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ORTHOGONAL POLYNOMIALS, L2-SPACES AND
ENTIRE FUNCTIONS.

CHRISTIAN BERG and ANTONIO J. DURAN

Abstract.

We show that for determinate measures y having moments of every order and finite index of
determinacy, (i.e., a polynomial p exists for which the measure |p|*y is indeterminate) the space
L*(u) consists of entire functions of minimal exponential type in the Cartwright class.

1. Introduction.

Let .#* denote the set of positive Borel measures on the real line having
moments of every order and infinite support. We are interested in finding
conditions on p € #* such that L*(u) consists of entire functions in the fol-
lowing sense: (i) There exists a continuous linear injection E : L*(u) —
#(C), where #(C) denotes the set of entire functions with the topology of
compact convergence. (i) For all f € L?() we have E(f) = f p-a.c.. We say
that E is a realization of L*(u) as entire functions. In the discussion of this
problem we need for u € .#* the corresponding sequence of orthonormal
polynomials (p,). It is uniquely determined by the orthonormality condition
and the requirement that p, is a polynomial of degree n with positive leading
coefficient. The sequence of orthonormal polynomials depends only on the
moments of pu, so if u is indeterminate, i.e. there are other measures having
the same moments as y, all these measures lead to the same sequence (p,).
When the measure y is indeterminate, the Fourier expansion of £ € L?(u)

(L1) i( / f(t)pn(t)du(t))pn(Z)

converges in L?(u) and uniformly on compact subsets of C to an entire
function F(f)(z), which is the orthogonal projection of f onto the closure'm
L?(p) of the set C[t] of polynomials. We recall that z+— (pa(z)), is an entire
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function with values in the Hilbert space 2, so in particular (pf,'")(z))n €
for all z € C, m € N, cf. [BD1]. By a theorem of M. Riesz ([R], [A]) F(f) is of
minimal exponential type. If the indeterminate measure y is Nevanlinna ex-
tremal ( N-extremal in short), which means that C[¢] is dense in L?(u1), then p
is discrete and F(f)(x) = f(x) for x € supp(u). This means that F(f) is an
extension of f to an entire function of minimal exponential type.
Furthermore f — F(f) is a continuous injection of L?(u) into 3#(C). In
fact, for any compact set K C C we find by (1.1) and Parsevals formula

sup |F(f)(2)] < |Ifll,sup p(2),
zeK zek

where

0 b
p(z) = (Z lPk(Z)IZ)
k=0
is continuous. Riesz ([R]) also showed that

/ lo_g_@dt<oo,
oo 1+ 122

and it follows that

dt < co.

/°° log™ |F(£)(2)]

o 141

For a survey of the interplay between entire functions and indeterminate
moment problems see [B].

In the following we denote by % the class of entire functions f of minimal
exponential type satisfying

00 +
/ log™ lf(1)ldr _
o 14+ 12

It is the functions in the Cartwright class which are of minimal exponential
type.

In the case of an N-extremal measure 4 we have thus seen that L?(u)
consists of entire function,of class %y. The function F(f) given by (1.1) will
be called the canonical extension of f.

The purpose of the present paper is to establish that also for certain de-
terminate measures pu € #* the space L?(u) consists of entire functions. A
determinate measure u with this property must necessarily be discrete, as we
shall see below. It turns out that L?(u) consists of entire functions of class
%o, if p is a determinate measure of finite index, meaning that there exists a
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polynomial p such that the measure |p|*y is indeterminate. If k is the smallest
possible degree of a polynomial p such that |p|*y is indeterminate, then k — 1
is the index of p. This concept was studied in previous papers of the authors,
cf. [BD1], [BD2].

In the case of an N-extremal measure u the canonical extension F(f) of
f € L*(p) has the additional property that F(p)(z) = p(z) for all z € C, when
p is a polynomial. We shall see that this property cannot subsist in the de-
terminate case. It will be replaced by a condition which involves discrete
differential operators of the form

N K
(12) T=ZZa1Jég), a[JGC

=1 j=0
associated to a system (z;,k;), i = 1,..., N of mutually different points z; € C

and multiplicities k; € N. These operators act on entire functions F via the
formula

N Kk

T(F) =Y a;Fi(z).
I=1 j=0
It is well-known that any T of the form (1.2) has a unique Eontinuous ex-
tension from C[f] to L?(p) if u is N-extremal. This extension T satisfies

(1.3) T(f) = T(F(f)), f € L*(w),

where F(f) is the canonical extension of f € L*(u). In fact, if (gx) € C[/]
converges in L?(y) to f € L?(u) then g, = F(gy) converges in #(C) to F(f)
and hence lim, ..o T(¢,) = T(F(f)). We notice that (T(p,)) € £, and if
f € L*(u) has the Fourier expansion ) c,p, then

(1.4) T(f) = ic,,T(p,,).

If u is determinate then T given by (1.2) has a (unique) continuous exten-
sion from C[f] to L?(y) if and only if (T(px)) € ¢. Although (pa(z))¢ ¢ for
z¢ supp(u), it is possible to characterize the differential operators T for
which (7'(p,)) € £2. This was done in [BD2]. For determinate measures j of
finite index there are “many” of these operators, see below, and we shall
prove the following:

THEOREM 1.1. Let u be a determinate measure of finite index. Then L*(p)
consists of entire functions of class %o via a continuous linear injection
E : [*(u) — #(C) with the additional property that
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(1.5) T(f) = T(E(f))
for all f € L*(n) and all operators T of the form (1.2) for which (T (p,)) € £*.

A realization f — E(f) satisfying (1.5) is not uniquely determined. We give
several different realizations, and to complete the paper, we characterize for
given f € L*(u) the set of entire functions F satisfying

T() = T(F)

for all operators T such that (T(p,)) € 2. All these functions F turn out to
be of class €.

2. Preliminary results.

As claimed in the introduction it imposes severe restrictions on a determi-
nate measure y, if L?(u) consists of entire functions.

PROPOSITION 2.1. Let yu € M* be determinate and assume that E : L*(u) —
#(C) is a realization of L*(u) as entire functions. Then y is a discrete mea-
sure, and for each z € C\supp(p) there exists p e Clt] such that

p(z) # E(p)(2)-

Proor. If the support S of u is non-discrete we can choose xp € S and a
compact subset F C S\ {x} having accumulation points. Let f : R — R be
a continuous function with compact support vanishing on F and such that
f(x0) = 1. The extension E(f) of f to an entire function must necessarily
vanish identically, but this is a contradiction.

For a discrete determinate measure g it is known that 3 |p,(z)|* = oo for
all z¢ supp(u). Fix z¢ supp(p) and let us assume that the realization E has
the property E(p)(z) = p(z) for all p € C[t]. We define a sequence S, of con-
tinuous linear functionals on #2 by

Su(c) =Y cp(z), ¢ = (ca) € £.
k=0
For any c € ¢ there exists f € Lz(p) such that
whn
D —f in L),
k=0
and hence

Su(c) = E(i CkPk) (z2) = E(f)(2).

=0
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By the Banach-Steinhaus Theorem this implies that

sup [, = <i Lm(z>|2) <o
n 0

which is a contradiction.

The determinate measures of finite index are discrete, and we shall realize
L?(p) as entire functions for this class of measures.

The index of determinacy of a determinate measure x was introduced and
studied by the authors in [BD1]. This index checks the determinacy under
multiplication by even powers of |t — z| for z a complex number, and it is
defined as

(2.1) ind,(p) = sup{k € N | |t — z|*p is determinate}.

Using the index of determinacy, determinate measures can be classified as
follows:

If p is constructed from an N-extremal measure by removing the mass at
k + 1 points in the support, then p is determinate with

_ [k for z ¢ supp(u)
(2.2) ind, (p) = {k +1, for z € supp(u).

For an arbitrary determinate measure u the index of determinacy is either
infinite for every z, or finite for every z. In the latter case the index has the
form (2.2), and p is derived from an N-extremal measure by removing the
mass at k + 1 points. Such an N-extremal measure is highly non-unique by a
perturbation result of Berg and Christensen, cf. [BC, Theorem 8].

Using that the index of determinacy is constant at complex numbers out-
side of the support of u, we define the index of determinacy of u by

(2.3) ind(u) :=ind,(p), z ¢ supp(p).

We stress that a measure p of finite index is discrete and ind(p) + 1 is the
smallest degree of a polynomial p such that Iplz,u is indeterminate.

To each measure p which is either N-extremal or determinate of finite in-
dex we associate an entire function F, with simple zeros at the points of
supp(u). We recall from [BD1] that

(2.4) F,(w) —exp( Z >g( ’:)exp(vf)

_0”

where {x, : n € N} is the support of u. This function F, is the uniquely df:'
termined entire function of minimal exponential type having supp(y) as its
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set of zeros and satisfying F,(0) = 1. In the above formulation we tacitly
assume O ¢ supp(p). If however 0 € supp(p), the above expression for F,
shall be multiplied with w and {x, : n € N} = supp(x) \ {0}.

That F, is of minimal exponential type follows by a theorem of M. Riesz
[R], according to which the entire functions in the Nevanlinna matrix for an
indeterminate moment problem are of minimal exponential type. The func-
tion F, is also in the Cartwright class.

THEOREM 2.2. Let y be N-extremal. For each f € L*(u) we have

FNE= Y il —re, zec,

x€supp(u) “
where the series converges uniformly on compact subsets of C.

Proor. Without loss of generality we may assume that 0 € supp(p), so F,
is proportional to the function D from the Nevanlinna matrix, cf. [A], and it
is well known that

3 pu(@pa(x) = ZELE) ~ BED()

zZ—X

cf. [BD1], [BuCa], where
B(z) = -1 +qun(0)l7n(z)

Here (g,) denotes the sequence of polynomials of the second kind given by

ate) = [P g )

zZ—x
Since D vanishes on supp(u) we get
-/ (im(z)pn(x))f(x)du(x) ~-0@ [ B g,
n=0

and

B(x)f(x;'= _f(x) xf (x Z gn(0)pn(x

zZ—X zZ—X

belongs to L!(u) because 3" g,(0)pn(x) € L?(p).
The mass at x € supp(u) is given by ([A, p. 114])
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-1

p({x}) = m

showing that

FNE = Y prst—std)

x€supp(p)

and the series converges uniformly on compact subsets of C. Since D and F,
are proportional the result follows.

From Theorem 2.2 it is easy to verify that the realization F(L?(u)) is a
Hilbert space of entire functions in the sense of de Branges, see [Br, p. 57].
For details see Corollary 3.3 below.

In [BD2] we obtained the following result:

THEOREM 2.3. Let u € #* be determinate and let (p,) be the sequence of
orthonormal polynomials corresponding to p. Let (z1,ki),...,(zn,kn) be gi-
ven, where the z’s are different complex numbers and the k’s are nonnegative
integers. Putting M = "1 (k; + 1) and

N_ K ‘
T ={T=)Y > ;69 |a,eC},
I=1 j=0

we have

O

ind(w) > | Y k+ ) (k,+1))—1,
Lp({z1})>0 Lp({z:})=0

then the sequence (T (p,)) belongs to €2 only in the trivial cases, i.e., if and only
if T is a linear combination of Dirac deltas evaluated at points z; which are
mass points of the measure L.

@) If
0 <ind(p) < Z ki + Z (k1+1)) -2,
Lu({zh)>0  Eu({z})=0
then,
dim{T € 7 | (T(ps) € £/} =M —ind(p) -1 2 1.

Furthermore, (T(p)) € if and only if T(ZFu(2)=0 for
k=0,1,...,ind(p).

[
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COROLLARY 2.4. Let yu € M* be a determinate measure of finite index. For
an operator T € 7 we have (T (p,)) € ¢* if and only if T(z*F,(z)) =0 for
k=0,1,...,ind(p).

ProoOF. It is enough to consider the case (i), and to prove that the equa-
tions T(zF,(z)) = 0 for k < ind(u) imply that T is a linear combination of
Dirac deltas at mass points of u. To simplify the notation we assume that the
system is ordered such that there exist positive integers 0 < Ny < N; < N for
which

u({z:}) >0 and k; >0 for I=N+1,...,N,
;L({Zl}) =0 for I=N,+1,...,N.

Using F,(z) =0 for I=1,...,N,, the equations T(z*F,(z)) =0 can be
written

{,u({z,}) >0 and k;=0 for I=1,...,N;

N, k; ) N k; )
3N @R+ Y > as(FFu(z) =0.
I=Ny+1 j=1 I=N+1 j=0

This system has

M N
p= Y ki+ Y (ki+1)
ENHL N

variables a;; and ind(x) + 1 equations, and p < ind(u) + 1 since we consider
the case (i). We claim that the system of equations with k < p — 1 (< ind(p))
has a non-singular matrix, and therefore the variables involved are 0, i.e.

N,
T = Z a1,06z, .
I=1

The columns of the matrix can be put together in blocks

{62)(szﬂ(z))}k=0,,..,p—l; =N +1,...,N;

j=1...k
and
{62)(sz“(z))}k=oMp_1, I=Ny+1,...,N.
7=0,...k;
Since F,(z;) =0, FL(z,) #0 for I=Ny+1,...,N, and F,(z;) #0 for
I=N;+1,...,N, column operations show that these blocks are equivalent

to the blocks
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j=0,... J—1 j=0,...k;

The determinant of the matrix formed by these blocks is a variant of Van-
dermondes determinant and is non-zero.

3. The determinate case.

For a given measure pu € 4™ of finite index of determinacy we denote by
2(p) the set of operators of the form (1.2) for which (T(p,)) € 2, allowing
the system (z;,k;) and N to vary. It is an infinite dimensional vector space.
Any T € 2(p) can be extended from C[t] to a continuous linear operator T
in the space L?(p) via Fourier expansions:

T(f>=;( / f(t)pn(t)du(t))T(pn), for f € L2(w)

We choose different real numbers xo, . . ., Xinq() outside of the support of x
and consider the measure

ind(p)
(3.1) o=p+ Z‘S""
i=0
From the above, cf. Theorem 3.9 (1) in [BD1], it follows that the measure o
is N-extremal. )
Given a function f € L?(u), we extend it to a function f in the space L%(0)
in the following way

=~ _ [ f(r), fortesupp(n)
(3.2) S0 = { 0, fort =x;,i =0,...,ind(x).
Clearly, f — f is a linear isometry of L*(u) into L?(0).
Since o is N-extremal, f has a canonical extension to an entire function of
class %y given by

(33) Fi) = 3 [Fontded )ae,

where (g,) is the sequence of orthonormal polynomials with respect to 0. We
can now formulate:

THEOREM 3.1. Let p be a determinate measure with finite index of determi-

nacy ind(u). The mapping E(f) := F(f) given by (3.3) is a realization of L*()
as entire functions of class 6o such that for any operator Teu
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(3.4) T(f)=TE(), feL .

ProOOF. It is clear that E(f) = F(f) is a realization of L?(u) as entire
functions of class .

The set of functions f € L?(u) for which (3.4) holds is a closed subspace,
and therefore it suffices to prove (3.4) for f = x(x}, x € supp(u), where x4
denotes the indicator function of the set 4. This is a consequence of the fol-
lowing result:

PROPOSITION 3.2. For x € supp(u) we have

E(X{x})(z) _ - (F;L(Z)P(Z)

TP -n 2 € ©

where p is the unique monic polynomial of degree ind(u) + 1 which vanishes at
X0y ,xind(u).
The function

Fu(z)
F(x)(z - x)

is an entire function of class 6o equal to xx, on supp(u) and we have

T(xx) = T(E(x(n)) = T(;-,—(}I;”((zz—)_@) for T € 9(u).

PrROOF. For f = x(,} we find

f(1), if t € supp(p)
0, fort=x;,i=0,...,ind(u)

70 ={

_J1, fort=x,
10, otherwise

= x{x) (8)-

For T € 9(u) we denote by T and 7, the continuous extensions of 7' from
Clf] to L?*(u) and L*0) respectively. We then have T'(f) = T,(f) for
f € L*() because ||f — pll 2,y < IIf — Pll2(;) When p € C[1], and in particular
T(x{x}) = To(x{x}) When x € supp(p).

By Theorem 2.2 we have

F2) __ FE@p@)
F(x)(z—x) F,(x)p(x)(z - x)’

F(f)(z) =
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because Fy(z) = Bp(z)F,(z) for a certain constant 3, and hence Fl(x)=
Bp' (x)Fu(x) + Bp(x)F,(x) = Bp(x)F,(x). This gives by (1.3)

~ ~ Fu(z)p(2)
T(xp) =T (m) ’
but since

F@pE)  _ F()
FLp()(z—x)  F(x)(z-)

+ q(z)Fﬂ»(Z)’

where

N __ P2 —px)
10 = F G 0re

is a polynomial of degree ind(u), we have T(gF,) = 0 by Corollary 2.4, and
the second assertion follows.

COROLLARY 3.3. With the notation above we have

Fu(z)p(z) f(x) for fe L),

(3.5) E(f)(z) = Z(”)W(}Wz—_x)

XESupp

where the series converges uniformly on compact subsets of C.
The realization E(L*(u)) C #(C) is a Hilbert space of entire functions in
the sense of de Branges.

Proor. Formula (3.5) follows immediately from Theorem 2.2 and Propo-
sition 3.2. To see that E(L?(u)) is a Hilbert space of entire functions in the
sense of de Branges we shall verify the properties (H1)-(H3) from [Br, p. 57].
We shall only comment on (H1): If w € C\ R is a zero of E(f) we have

S
2 = "

x€supp(p,
and hence for z # w

E(£92=2) @) = Fu(or(e > e (1+553)

x-w xesupp(p) = #
= E(f)(2) + Fu(2)p(2)(w — W)S(2),

where
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) /) ! 1
s61= 5 o (Farw e )

x€supp(p) = H

Therefore we get

X

zZ—Ww
9
w

£(10)227) @ = )

X zZ—

which shows (H1).

In Theorem 3.1, to get an extension of f € L?(i) to an entire function, we
add mass points to the measure p until we reach an N-extremal measure o.
We next extend f by zero to a function in L?(o), and use its canonical ex-
tension to an entire function. However, there is a different way to obtain N-
extremal measures from a determinate measure p having finite index of de-
terminacy. We prove that this approach can also be used to find entire ex-
tensions of functions in L2(u), such that (3.4) holds.

For a determinate measure p with finite index of determinacy ind(u), we
take a polynomial

N N
R(t) =[]t —2)"*", with > (k/+1) =ind(u) + 1,
=1 =1
where z; € supp(p), I =1,...,N.

It follows from Lemma 2.1 in [BD2] that o = |R|*s is an indeterminate
measure, but the measure |R(f)/(z —z1)[*x is determinate. According to
Lemma A in Section 3 of [BD1], we conclude that the measure o = |R|*y is
N-extremal.

Given a function f € L?(u), we define f* € L?(o) by f% = f/R. Since o is
N-extremal, f% has a canonical extension F(f*) and we define

(3.6) E(f)(z) := REF(1Y)(2).

THEOREM 3.4. Let p be a determinate measure of finite index and let R be as
above. Then L?(u) is realized as entire functions of class €, via (3.6), and it has
the property

(3.7) T(f) = T(E(f)), f€L*(n)
for any discrete differential operator T € ().

ProoF. The set of functions f € L?(u) for which (3.7) holds is a closed
subspace, and therefore it suffices to prove (3.7) for f = x(}, x € supp(u).

In this case f%(f) = (1/R(x))xx}(¢), and since F, = F, we get
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_ Fu(z)
£ = R

hence

REF(NE) = bl 4 1))
where

1 R(2)-R)
r(z) = ROF(x)  z-x

is a polynomial of degree ind(u). Now formula (3.7) follows from Corollary
2.4 and Proposition 3.2.

Like in Corollary 3.3 we have

Fu(2)R(z) 2
E(f)(z) = Z Wf(x) for f € L*(p).
xesupp(p) = H
The realization E(L?(y)) is a Hilbert space in the sense of de Branges if R is
a real polynomial.
For given f € L?(u1) we shall now describe the set of all entire functions F
satisfying

(3.8) T(f) = T(F) forall T € D(p).

THEOREM 3.5. Let u be a determinate measure of finite index and let
f e L.

() Given (z1,k1),...,(zn,kn), where zi,...,zy are different points of

C,ki,...,kn € N, and assume that 0 < N, < N exists such that z; € supp(u)
and k; > 0 for I =1,...,N, and z;¢ supp(u) for | = Ny + 1,..., N and that

N, N
(3.9) k4 Y (ki+1)=ind(p) +1,
I=1 I=Ny+1

then there exists a unique entire function F satisfying (3.8) and the interpola-
tion conditions

e [i= T D=1, Ny
(310) F(I(Z])—al,] {j:(),o-~,k[7l:N2+17""N

where oy are arbitrarily given. This entire function F is of class €.

(ii) If F is an entire function satisfying (3.8), then F + pF,, where p is any
polynomial of degree not bigger than ind(u), are the only entire functions sa-
tisfying (3.8). All of them are of class %.
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ProoF. (i) We first prove the existence. Assume that F is an entire func-
tion satisfying (3.8). From the hypothesis on the z;’s and since F,, has simple
zeros, we deduce that F(z)#0 for /=1,...,N, and F,(z)#0 for
I=N,+1,...,N. Hence, if p denotes a polynomial, the equations

Lk l=1,...,N,

=1,.
0) 2)) = F9(z;) — !
62 (p(2)Fu(z)) (z1) 041,1»{]._ ki, I=Na+1,...,N

determine the quantities p¥)(z;) uniquely for j = Lk =11=1,....N,
and forj=0,...,k;,/=N,+1,...,N. The hypothes1s 3.9 guarantees that
p is uniquely determined as a polynomial of degree < ind(y). This means
that F — pF, satisfies the interpolation conditions (3.10), and F — pF,, still
satisfies (3.8) by Corollary 2.4.

To prove uniqueness, assume that F and G are entire functions satisfying
(3.8) and (3.10). We shall prove that F(x) = G(x) for all x € C\ (supp(u)U
{zNy+1, - - -, 2n}). This clearly implies F = G. For x as above we consider the
linear system

iZaué(’) *F,( (2)) + Z Zaué(’ sz = x*F,(x)

I=N+1 j=0

where 0 < k < ind(u). The system is quadratic by (3.9), and it has a unique
solution (ay;), cf. the proof of Corollary 2.4. This means that the operator

N> K

T —ZZal,,&(’)-k Z Zall,é(’)

=1 j=1 I=N+1 j=0

belongs to D(n), so T(F) = T(G) = T(f) by (3.8), but since F and G both
satisfy (3.10) we conclude that F(x) = G(x).

Since (3.8) has a solution F which is of class %, the solution F — pF, from
the existence part is again of class €.

(ii) Let F, G be entire functions satisfying (3.8). The method in (i) shows
that it is possible to find a polynomial p of degree < ind(u) such that
G — pF, satisfies the interpolation conditions

89(G - pF,) = FU)(z)

with /,j as in (3.10). By the uniqueness assertion G — pF, = F.
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