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BOUNDED LINEAR FUNCTIONALS ON
VECTOR-VALUED H” SPACES

WOLFGANG HENSGEN

Introduction.

The theory of the space H*, its dual, and its predual L'/H}, is known to be
difficult (see e.g. [Bo]). In this work I transfer some of the easier parts of this
theory to a vector resp. operator-valued context.

Let X be a complex Banach space and H*(X) [H>(X)] the space of bounded
holomorphic X-valued functions on the unit disc [admitting strong radial
boundary values a.e.]. By the simple but for this paper crucial lemma 2.1 I can
prove the F. and M. Riesz theorem for H*(X)(2.2). Immediate consequences are
that for reflexive X the spaces H'(X) and L!(X)/H}(X) are L-embedded and
C(X)/A(X) is an M-ideal in the bidual (2.4-2.6). In §3, I study integral resp.
strongly integral functionals on H®(X), i.e. those given by Gel'fand integrable
functions g e L}(X’, X) resp. Bochner integrable functions g L(X’). T found it
interesting to see how the various characterizations of integral functionals in the
scalar case [Kh 2; Ga] group exactly into two sets of conditions in the vector case:
the first set, formulated on the circle and describing the integral functionals (3.1),
and the second group, formulated on the disc and singling out the strongly
integral functionals (3.5). Contrary to the scalar situation, some locally convex
theory (Grothendieck’s dual characterization of completeness) enters the proof of
the latter theorem. The Banach space theoretic consequence of the former is that
LMX)/H}(X) has property (X) if X is reflexive (3.2).

The paper concludes in §4 with spaces of operator-valued functions. Let K, N,
B denote the spaces of compact resp. nuclear resp. bounded operators on
separable Hilbert space. I prove an F. and M. Riesz theorem for H*(B) (4.5);
consequently H'(N) and L(N)/Hj(N) are L-embedded and C(K)/A(K) is an
M-ideal in the bidual (4.6, 4.7). The result on L'(N)/H}(N)is related to a question
of Pisier. Moreover, L'(N)/H3(N) enjoys property (X) (4.8).
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§§1-3 of the paper are essentially a part of the author’s habilitation thesis [He
3]. I would like to thank Professor A. V. Bukhvalov for his suggestions and
stimulations to do this work. §4 results from a couple of stimulating discussions
with Dr. H. Pfitzner who in particular pointed out Pisier’s question to me. 4.8
answers a question of the referee.

§1. Preliminaries.

The basic theory of vector-valued Hardy spaces as developed mainly by Bukh-
valov and Danilevich [Bu 1; BD] is assumed familiar. See [He 1; 3] for detailed
and [LM] for a very coincise presentation. I fix some notation.

1.1. The basic measure space is the circle group T with normalized Haar
measure . For 1 < p £ oo, [P(4; X) = [(X) is the X-valued Lebesgue-Bochner
space and LP(4; X', X) = [A(X', X)(= LP(X") iff X’ has RNP) denotes the space of
X-scalar equivalence classes of weak* measurable functions f: T — X’ with
ifl:= L% — sup [{x, f>|€ [, normed by Ifll, = I1f11l,- Such a function is

x€eBx

Gel'fand integrable [DU, p. 53]. Under the canonical dual pairing, L®(X", X) is
the dual of L!(X).

1.2. The dual of L*(X) has been described by various authors, see [CV, VII;
BL]. Any member ge L'(X’, X) defines a functional ¢, e L*(X) by the formula
Qo(f):= j (f,g> d4; moreover ||, = llgll;. (Proof for “=":|lg||, = total vari-
ation of the vector measure g-4 [He 1, (0.8)2°] < [l¢, [, by definition of the
variation.) The functionals ¢, are called integral and the space of integral
functionals is identified with L!(X’, X).

A functional ¢ € L*(X) is called concentrated on a (measurable) set E < T if
o(f) = o(1gf)Vf € L*(X), and singular if concentrated on sets of arbitrarily small
A-measure. The space of singular functionals is denoted by L*(X)..

Vector-valued Yosida-Hewitt decomposition:

L*(X) = L{X", X) ®, L*(X),. (® : L-decomposition.)

1.3. The vector-valued Hardy spaces used in this paper are: HP(X):=
{fel’(X): f(n) =0Vn < 0} = {f: D » X holomorphic: || f||,:=sup || /]|, < o0

r<i
and lim f(re’®) exists ae.}; HPX):={fel’(X,X):f(n=0 Vn<0}=
r-1
{f: D — X’ holomorphic: || f|,:=sup | /]|, < oo} (= H(X") iff X" has ARNP);

r<it
A(X):= {feC(T;X): f(n) = 0Vn < 0} (X-valued disc “algebra”). With the usual
meaning of the subscript 0, the following canonical dualities hold:

(CXYAX)Y = HYX); HYXY = L*(X’, X)/H=(X"); (L{X)/HSX)Y = H=(X). |
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§2. F. and M. Riesz Theorem for H*(X).

The following lemma exploits the L module structure of L*(X) by “contracting”
a functional with a function.

2.1. LEMMA. Let he L*(X) be fixed. For @€ L®(X) define phe L* by the
formula (oh) (u):= @(uh), ue L. If ¢ = @; + @ is the vector-valued Yosida-
Hewitt decomposition (1.2) of ¢ € L*(X) then ¢h = @;h + @sh is the (scalar)
Yosida-Hewitt decomposition of ohe L™ . (In other words, (ph); = @;h and
((ph)s = @sh)

Proor. Let ge L}(X’, X) be the function defining the integral part ¢;, i.e.
oif)=[<{fg>dh VfeL™(X). Then (p:h)(u)= [<uh,g)di= [uchg)di
YueL®, so that ¢;h is integral, given by <h,g)> € L*. On the other hand, for an
arbitrary ¥ e L*(X), the contraction ¥he L™ is concentrated on every set on
which ¥ is concentrated. In particular, ¢h is singular together with .

2.2. F. AND M. Riesz THEOREM FOR H®(X): Let ¢ = ¢; + @, be the vec-
tor-valued Yosida-Hewitt decomposition (1.2) of ¢ € L°(X). If 9| HZ(X) = O then
@il HY(X) = 0 and ¢,|H*(X) = 0. In particular, the annihilator H*(X)* is invari-
ant under the Yosida-Hewitt projection P: L*(XY — L}(X', X), ¢ ¢;.

Proor. Inthescalar case, Gel’fand transformation translates the theorem into
the well-known F.and M. Riesz theorem in logmodular algebras [Ho, p. 186; Ga,
V. 4.4]. Turning to the vector case, let ¢ € L*(X) be given with ¢ | HJ(X) = 0,and
fix he H*(X); one has to show ¢,(h) = 0. To this end, consider phe L*" as in
lemma 2.1 and note that ph| Hy® = 0, exploiting the fact that ue HP, he H*(X)
implies uhe HP(X). By the scalar case, (ph)] H® = 0, whence by the lemma,
@5(h) = @;h(1) = (ph)s(1) = 0.

If one is interested only in the invariance result then, for reflexive X, a com-
pletely different approach is possible, discovered by Godefroy [Go 1] (for the
scalar case). It is based on (a vector-valued version of) the Bukhvalov-Lozanov-
skii theorem [Bu 2; BL] and thus lastly on vector lattices instead of uniform
algebras. Still another (scalar) proof, via the notion of “strictly convergent”
(= wuC) series in L*, has been developed by Barbey and Konig [BK, VIIL]. See
also Ando [A, 4.].

2.3. COROLLARY. If (p‘e L*(X) is singular and ¢|H*(X) = 0 then ¢|C(X) =

ProOF. Apply the usual iteration [Ho, p. 186 f.]: The functional f > @(e ~**f)
on L*(X) vanishes on HP(X) and is also singular, hence by 2.2: (e ~**x) = 0 for
all x € X, etc. Thus ¢ vanishes on all trigonometric polynomials which are dense
in C(X).
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2.4. PROPOSITION. If X is reflexive then H{(X) = Hi(X)®(L*(X'),N
H®(X")"). Thus H3(X) (hence also H'(X) is L-embedded in its bidual.

ProOOF. Using reflexivity all the time, 1.3 and 1.2 yield HiX) =
(L(X)H2(X") = H(X')* « LX) = LMX)®, L*(X"),. Trivially, the re-
striction of an L-projection P to an invariant subspace Y is an L-projection in
Y onto Y nrange(P). With Y:=H®(X')*, 2.2 implies H}(X)" = (LX)
H*(X")") @ (L™(X"), " H*(X")*), and the first summand equals H(X).

2.5. PROPOSITION. If X is reflexive then C(X)/A(X) is an M-ideal in its bidual
L*(X)/H®(X). (See [HWW] for definition and consequences — e.g., property (u).)

Proor. It is convenient to prove the assertion for X', so let Z: = C(X')/A(X");
one has to show the L-nature of the canonical decomposition Z"" = Z' @ Z*.
Now by 1.3, Z' = H{(X) and this decomposition reads H(X)" = H}(X) ® Z*.
On the other hand, 2.4 says Hy(X)" = HY(X) @ (L*(X"), n H(X)*). I claim that
this last L-summand is contained in Z* (then it will coincide with Z* by pure
linear algebra). The annihilator Z* of Z:= C(X')/A(X’) in Z" = HY(X) =
H®(X')* = L*(X') equals {p e H*(X")*: | C(X’) = 0} and the claim follows from
2.3.

This proof differs from Luecking’s (scalar) proof [HWW, p. 1097 in the use of
2.4. If this is avoided as in [HWW, end of p. 109], one gets 2.4 as a consequence.

2.6. PROPOSITION. If X is reflexive then LN X)/H{X) is L-embedded in its
bidual.

ProoF. By 1.3, 1.2 and reflexivity, (L'(X)/H)(X))" = H*(X'Y = L*(X")/
H®(X")' = (LYX) @, L*(X").)/H®(X’)*. It is well-known and not hard to prove
(seee.g. [He 3,2.3], [HWW, L.1.15]) that an L-projection P in a space Z canoni-
cally induces an L-projection P in Z/Y for a P-invariant subspace Y, with range
(P) = range (P)/(Y n range (P)) (as canonically isometrically embedded in Z/Y).
With Y:= H®(X")%, 2.2 implies (L{X)/HYX))" = L\X)/(L'X) n H*(X')") @,
o= MXMHX) @y ...

It follows from 2.6 and Godefroy’s result [Go 1, 4 HWW, 1V.2.2] that
LY(X)/HL(X) is weakly sequentially complete for reflexive X. This fact (and prob-
ably 2.6) was obtained first by Petrenko [Bu 2, 5.3], cf. [He 2]. Recently, Pfitzner
[Pf 1; HWW, IV.2.7] proved that spaces L-embedded in the bidual even enjoy
Pelczynski’s property (V*). For the case of L'(X)/Hg(X) with X reflexive, property
(V*) has been obtained earlier by this author [He 3, 3.6; He 4, 2.2] adapting
Pelczynski’s scalar proof [Pe, 7.1]. See also 3.2.
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§3. Integral and strongly integral functionals.

For the scalar-valued origins of the following theorem, see [Kh 2, Theorem 1; BK,
VIIL.3.1; Ga, V.5.3; Kh 1, p. 300].

3.1. THeoreM (Characterization of integral functionals). For ¢ e H*(X)', the
following conditions are equivalent:

1° @ is integral, i.e. 3ge L'(X', X) with o(f) = | {f,g) dA YfeH*(X)

2° f, € By(x, and f,(€") > 0 a.e. on T implies ¢(f,) - 0

3° f,eH*(X), i I £.(eM] < 1a.e.onT(whence i f(e")is a member of H*(X))

n=1 n=
implies q)< Y f,,) = 21 o(f)
n=1 n=

4° @|Bywx, has a point of continuity for |- ||.

ProoF. 1° = 2% |{fo, Dl £ 1 /() gl = 0 a.e. on T (see 1.1 for notation and
[He 1,(0.5) 5°] for the estimate), dominated by |g| e L!. Apply Lebesgue’s theorem.

)
2° = 3° Asregards the assertion in parentheses, clearly Y f,(e") convergesin
n=1

e 0 A
XaeonT, Y f,eL®(X) and( Y f,,) (k) = 0¥k < 0by bounded convergence.

n=1 n=1
Now apply 1° to the remainders Y fi(e").
k=n
3° = 1°: Inthescalar case, various proofs have been developed: [Ga, V.5.3; Go
1, 33; Go 2, V.4(5); BK, VIIL3.1]. The vector case is handled by lemma 2.1. Let
@ e L*(X) satisfy 3°. Since the integral part of ¢ (1.2) satisfies 3°, one can assume
¢ singular and has to prove ¢ = 0 on H®(X). So let he H®(X) be given; the

contraction @he L®": u+s @(uh) is singular by 2.1 and respects the convergence of
oo

type 3° X =C) if u,eH® Z lu, (€M £1 ae. then uheH=(X),

n=1

n=1 =1

Y llua(eh(e™)] < |lhll, a.e., whence by assumption (ph< > ) = (p( Y u,,h> =
n=1 n

Y. o(u.h) = Y. oh(u,). By the scalar case ph = 0 on H* and ¢(h) = ph(1) = 0.
n=1

n=1
2° = 4° Itis very easily seen that actually 2° <> ¢ | By «(x, is continuous for || | ;.
4° = 1°: This rests on the Khavin lemma, with the aid of which Khavin [Kh 1,
p- 299 f.] proved that if 9 € L*" and ¢| By has a point of continuity for |||, then
the singular part of ¢ (1.2) vanishes on H®. For the vector-valued case, the same
proof works, and is given in detail in [He 2, 3.2].

NoTE. As in the scalar case, 2° = 1° has an easier proof, transferring [Kh 2,
p. 88] or [Ga, V Exercise 19] to the vector situation.
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3.2. CoRrOLLARY. IfX isreflexive then L'(X)/H}(X) has property (X) of Godefroy
and Talagrand. Consequently, L'(X)/H(X) is strongly unique predual of H®(X").

PrOOF. By definition, a Banach space Z has property (X) if z’eZ”,
z”( Y z;,> = ) z'(z,) VwuC series Yz, in Z' implies z" € Z ( Y z, is taken for

=1 n=1 n=1
£4)-

n=1

o(Z', Z)). Let p e(L'(X)/H}(X))" = H®(X') be given, and suppose (p<

i @(f») Y wuC series Y f, in H*(X"), summed for a(H*(X"), L'(X)/H&(X)). The

n=1

“test series” of 3.1.3° (X") are wuC (since wuC = w*uC in dual spces), and of course
the pointwise limit considered there coincides with the weak* limit. Thus 3.1 yields
that ¢ is given by integration against a function g € L'(X),1.e. ¢ € L'(X)/H}(X). The
consequence is well-known [GT, 5; Go 2, V.3].

NoTes. i) (X) entails (V*) [Go 2, V.5; GS, I11.2; E, 13] providing still another
proof of (V¥) for L!(X)/HA(X) if X is reflexive.

i) In the scalar case, the unique predual result is due to Ando [A] and
Wojtaszczyk [W], and property (X) of L'/H{} goes back to Barbey [BK, VIIL].

3.3. REMARK. Let u be a finite measure and ¢ € L*(u; X). Then the criterion
analogous to 3.1.3° holds for ¢ to be integral. Namely, for X = C this is the
well-known property (X) of L(u) [Go 1, 30]; the general case is reduced to the
scalar case by lemma 2.1 as before. Now the same proof as in 3.2 shows that for
X reflexive, L'(y; X) has property (X) and is hence strongly unique predual of
L*(u; X'). The latter conclusion follows also from [CG 2, Theorem 1] in connection
with [CG 1, Remark 1].

3.4. DeFINITION. a) [Kh2,5.] A continuous function w:[0,1]— R, with
wir)>0 if r<1, w(l)=0 is called a weight. For f:D— X, put |fll,:=
sup | f(2)|| w(z) where w(z): = w(z|).

xeD
b) Thelocally convex topology on H*(X)induced by the family of norms |||, is

the strict topology P.
It is easy to see that this is the vector-valued analogue of the strict topology on

H* studied in [RR; RS; Co, V.; BS].

3.5. THEOREM (Characterization of strongly integral functionals). For
@e H®(XY, the following conditions are equivalent:

1° @ is strongly integral, i.e. 3g€ L\(T, 4; X") with o(f) = J<ﬁ 9> dAVfe H®(X)
T
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2° 3ge LMD, Ay; X') with o(f) = J](ﬂ gy dA, Yf e H(X) (A,: area measure)
D

3° 3 weight wACe R, with (/)| £ C|f . YV e H(X) (i.o.w., @ is B-continu-
ous)

4° dme M(D; X") with (p(f)=J‘J‘<f,dm> VfeH®(X) (M: vector measures
D

[o-additive] of bounded variation)
5° fu€ By, and f,(z) = 0 Yz D implies ¢(f,) — 0.

Proor. First I show the equivalence of 1° through 4°, following [Kh 2, 5.7 (cf.
also [RS, 4.]). The proof rests on the following lemma on balayage whose proof is
omitted (see [He 3, Lemma 2.8]).

LEMMA. For me M(D; X) put B[m]: T — X, B[m](e'®):= J J P, (Hm(dz) (P,(I):
D

Poisson kernel).
i) B[m](e®) is defined a.e. on T and B: M(D; X) — L\(T; X) is an operator of
norm £ 1

ii) For me M(D; X) and f e H*(X': f (B[m], f>dA = J j(dm, n
T D

iii) B|LXD, 4,; X)— LXT, 4; X) is surjective.

1° = 2° For geL(T; X’) representing ¢ as in 1°, the lemma (iii) yields some
ge LY(D; X") with B[§] = g. And by (ii), for fe H*(X) c¢ H®(X"):

of) = J(f,g> di = J(ﬁ B[g]>di = ”(ﬁé) dis.
T T D

1 2n

2° = 3° For ge L(D; X') representing ¢ as in 2°, since Jr J lig(re®)|| d9dr < oo,

0o o
there exists u:[0,1] »]0,c0[ continuous with u(r)foo as rf1 and
1 2r

C:= Ju(r)r J llg(re’®)|| d9dr < co. Then w(r):=;(1?)— is a weight and for
0 (o]
12n

JeH=X): lo(f) = S ClSMw

f j <wlr) f(re®®), u(r)g(re’®)) rdddr
00

3° = 4°: With w as in 3°, the map f > wf is an isometric embedding (H*(X),
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Illw) = Co(D; X) = C(D; X)and gis |- ||,,-continuous. By Singer’s theorem [Si]
(and Hahn-Banach), there exists me M(D; X’) vanishing on T (i.e. me M(D; X’)

with ¢(f) = Jf{wf,dm} = JJ<ﬁde>’ feH*(X).
D
4° = 1° For me M(D; Xg representing ¢ as in 4°, the lemma (ii) yields
of) = J](f,dm> = J(f,B(m)}dl Vf e H*(X) = H*(X"), where B[m] € L\(T; X).
D T

The proof of the equivalence of 1°-4° is complete.

2° = 5°: Bounded convergence.

5° = 3°: Putting B:= By« (), condition 5° trivially implies that ¢|B is se-
quentially continuous for f. The topology « of uniform convergence on compact
subsets of D is certainly weaker than f, and coincides with f on B, as is easy to see
[RS, 3.7]. x being metrizable, the same holds for §|B so that ¢|B is actually
continuous for f. Now I apply Grothendieck’s dual characterization of com-
pleteness [Sc, IV.6.2] for the locally convex space (H*(X), ) and the topology of
uniform convergence on norm-bounded sets (that is, on B) on (H*(X), ). By the
equivalence of 1° and 3° already established, as a vector space (H*(X), f) =
LYX')/H&(X"), and the topology in question is given by the quotient norm, as
proved below. In particular, this topology is complete, and Grothendieck’s
theorem yields that ¢ is continuous for f§, i.e. 3°. It remains to establish the

CLamM. For ¥ =g+ HyX)e L'X)VHHX") (geL'(X"), I¥luaymbar =
Il xymdy = ¥ lweogxy -

PrOOF. i) = clear; <: Let ¢ >0 and he Hy(X’) such that d(g, H (X)) 2
llg — hlly — & Now h,:= P,xhe H{(X"), whence d(g, Hy(X") < lim |lg — h,[l; <

r-1

lim |g — g,/ + sup g, — h[l; = 0+ llg — hll, < dlg, Ho(X) + .
r—1 r<i1

i) H(X) = L°(X)Y/H®(X)* = L\X', X)/H5(X) @;... by 1.2, 2.2 and the
lemma on quotients of L-decompositions used already in the proof of 2.6.

3.6. REMARK. The theorem persists if H*(X) is replaced by H*(X) through-
out.

3.7. REMARK. Every integral functional on H*(X)is strongly integral if X’ has
RNP.

Proor. The space of integral functionals L{(X', X)/H4(X") equals the space of
strongly integral functionals L}(X")/HyX") iff L\(X', X) = L{X") + HY{(X'). Now
if X’ has RNP then L}(X’,X) = L'(X’) and the equality holds. The reverse
implication is rather deep [LM, IV b] (take g = 1 there). ‘
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§4. F. and M. Riesz Theorem for H*(B(H)).

Recall from 2.4, 2.6, 3.2 that for reflexive X the spaces Hi(X)and L'(X)/H{(X) are
L-complemented in their biduals and have property (X). Now I establish the
same for X = N(H), the space of nuclear linear operators on separable Hilbert
space. Since N(H) = B(H) lacks RNP, the dual L*(B,N) of L'(N) does not
coincide with L*(B) [DU, IV.1.1] and the Yosida-Hewitt decomposition 1.2 is of
no (direct) use. The strategy is rather to exploit the Takesaki L-decomposition [T
3,111.2.14] of the dual of the von Neumann algebra L*(B, N). In order to devolve
this decomposition on the quotient (L}(N)/H(N))” = L*(B, NY/H*(B)* asin 2.6,
an F. and M. Riesz theorem for H®(B) is needed. ’

4.1. Solet(H,(-,")) be aseparable Hilbert space, B = B(H) resp. N = N(H) the
space of bounded resp. nuclear (= trace class) operators on H. As is well-known,
N is the (unique) predual of B under the dual pairing {a,b) := tr(ab),ac N, be B
[Pd, 3.4.13; T 3, II1.3.9]. Therefore, by general vector-valued theory (1.1)
LNY = L*(B, N), but in this operator situation the latter space has a more
familiar description: Let LY(B):= {f:T— B bounded: Vx, yeH:(f()x,y)
measurable }/{ f = 0 a.e.}, equipped with the essential sup norm. Invoking the
separability of H (hence of N(H)) and [Pd, 4.6.11] it is routine to establish that
L%(B) = L*(B, N) canonically. If an orthornormal basis (e,) of H is fixed, then
also L3(B) = {f: T — Bbounded: Vi, j: (f(-)ej,e;) =: fije L*}/{f =0a.e.}. In this
description, H>*(B) = {f eL¥(B):Vi, j:f;jeH®}. (Use that generally
feLl*X', X)isin H*(X")iff (x, f)e H*Vxe X and [Pd, 4.6.11] again.)

4.2. It is known that L?(B) acts naturally as a von Neumann algebra on the
Hilbert space L*(H); these operators on L*(H) are called decomposable [Pd,
E 4.7.5; T 3,1V.7]. So L!(N) is the unique predual of L2(B); in fact, L'(N) has
property (X) [Go 2, V.4(4)].

4.3. Takesaki decomposition [T1; T3, 1I1.2]: This is the noncommutative
analogue of the Yosida-Hewitt decomposition. Let A be an arbitrary von
Neumann algebra, 4, = predual of 4 = space of g-weakly continuous (“nor-
mal”) functionals on A. There is a central projection ze A” (identified with the
universal enveloping von Neumann algebra of A4) such that A, = A'z, where
aze A, (a'z)(a):= (az)(a’) (ae A, a € A). z is called the support projection of
A,c A. Then 4 := /l)’(l — z) is the space of “singular” functionals on A.

THEOREM [T 3,111.2.14]. 4'= A, @, 4.

The corresponding decomposition of e A’ is denoted ¢ = ¢, + @ ;
T.A"—» A,, To:= ¢, = @z is called Takesaki L-projection.
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4.4. LEMMA. Let pe A be a projection, ¢ € A'. The Takesaki decomposition of
@|pAp is induced by that of .

This lemma is analogous to 2.1. Note that pAp can be identified with a von
Neumann algebra on range (p).

Proor. This is known [T 2, p. 365]. The argument is that if ze 4” is the
support projection of 4, = A"then pz = zp = pzpepA”p = (pAp)” is the support
projection of pA,p = (pAp),. = (pAp) = pA'p.

45. F. AND M. Riesz THEOREM FOR H*(B). Let B = B(H) as in 5.1,
K = K(H) = B be the space of compact operators, and ¢ = ¢, + @, be the
Takesaki decomposition (5.3) of a member ¢ € LY(B). If o| H*(B) = 0 then separ-
ately ¢ JH*(B) = 0 = ¢ |H®(B). Moreover, ¢, also vanishes on C(K).

PrOOF. First case: dim H < oo. Then of course L2(B) = L*(B), and both the
Takesaki (5.3) and the Yosida-Hewitt (2.2) L-projections in L*(B)' have range
L'(N). By uniqueness of the L-complement [HWW, 1.1.2], both decompositions
coincide and the theorem is a special case of 2.2 resp. 2.3.

Second case: dim H = oo. The following finite-dimensional approximation is
inspired by [Pi, 3.4]. Fix an orthonormal basis (e, ),y Of H and let p, € B be the
orthogonal projection onto H,:= lin{e,,...,e,}. The space B,:= p,Bp, consists
of matrices with 0 outside the upper left n x n-corner and can thus be identified
with B(H,); also, L*(B,) = p,L%(B)p,, where p, e L%(B) is considered now as the
constant function p, (these are the identifications after lemma 4.4). Let
@n:= @|L*(B,), then @|H*(B) =0 obviously implies ¢,|H*(B,) =0, hence
@n, «|H*(B,) = 0 and ¢, ,|C(B,) = 0 by the first case of the proof. Lemma 4.4
SAYS Py 4 = Pyn:= @y |L*(B,) and @, | = @, 1= @ |L*(B,).

i) Let @, € L%(B), be given by ge L'(N), and let f € H*(B). In order to prove

d
@4(f) = [<g, £ dA = 0,consider 0 = @, (p,f(")pa) = [ <g(t), puf (t )pn>5:;- Now

pointwise p, f(t)p, ——=> f(t) in the weak operator topology, hence [Pd, 4.6.14]
for a(B, N). Thus {g(t), puf (t)ps> = {g(t), f(t)> pointwise and dominated by
1f @@ lg(-)lly € L. By Lebesgue’s theorem, [ <g, f> dA = lim [{g, pafpn> dA = 0.

n—o

ii) Now let f e C(K). In order to prove ¢,(f) = 0 it suffices to observe that
lim | f(e") — puf(€")pnl k) = O uniformly in e € T. Then norm continuity of ¢,

n— o

suffices to conclude ¢, (f) = lim ¢ (p.fP.) = 0.

For the next corollary, note that N = K’, hence Hy(N) = H}(N) = (C(K)/
A(K)).
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4.6. COROLLARY 1. HY(N)" = HA(N) @, (LX(BY, n H*(B)'). C(K)/A(K) is an
M-ideal in its bidual L%(B)/H*(B).

Proor. The decomposition follows from theorems 4.3 and 4.5 (cf. 2.4). The
second assertion follows from the last part of theorem 4.5: L2(B), n H*(B)* =
C(K)* (cf. 2.5).

ReEMARK. The M-embedded nature of C(K)/A(K) can also be derived from
Page’s theorem [Pa, Theorem 6], according to which C(K(H))/ A(K(H)) is isomet-
rically isomorphic to the space of compact Hankel operators on the Hilbert space
H?*(H), cf. [HWW, II1.1.8].

4.7. COROLLARY 2. LY(N)/HY(N) is L-embedded in its bidual.
Proor. Theorems 4.3 and 4.5 (cf. 2.6).

As noted in section 2.6, it follows that L!(N)/H}(N) is weakly sequentially
complete and even enjoys property (V*). This points into the direction of
a positive answer to a question of Pisier: H®(B) is it a Grothendieck space? This
question arises because both H® and B are Grothendieck spaces and even have
property (V) [Bo; Pf 2].

4.8. PROPOSITION. LY(N)/H}(N) has property (X).

PRrROOF. Similar to that of 4.5. Let ¢ = ¢, + ¢, € L3(B)' respect the w*-con-
vergence of wuC series in H®(B); since ¢,, does the same I can assume from the
outset that ¢ = ¢, is singular and have to show that ¢ vanishes on H®(B). In the
first case (dim H < oo) this follows again by the argument “Takesaki = Yosida-

Hewitt” and 3.2. For the second case (dim H = o) note first that ). (p, — p,—1)
n=1
(where po:=0) is a wuC series in B, so that for every fe H*(B) both series

Y. (Pn— Pa-1)f and Y. f(p, — Pa-1) are wuC series in H*(B) with w*-limit f.
n=1 n=1

Now fix fe H®(B); in order to prove ¢(f) = 0 it therefore suffices to prove
o(pnf) = Ofor every fixed m, and now it suffices to prove ¢(p,.fp,) = 0 for every
n = m. But p,,fpn = PuDmfPn€ H*(B,); @| L*(B,) is singular (4.4) and respects the
w*-convergence of wuC series in H*(B,), hence vanishes on H*(B,) by the first
case of the proof which. is now complete.
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