oo, p = d/2 (note,
that d = 2 is admissible here). Take, in particular, V = —A. Then N_(H, , )
equals the number N(4,H, , o) of eigenvalues of the operator H, , o (Without
electric potential!) in (— co, 4). Now, the estimate (4.13) takes the form

(4.14) N(A4,Hy 40) S 2’ j|y T2 gy,

It follows from (4.14) that if the degeneration is not too severe and the ellipticity
constant y grows at infinity quickly enough, then the spectrum of H, , , in the
Euclidean space is discrete and, moreover, has the same properties as operators
on compact manifolds. For operators without magnetic fields, this was found out
in [15]; (4.14) shows that no magnetic field can destroy this property.
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