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THE DETERMINANT IN THE LAURENT RING
AND THE L2-REIDEMEISTER-FRANZ TORSION

GABOR ELEK

Abstract.

We prove that the L2-Reidemeister-Franz torsion of Carey and Mathai is a non-zero algebraic
number for infinite cyclic coverings.

1. Introduction.

The L?-Reidemeister-Franz torsion has been introduced by Carey and Mathai
[1]. In the definition of their torsion invariant they required the weak invertibil-
ity of the combinatorial Laplacian. It essentially means that the Fuglede-
Kadison determinant of the Laplacian is non-zero. See also [7].

In this paper we shall study the Fuglede-Kadison determinant of the von
Neumann algebra NZ [4]. Our main result is that the determinant is non-zero on
the non-zero elements of the R[z,z~ '] = NZ subring. We shall also obtain an
algebraic formula for the determinant. As a consequence of this formula, we shall
prove that for infinite cyclic coverings the combinatorial Laplacian is always
weakly invertible if it has trivial kernel. We shall also see that the L2-Reidemeis-
ter-Franz torsion is an algebraic number. For the sake of completeness, we recall
some basic facts about the combinatorial L2-theory.

Let K be a finite simplicial complex of dimension n and let K be a normal
simplicial covering of K, with the group I' of deck transformations. |K|, resp. |K|,
stands for the set of p-simplices in K resp. in K. Let C?,) denote the Hilbert space
of square-integrable real-valued oriented p-cochains on K. The scalar product on
CP, is given by

fg>= ) flo)(o).
aelgl P
Note that for an oriented p-cochain: f(— o) = —f(). The combinatorial Laplace
operator 4, = dyd, + d,_,d}_, is a bounded, non-negative, self-adjoint oper-
ator on the Hilbert space Cp,, [3].
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Let D ,(a,7) be the operator kernel of 4, i.e.
1) 4,(f)@) = Y. Dyo,7)f(x)

'eliﬂp
forany oe|K|and f e Chy.
The I-invariant bounded operators on CF,, form a von Neumann algebra,
which has a finite trace Tt such that Tr(Id) = 1 [1]. Then,

Trr(4,) = Z D,(6,6)
oelK|p
where 7(&) = ¢ for the n: K — K covering map. For any é¢|K| »» X shall denote
the characteristic function of g.
In this paper we study only acyclic complexes i.e. for which ker 4, = 0, for any
p. For an acyclic complex, the Laplacian is called weakly invertible [1] [5] if

J logidg, > — oo,
0

where 4, = |> AdE, is the spectral representation of 4,and ¢, = Tr E;. In this
case the Fuglede-Kadison determinant of the Laplacian is

|Det|r(4,) = exp (Jm log/ldqbl) .
0

The I*-Reidemeister-Franz torsion is defined as

7?2)(1‘5) = [] (Det|r(4,)

i=0

i(—1)i+1
2,

REMARK. Liick and Rothenberg [6] defined the Reidemeister-von Neumann
torsion as an element of K¥(NI')?/2. They observed that if the Laplacians are
weakly invertible, the L?-Reidemeister-Franz torsion is just the Fuglede-
Kadison determinant of the Reidemeister-von Neumann torsion.

2. The representation of the Laplacian.

Let g be a greater of Zand let 64,7, . . ., o, be p-simplices, such that any p-simplex
in K can be uniquely represented as g* - g;, where a;€Z, 1 <i < k and g*-o;
denotes the left action of Z on K. Note that the Laurent ring R[z,z7'] is
Z-isomorphic to the group algebra RZ with the group action g™ - [ f (z)] = z"f(2).
Let us denote by H[z] the space of Laurent series Yiczaiz' such that
Yiezla* < oo. Then H[z]* is Z-isomorphic to Cf, via the following Z-isomor-
phism y,
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W@, ) 2)G o) = ay,

where fi(z) = Y jez a;j7’.

The trace T on R[z,z~ '] is defined as T (3% _ ,, ¢, 2*) = c,. It gives us an inner
product on Rz z '] by {f,¢> = 1(f(2)-g(z™")).

We can extend the inner product to H[z], which becomes the Hilbert closure of
the pre-Hilbert space R[z,z~']. Note that for f(2) = Y ez aiz’, | fII* = Yiczlail®
and y is an isometry from H[z]* to Cf,,. The inner product defines a *-structure
on Mat,(R[z,z™']) by L*(z) = LT(z™ '), where LT stands for the usual matrix
transposition.

DEFINITION 2.1. For any A € Mat,(H[z]) we have a densely defined Z-invariant
operator P(A) on Cpy,.

P(A)(xgm-o, Z al™ ™1,

where (A);j = Y ez a\)2" is the i, j-entry of A.

The bounded Z-invariant operators on Cf,, form a von Neumann algebra. This
von Neumann algebra is isomorphic to Mat, (NZ) where NZ is the von Neumann
algebra of Z. The composition of the matrix trace and the type-II trace on NZ
gives us the trace Tr, on Mat,(NZ). Let us list some results on the representation

Y [2], [6].

PROPOSITION 2.2. 1. W(A) is bounded, if and only, each A;; converges almost
everywhere to a bounded function on the unit circle.
2. If Y(A) and ¥(B) are bounded operators;
. PXA) = P(4¥).
. Y(AB) = Y(A)¥(B), ¥(A + B) = ¥(A4) + ¥(B).
For any ve H[2]*, Y(A(v) = P(A)WY(v)).
. 1(tr(A)) = Trz(¥Y(A)), where tr is the matrix trace.
If A = A* non-negative definite on the unit circle, then
. Y(A) is a self-adjoint non-negative operator.
. Ker ¥Y(A) = 0 if and only if det A £ O, where det is the matrix determinant.

oP wao g

Note that we can define 4,eMat,(R[z,z"']) such that ¥(4,) = 4,, the
following way.

(Ap)i; = Y, allzk,

keZ

where, al = D,(0;, g *s;). By Proposition 2.2, if Ker(4,) = 0, then det 4, % 0.
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3. The Fuglede-Kadison determinant on the Laurent ring.
First, let us recall the lemma on “the continuity of the roots”.

LEMMA 3.1. Let U < C be an open set and let {f,},=,.,.... be holomorphic
functions on U. Suppose that { f,},-1.,. ... converges uniformly to a function f 0.
Let W =« W < U be an other open set and pe W. Suppose that p is the only zero of
fin U and p has multiplicity k. Then for sufficiently large n, f, has exactly k zeroes
(with multiplicity) in W.

Let S denote the set of all non-zero feR[z,z '], which has real and
non-negative value on the unit circle. Then, for any f €8, f(z) = f(z™ ). There-
fore,if p £ + lisazero of f. then p~!isalso a zero of f, with the same multiplicity.

LEMMA 3.2. Letf €S.Supposep = + lisazeroof f withmultiplicity k. Then k is
an even number.
1 .
ProoF. Let f, = f + —, ne N. Choose a U open set, such that p is the only
n

zero of fin U. Let W = W < U be a symmetric neighbourhood of pi.e. if ze W,
then z ™! € W, too. Since f, is positive on the unit circle for all n, by our previous
remark, f, has even amount of roots in W. lim,, f, = f, therefore the lemma
follows from the “continuity of roots”.

PROPOSITION 3.3. For any f €S, we can construct F € C[z] such that
f(2) = F)F(z™")

and F has no zeroes inside the unit circle.
PRrOOF. Let f(z) = 7 H (z — a;); la;] > 0. Then,

1

7',

A

z—a)=4) ' —a)

1 i=1

)
=lz’i(z~ai“)(—a,-z“)=l%<—1)"“ )n(z—a b,

i=1 =

M=

Hence, we can conclude that k = 2I. Let us define F(z) by

Fz) = fn(z—a,) H( a;)!

where the product is taken the following way. Any root of f outside the unit circle
is counted with its full multiplicity. If + 1 is a root, it is counted with half of its
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multiplicity. For roots w on the unit circle such that w £ + 1, we choose one from
the (w, w™!) pair with full multiplicity. Obviously, | = m = }k.

F@)Fz ) =41 ﬁ (z—ap) l—Il(z‘1 —a) [] (—ap !
j=1 j= =1

J

| —

m m k
=ll—[1(z——aj)l_[(z—af‘)z_"'=/1 l—ll(z—ai)=f(z).
j= i=1 i=

z

The construction above does not give us a unique polynomial F(z). However,
|F(0)| does not depend on the choice of the roots on the unit circle and the choice
of the square root.

DEFINITION 3.4. For f€S,
Det, (f) = [F0)*eR™.

Note, Det,(f) = 4| [ ] la:l, where the product is taken for the roots outside the
unit circle with their full multiplicity. Therefore, by the continuity of the roots,

Note that Det,, can be extended to all non-zero element of the Laurent ring by

Det, (f) = /Det, (ff*)

LEMMA 3.5. If f €S8 is strictly positive on the unit circle, then

t(log f) = log Det, (f)

ProOF. By Proposition 3.3, f(z) = F(z)F(z™'), where F has no zeroes in
a neighbourhood of the unit disc. Therefore, we can define log F in a neighbour-
hood of the unit disc. Let us consider the Taylor-series of log F.

log F(z) = log (F(0)) + ¢z + ¢,2* + ...

Then, log(F(0)) + ¢;z~* + ¢;z~2 + ... is the Laurent series of log F(z~!) that
converges in a neighbourhood of the unit circle, f is positive on the unit circle,
thus we can also define log f in a neighbourhood of the unit circle and we can
suppose that it has real value on the unit circle. Obviously,

log f(z) = log F(z) + log F(z ') + 2mis,
where seZ. Hence,
7 (log(f)) = 21log (F(0)) + 2mis.

Let us note that 7 (log f) is real, therefore
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t(log(f)) = Relog (FX(0)) = log Det, ()
Now, we can state our main theorem.
THEOREM 1. Let BeMat, (R[z,z 1)), such that det B + 0. Then,
[Det| ¥(B) = Detr(det B).
Proor. We may suppose that B is non-negative definite on the unit circle. Let

1
B,=B + PE By the definition of the Fuglede-Kadison determinant,

|Det| ¥(B) = expj logAde,

[0, =]

where _f(o’ «] AdE; is the spectral decomposition of ¥(B) and ¢, = Trz E,. There-
fore,

n— oo n— oo

1 .
|Det| ¥(B) = lim expj log <i + ;) d¢, = lim exp(Trz (log ¥(B,))).
[0, =]

By Proposition 2.2, log ¥(B,) = ¥ (log B,) and Tr, (¥ (log(B,)) = t(tr (log B,)).
On the other hand, tr (log B,) = log(det B,). Hence, by Lemma 3.5,

|Det|- ¥(B) = lim exp t (log(det B,)) = lim Det(det B,).

by (2), lim, _, , Det, (det B,) = Det, (det B). Therefore,
|Det| ¥(B) = Det, (det B)

When we apply our theorem to the Laplacians 4,, we obtain the following
corollaries.

COROLLARY 3.6. If Ker 4, = 0, then [Det|r 4, = Det (det A,) # 0. Thus 4, is
weakly acyclic.

COROLLARY 3.7. The [*-Reidemeister-Franz torsion of an acyclic Z-covering is
always a non-zero algebraic number.
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