COHOMOLOGY GROUPS OF LOCALLY q-COMPLETE MORPHISMS WITH r-COMPLETE BASE

VIOREL VÂJÂITU

To the memory of my Professor Martin Jurchescu

1. Introduction.

Vanishing theorems are important in complex analysis. One general way to obtain them was given by Andreotti and Grauert ([1]), where they showed that every q-complete complex space is cohomologically q-complete. (For the definitions, see below.)

Our main concern in this paper is to prove a variant of this theorem for families of q-complete spaces. We consider the following situation:

(4) Let $\pi: X \to S$ be a holomorphic map of complex spaces such that its fibres $\pi^{-1}(s), s \in S$, are q-complete. What can be said about the vanishing of the cohomology groups $H^i(X, \mathcal{F}), \mathcal{F} \in Coh(X)$, for i in a suitable range?

Simple examples show that there are holomorphic maps $\pi: X \to S$ of complex manifolds such that S and all the fibes of π are Stein, and, however, $H^{n-1}(X, \mathcal{O})$ does not vanish, where n is the complex dimension of X; e.g. $X = \mathbb{C}^n \setminus \{0\}, S = \mathbb{C}^{n-1}$, and π the projection onto the first n-1 coordinates. Therefore, to answer our question, we have to make additional assumptions on the dependence of the family of q-complete spaces on the base points. In this way we are lead to locally q-complete morphins, and, the vanishing theorem holds; viz. theorem 1 in §3, which says that X is cohomologically (q+r)-complete provided that π and S are locally q-complete and r-complete respectively. See also corollary 2 in §3.

As consequences (viz., theorem 2 and corollaries 3, 4, and 6), one gets vanishing theorems for the cohomology of locally q-complete open sets in r-complete spaces.

Received April 12, 1995.

Particular cases of our results were treated by various authors; Ballico ([2]), Bolondi ([3]), and Jennane ([6], [7], [8]).

Throughout this paper all complex spaces are assumed to be reduced and with countable topology.

2. Preliminaries.

Let D be an open subset of \mathbb{C}^n and $f \in C^{\infty}(D, \mathbb{R})$. Let z_1, \ldots, z_n be the complex coordinates of \mathbb{C}^n . For every point $w \in D$, the quadratic form

$$\mathbf{C}^n \ni \xi \mapsto L(f, w)(\xi) := \sum_{i,j=1}^n \frac{\partial^2 f}{\partial z_i \partial \overline{z}_j}(w) \xi_i \overline{\xi}_j \in \mathbf{R},$$

is called the *Levi form* of f at w. We say that f is q-convex on D if its Levi form L(f, w) has at least n - q + 1 positive eigenvalues for every $w \in D$.

Let X be a complex space. A function $\varphi: X \to \mathbb{R}, X$ a complex space, is said to be q-convex if for each point $x \in X$ there is an holomorphic imbedding $\iota: U \to \hat{U}, U \ni x, \hat{U} \subset \mathbb{C}^n$ open, and a q-convex function $\hat{\varphi} \in C^2(\hat{U}, \mathbb{R})$ which extends $\varphi|_{U}$.

We say that X is q-complete (resp. q-convex) if there exists a smooth exhaustion function $\varphi: X \to \mathbb{R}$ which is q-convex on $X \setminus K$ for some suitable compact subset K of X). The normalization is such that Stein spaces correspond to 1-complete spaces.

Finitely many q-convex functions $\varphi_1, \ldots, \varphi_k$, on X have the same positivity directions if for each point $x_0 \in X$ there are: an holomorphic imbedding $\iota: U \to \hat{U}, U \ni x_o, \hat{U} \subset \mathbb{C}^n$ open; q-convex extensions $\hat{\varphi}_j$ of $\varphi_j, j = 1, \ldots, k$; and a complex vector subspace E of \mathbb{C}^n of dimension at least n - q + 1 such that all the Levi forms $L(\hat{\varphi}_1, z_o), \ldots, L(\hat{\varphi}_k, z_o), z_o = \iota(x_0)$ are positive definite when restricted to E.

The motivation for this notion is the following: Let φ_1 and φ_2 be q-convex with the same positivity directions. Then $\varphi_1 + \varphi_2$ is again q-convex and $\max(\varphi_1, \varphi_2)$ can be approximated in the C^o -topology by q-convex functions ([16]).

DEFINITION. Let $\pi: X \to S$ be a holomorphic map between complex spaces. (We consider S as a space of parameters.)

- (•) We say that π is: *q-convex* (resp. *q-complete*) if there exists a smooth function $\varphi: X \to \mathbb{R}$ and a real number c_{\sharp} (resp. $c_{\sharp} = -\infty$) such that:
 - (i) φ is q convex on the open set $\{x \in X; \varphi(x) > c_{\sharp}\};$
- (ii) For every real number λ , the restriction of π from $\{x \in X : \varphi(x) \leq \lambda\}$ to S is proper.

We call φ the exhaustion function of X and c_{t} the convexity bound.

(•) We say that π is: locally q-convex (resp. locally q-complete) if every point $s \in S$ has an open neighborhood U such that the restriction of π from $\pi^{-1}(U)$ to U is q-convex (resp. q-complete).

REMARKS. 1) If $\pi: X \to S$ is locally q-convex (resp. locally q-complete), then its fibres $X_s := \pi^{-1}(s), s \in S$, are q-convex (resp. q-complete) complex spaces. In particular, if S is a point, the definitions of q-complete and q-convex spaces are regained.

2) One verifies readily that $\pi: X \to S$ is locally q-complete if, and only if, every point $s \in S$ has a neighborhood U such that $\pi^{-1}(U)$ is q-complete. (An analogous situation does not occur for q-convex mappings as the example 1 from below shows).

Moreover, in this case, if $V \subset U$ is an arbitrary Stein open set, then $\pi^{-1}(V)$ is again q-complete.

- 3) Also, it is easy to check that if π is q-complete and S is r-complete (resp. r-convex), then X is (q+r-1)-complete (resp. (q+r-1)-convex). (This does not hold for locally q-complete mappings as the example 2 in § 3 shows.)
- 4) Locally 1-complete morphisms are also called *locally Stein* morphisms ([6], [7]).

EXAMPLE 1. Let $A \subset \mathbb{C}^n$ be a closed submanifold of pure dimension $d \leq n-2$, and $\pi: X \to \mathbb{C}^n$ the blowing-up of \mathbb{C}^n at A. Then π is 1-convex.

Indeed, if $A = \{f_1 = \ldots = f_m = 0\}$ for some holomorphic functions f_1, \ldots, f_m on \mathbb{C}^n , we set $h : \mathbb{C}^n \to \mathbb{R}$ by $h(z) = (|f_1(z)|^2 + \ldots + |f_m(z)|^2) \exp(||z||^2)$. Then, $\varphi = h(\pi)$ together with $c_{\sharp} = 0$ as convexity bound show the 1-convexity of π . However, if d > 0, then for each open subset $U \subset \mathbb{C}$ with $U \cap A \neq \emptyset$, $\pi^{-1}(U)$ is not 1-convex. (In fact, not even (n-d-1)-convex.)

By extending the usual notion of Runge domains in Stein spaces, we say that an open subset D of a complex space X is q-Runge if for every compact set $K \subset D$ there is a q-convex exhaustion function $\varphi: X \to \mathbb{R}$ (which may depend on K) such that

$$K \subset \{x \in X; \varphi(x) < 0\} \subseteq D.$$

(Note that X is q-complete if and only if the empty set is q-Runge in X.) With this definition, we reinterprete a result due to Andreotti and Grauert ([1]).

PROPOSITION 1. Let D be a q-Runge domain in a q-complete complex space

X. Then, for every coherent analytic sheaf \mathscr{F} on X, $H^i(D,\mathscr{F})$ vanishes for $i \geq q$, and the restriction map $H^{q-1}(X,\mathscr{F}) \to H^{q-1}(D,\mathscr{F})$ has dense range for the natural topology.

A complex space X is said to be cohomologically q-complete (resp. cohomologically q-convex) if the cohomology groups $H^i(X, \mathcal{F}), \mathcal{F} \in Coh(X)$ vanish (resp. are finite dimensional complex vector spaces) for every $i \geq q$.

An open subset D of a complex space X is said to be *locally q-complete* if for each point $x \in \partial D$ there exists an open neighborhood U of X such that $U \cap D$ is q-complete. Equivalently, the inclusion map $j:D \to X$ is locally q-complete.

In the sequel, topological vector spaces are such that its zero element has a countable base of open neighborhoods. For such a topological vector space E we denote by $E_{\rm sep}$ the separated topological space associated with E, namely; the quotient of E modulo the closure of its zero-element. The following result is evident.

LEMMA 1. Let $u: E \to F$ be a continuous map of topological vector spaces. The following statements are equivalent one another:

- a) u has the lifting property of sequences, i.e., for every sequence $\{f_n\} \subset u(E)$ with $f_n \to 0$ there is another sequence $\{e_n\} \subset u(E), e_n \to 0$ and $u(e_n) = f_n, n \ge 1$.
- b) u is quasi-open, i.e., the induced map $u': E \to u(E)$ is open where $u(E) \subset F$ is endowed with the trace topology which comes from F.

By diagram chasing, the following is a consequence of the preceding lemma.

COROLLARY 1. Assume we have a commutative diagram of topological vector spaces with exact rows

where a, b, c, v are continuous linear maps. Suppose a and c have dense range. Then b has dense range provided that v is quasi-open.

Let X be a complex space. A Stein open covering $\mathscr{U}=(U_i)_{i\in I}$ of X is said to be a special covering of X if \mathscr{U} is a countable base of open subsets of X. If $D\subset X$ is open, we let $\mathscr{U}_{|D}:=\{U\in\mathscr{U};U\subseteq D\}$. Obviously, $\mathscr{U}_{|D}$ is a special covering of D.

Now, we let $\mathscr{F} \in \operatorname{Coh}(X)$. Since the spaces of Čech cochains $C^{p+1}(\mathscr{U}, \mathscr{F})$, $p = 0, 1, \ldots$, are Fréchet spaces, and the coboundary maps

 $\delta = \delta^p : C^p(\mathcal{U}, \mathcal{F}) \to C^{p+1}(\mathcal{U}, \mathcal{F})$ are continuous, the spaces of cocycles $Z^p(\mathcal{U}, \mathcal{F}) := \text{Ker } \delta^p$ are also Fréchet spaces.

Thus we have a simple:

LEMMA 2. For every non-negative integer p, the following statements are equivalent:

- a) The restriction map $H^p(X, \mathcal{F}) \to H^p(D, \mathcal{F})$ has dense range.
- b) The restriction map $Z^p(\mathcal{U},\mathcal{F}) \to Z^p(\mathcal{U}_{|D},\mathcal{F})$ has dense range for any special covering \mathcal{U} of X.
 - c) Statement b) holds for one special covering \mathcal{V} of X.

The next lemma is probably well known, but since we did not found any reference in the literature we give it here.

LEMMA 3. Let X be a complex space and X_1, X_2 be open subsets. Let also $\mathscr{F} \in \text{Coh}(X)$ and p a non-negative integer such that $H^p(X_1 \cap X_2, \mathscr{F})$ is Hausdorff. Then the natural map which comes from the Mayer-Vietoris sequence

$$H^p(X_1 \cup X_2, \mathscr{F}) \to H^p(X_1, \mathscr{F}) \oplus H^p(X_2, \mathscr{F})$$

is quasi-open. In particular, this holds if $H^p(X_1 \cap X_2, \mathscr{F})$ vanishes.

PROOF. Since the case p = 0 is clear, we may assume $p \ge 1$; and without any loss of generality, let $X = X_1 \cup X_2$. We break the proof into three steps.

Step 1. There is an special covering $\mathscr{U}=(U_i)_{i\in I}$ of X such that for the next three sets of indices $I_1:=\{i\in I;U_i\subset X_1\},I_2:=\{i\in I;U_i\subset X_2\}$ and $I_{12}:=\{i\in I;U_i\subset X_1\cap X_2\}$, it holds: (\spadesuit) If $i\in I_1\backslash I_{12}$ and $j\in I_2\backslash I_{12}$, then $\overline{U_i}\cap \overline{U_j}=\emptyset$.

Indeed, first select \mathscr{U}_{12} an arbitrary special covering of $X_1 \cap X_2$. Then there are disjoint open sets $D_1 \subset X_1$ and $D_2 \subset X_2$ such that $X_1 \setminus X_2 \subset D_1$ and $X_2 \setminus X_1 \subset D_2$. Further choose \mathscr{U}_1 and \mathscr{U}_2 special coverings of D_1 and D_2 respectively. Finally, set $\mathscr{U} =$ the collection of all open sets from $\mathscr{U}_1, \mathscr{U}_2$ and \mathscr{U}_{12} . Note that, if $U_{i_1} \cap \ldots \cap U_{i_s} \neq \emptyset$, then $U_{i_1} \cup \ldots \cup U_{i_s}$ is either contained in X_1 or in X_2 .

Step 2. With the notations from above, there is a commutative diagram

$$\begin{array}{cccc} C^{p-1}(\mathscr{U}_{12},\mathscr{F}) \oplus Z^p(\mathscr{U},\mathscr{F}) & \stackrel{u}{\to} & Z^p(\mathscr{U}_1,\mathscr{F}) \oplus Z^p(\mathscr{U}_2,\mathscr{F}) & \stackrel{v}{\to} & Z^p(\mathscr{U}_{12},\mathscr{F}) \\ \alpha \downarrow & \beta \downarrow & \gamma \downarrow \\ H^p(X_1 \cup X_2,\mathscr{F}) & \stackrel{u'}{\to} & H^p(X_1,\mathscr{F}) \oplus H^p(X_2,\mathscr{F}) & \stackrel{v'}{\to} & H^p(X_1 \cap X_2,\mathscr{F}), \end{array}$$

where β, γ, u', v' are the natural maps, α is obtained by extending with zero the natural map $Z^p(\mathcal{U}, \mathcal{F}) \to H^p(X_1 \cup X_2, \mathcal{F})$, and v, u are to be constructed as follows:

For

$$(\xi_1,\xi_2)\in Z^p(\mathscr{U}_1,\mathscr{F})\oplus Z^p(\mathscr{U}_2,\mathscr{F}),$$

set

$$v(\xi_1,\xi_2):=\xi_{2|X_1\cap X_2}-\xi_{1|X_1\cap X_2}.$$

For

$$(\eta, \xi) \in C^{p-1}(\mathcal{U}_{12}, \mathcal{F}) \oplus Z^p(\mathcal{U}, \mathcal{F}),$$

set

$$u(\eta,\xi) := (\xi_{|X_1}, \xi_{|X_2} + \delta \tilde{\eta}),$$

where $\tilde{\eta} \in C^{p-1}(\mathcal{U}_{12}, \mathcal{F})$ is the trivial extension of η to $C^{p-1}(\mathcal{U}_2, \mathcal{F})$.

We claim that: Im $u = v^{-1}$ (Ker γ).

Only "\(\to\)" needs a proof. Let $\xi_1 \in Z^p(\mathscr{U}_1,\mathscr{F}), \xi_2 \in Z^p(\mathscr{U}_2,\mathscr{F})$ and $\eta \in C^{p-1}(\mathscr{U}_{12},\mathscr{F})$ be such that $\xi_{2|_{X_1\cap X_2}} - \xi_{1|_{X_1\cap X_2}} = \delta\eta$. Now let $\tilde{\eta} \in C^{p-1}(\mathscr{U}_2,\mathscr{F})$ be the trivial extension of η . Then $(\xi_2 - \delta\tilde{\eta})_{|X_1\cap X_2} = \xi_{1|_{X_1\cap X_2}}$. We define $\xi \in Z^p(\mathscr{U},\mathscr{F})$ by

$$\begin{cases} \xi_{|X_1} := \xi_1 \\ \xi_{|X_2} := \xi_2 - \delta \tilde{\eta}. \end{cases}$$

This is well-defined because of (\spadesuit) , and we have $u(\eta, \xi) = (\xi_1, \xi_2)$.

Step 3. Here we conclude the proof of the lemma. By hypothesis Ker γ is separated; and by the above claim u has closed image since v is continuous. On the one hand, by the Banach open theorem u is quasi open. On the other hand, from the commutativity of the left square in the diagram from step 2 u' results quasi-open.

For the bumping techniques we shall need the next

LEMMA 4. Let Y be a complex space and Y_1, Y_2 open subsets such that $Y = Y_1 \cup Y_2$. Let $\mathscr{F} \in \text{Coh}(Y)$ and q a positive integer. Then $H^q(Y, \mathscr{F})_{\text{sep}}$ vanishes if the subsequent two statements hold.

- (a) $H^q(Y_1, \mathcal{F})_{\text{sep}}$ vanishes.
- (b) $Y_1 \cap Y_2$ is q-Runge in Y_2 .

PROOF. We let \mathscr{U} be a special covering of Y and set: $\mathscr{U}_1 := \mathscr{U}|_{Y_1}, \mathscr{U}_2 := \mathscr{U}|_{Y_2}$, and $\mathscr{U}_{12} := \mathscr{U}|_{Y_1 \cap Y_2}$. Statement (a) means that the natural coboundary map $\delta : C^{q-1}(\mathscr{U}|_{Y_1},\mathscr{F}) \to Z^q(\mathscr{U}|_{Y_1},\mathscr{F})$ has dense range. We have to show that $\delta : C^{q-1}(\mathscr{U},\mathscr{F}) \to Z^q(\mathscr{U},\mathscr{F})$ has dense range. For this, we consider the map

$$\rho: C^{q-1}(\mathscr{U}_1,\mathscr{F}) \oplus C^{q-1}(\mathscr{U}_2,\mathscr{F}) \to Z^q(\mathscr{U}_{12},\mathscr{F})$$

defined by $\rho(\xi_1, \xi_2) := \delta(\xi_1|_{Y_{12}} - \xi_2|_{Y_{12}})$ where $Y_{12} := Y_1 \cap Y_2$.

We claim that ρ is surjective. To show this, note that by proposition 1 one has $Z^q(\mathscr{U}_{12},\mathscr{F})=\delta C^{q-1}(\mathscr{U}_{12},\mathscr{F})$. Now let $\alpha\in C^{q-1}(\mathscr{U}_{12},\mathscr{F})$ and consider $\xi_1:=\tilde{\alpha},\xi_2:=0$, where $\tilde{\alpha}$ is the trivial extension of α to $C^{q-1}(\mathscr{U}_1,\mathscr{F})$. Then $\rho(\xi_1,\xi_2)=\delta\alpha$, whence the surjectivity of ρ ; hence ρ is open. Consequently, it has the lifting property of sequences. In order to finish the proof of the lemma, we fix $\xi\in Z^q(\mathscr{U},\mathscr{F})$ arbitrary. Then choose a sequence $\{\theta_1^{(n)}\}_n\subset C^{q-1}(\mathscr{U}_1,\mathscr{F}),\ \delta\theta_1^{(n)}\to\xi|_{\gamma_1}$. Let $\theta_2\in C^{q-1}(\mathscr{U}_2,\mathscr{F}),\ \delta\theta_2=\xi|_{\gamma_2}$. (Note that Y_2 is q-complete.) Therefore in $Z^q(\mathscr{U}_{12},\mathscr{F})$ one has $\delta(\theta_1^{(n)}|_{\gamma_{12}})-\delta(\theta_2|_{\gamma_{12}})\to 0$

Now choose sequences $\{\alpha_1^{(n)}\}_n \subset C^{q-1}(\mathcal{U}_1, \mathcal{F})$ and $\{\alpha_2^{(n)}\}_n \subset C^{q-1}(\mathcal{U}_2, \mathcal{F})$ which converge to zero and such that

$$\delta(\alpha_1^{(n)}) - \delta(\alpha_2^{(n)}) = \delta(\theta_1^{(n)}) - \delta(\theta_2).$$

Thus $u^{(n)} := \alpha_2^{(n)} - \theta_2 - \alpha_1^{(n)} + \theta_1^{(n)} \in Z^q(\mathcal{U}_{12}, \mathscr{F})$. Now $Z^{q-1}(\mathcal{U}_2, \mathscr{F}) \to Z^{q-1}(\mathcal{U}_{12}, \mathscr{F})$ has dense range from (b), proposition 1, and lemma 2. Thus there exists a sequence

$$\{h^{(n)}\}_n \subset Z^{q-1}(\mathcal{U}_2, \mathcal{F}), \text{ with } h^{(n)}|_{Y_{1,2}} - u^{(n)} \to 0$$

on Y_{12} . Let $\tilde{h}_1^{(n)}, \tilde{u}^{(n)}$ be the trivial extensions to $C^{p-1}(\mathcal{U}_1, \mathcal{F})$. Define a sequence $\{\eta^{(n)}\}_n$ in $C^{q-1}(\mathcal{U}, \mathcal{F})$ by:

$$\eta^{(n)} := \begin{cases} \theta_1^{(n)} - \alpha_1^{(n)} + \tilde{h}_1^{(n)} - \tilde{u}^{(n)} & \text{on } \mathcal{U}_1 \\ \theta_2 - \alpha_2^{(n)} + h_2^{(n)}, & \text{on } \mathcal{U}_2 \end{cases}$$

Then $\delta \eta^{(n)} \to \xi$, whence the lemma.

We conclude this paragraph with the next:

LEMMA 5 Let $\pi: X \to S$ be a holomorphic map of complex spaces and $D \subseteq S$ an open subset such that $\pi^{-1}(D)$ is q-complete. Let also $\varphi_1, \varphi_2 \in C^\infty(S, \mathbb{R})$ be two r-convex functions with the same positivity directions. Set $U_i := \{s \in D; \varphi_i(s) < 0\}, i = 1, 2,$ and p = q + r - 1. Then $\pi^{-1}(U_1 \cap U_2)$ is p-complete and p-Runge in $\pi^{-1}(U_2)$.

PROOF. Let $\psi: \pi^{-1}(D) \to (0, \infty)$ be q-convex and exhaustive. For every real number C > 0 define a family of continuous exhaustion functions $\psi_C: \pi^{-1}(U_2) \to \mathbb{R}$ by

$$\psi_C := \psi - 1/(\varphi_2 \circ \pi) + C \cdot \max(\varphi_1 \circ \pi, \varphi_2 \circ \pi).$$

If $K \subset \pi^{-1}(U_1 \cap U_2)$ is a compact set, then, with a large enough C > 0, we get

$$K \subset \{\psi_c < 0\} \subseteq \pi^{-1}(U_2).$$

A suitable smooth p-convex approximation of ψ_C in the C^o -topology ([16]) enables us to conclude that $\pi^{-1}(U_1 \cap U_2)$ is p-Runge in $\pi^{-1}(U_2)$.

The p-completeness of $\pi^{-1}(U_1 \cap U_2)$ results if one approximates the function

$$\psi - 1/\max(\varphi_1 \circ \pi, \varphi_2 \circ \pi) \in C^o(\pi^{-1}(U_1 \cap U_2), \mathsf{R})$$

in the C^{o} -topology by smooth p-convex functions ([16]).

3. The results.

Here is our relative vanishing theorem for families of q-complete complex spaces.

THEOREM 1. Let $\pi: X \to S$ be a locally q-complete morphism of complex spaces. If S is r-complete, then X is cohomologically (q+r)-complete. Moreover, $H^{q+r-1}(X,\mathcal{F})_{\text{sep}}$ vanishes for every coherent analytic sheaf \mathcal{F} on X.

PROOF. We consider ([16]) a r-convex exhaustion function $h: S \to \mathbb{R}$ such that for every real number λ if $S(\lambda) := \{s \in S; h(s) < \lambda\}$, then the set

$${s \in S; h(s) = \lambda} \setminus \partial S(\lambda)$$

contains at most one point. Correspondingly, define the sets $X(\lambda) := \pi^{-1}(S(\lambda))$.

Put p = q + r - 1 and let $\mathscr{F} \in \text{Coh}(X)$. We claim that for every pair of real numbers $\lambda < \mu$ we have:

- (a) The restriction $H^p(X(\mu), \mathcal{F}) \to H^p(X(\lambda), \mathcal{F})$ has dense range;
- (b) $H^i(X(\lambda), \mathcal{F})$ vanishes for all $i \geq q + r$;
- (c) $H^p(X(\mu), \mathscr{F})_{sep}$ vanishes.

First we show that (a) holds. For this, we define $T \subseteq \mathbb{R}$ to be the set of all real numbers μ such that the restriction map $H^p(X(\mu), \mathscr{F}) \to H^p(X(\lambda), \mathscr{F})$ has dense image for every real number λ with $\lambda < \mu$.

Obviously, T is not empty. In fact if $\mu_* := \min\{h(s); s \in S\}$, then one sees easily that $(-\infty, \mu_*] \subset T$. Also, by lemma 2 and a standard argument of Fréchet spaces, T is closed. To prove T is open, we use the bumping technique of Andreotti and Grauert. To begin with, fix some $\mu \in T$. We shall find $\epsilon_o > 0$ such that $\mu_o + \epsilon_o \in T$. Recall that $\{h = \mu_o\} \setminus \partial S(\mu_o)$ is empty or

equals $\{s_o\}$ for some $s_o \in S$. We treat only the second case since the first one is similar (so we omit its proof).

Let $U \subset S$ be a Stein open neighborhood of s_o such that $\pi^{-1}(U)$ is q-complete and $\overline{U} \cap \overline{S(\mu_o)} = \emptyset$. Choose finitely many Stein open sets $\{U_j\}, j=1,\ldots,k$, disjoint from U, which cover $\partial S(\mu_o)$ and such that $\pi^{-1}(U_j)$ are q-complete. Let $V_j \subset U_j$ be also open Stein sets such that $\{V_j\}_j$ still covers $\partial S(\mu_o)$. Then select $\{\rho_j\} \in C^\infty(U_j, \mathbb{R}), \rho_j \geq 0$, and $\rho_j \equiv 1$ on $V_j, j=1,\ldots,k$. Define smooth functions $h_j: X \to \mathbb{R}$ by

$$h_j:=h-\sum_{\nu=1}^j c_{
u}
ho_{
u}, j=1,\ldots,k,$$

where $c_v > 0$ are small enough constants such that $h_o := h, h_1, \dots, h_k$, are r-convex with the same positivity directions. Set

$$S_i := \{ s \in S; h_i(s) < \mu_o \}, j = 1, \dots, k \text{ and } S_o := S(\mu_o).$$

Obviously, $S_j \setminus S_{j-1} \subseteq U_j$. Also since h is proper, there exists $\epsilon_o > 0$ with $S(\mu_o + \epsilon_o) \subseteq S_k \cup U$. We define for an arbitrary real number μ and integer $j = 0, \ldots, k$, the set

(1)
$$X_i(\mu) := \pi^{-1}(S_i \cap S(\mu)).$$

Since $S(\mu) = (S(\mu) \cap S_k) \cup (S(\mu) \cap U)$ we get: $X(\mu) = X_k(\mu) \cup V(\mu)$, where $V(\mu) := \pi^{-1}(S(\mu) \cap U)$ is *p*-complete by lemma 4. Moreover, we remark that

(2)
$$X_k(\mu) \cap V(\mu)$$
 is p-Runge in $V(\mu)$.

Therefore $H^p(X(\mu), \mathscr{F}) = H^p(X_k(\mu), \mathscr{F}) \oplus H^p(V(\mu), \mathscr{F}) = H^p(X_k(\mu), \mathscr{F}).$ Now fix μ and λ with $\mu_o < \mu \le \mu_o + \epsilon_o$ and $\lambda < \mu$. To get (a) we show inductively on j that

$$(\heartsuit)$$
 $H^p(X_i(\mu), \mathscr{F}) \to H^p(X_i(\lambda), \mathscr{F})$

has dense range. For j = 0 this is clear since $\mu_o \in T$. Now let $j \ge 1$. We have

(3)
$$X_j(\mu) = X_{j-1}(\mu) \cup V_j(\mu)$$

where $V_j(\mu) := \pi^{-1}(U_j \cup S(\mu))$. Note also that

(4)
$$X_{j-1}(\mu) \cap V_j(\mu)$$
 is p-complete and p-Runge in $V_j(\mu)$.

This is a consequence of lemma 5 for $D:=U_j, \varphi_1:=h_{j-1}-\mu_o$, and $\varphi_2:=h-\mu$. Now, from Mayer-Vietoris sequence, one gets the subsequent commutative diagram with exact rows (Note that $V_j(\mu)$ and $V_j(\lambda)$ are p-complete)

$$\begin{array}{ccccc} H^{p-1}(X_{j}(\mu)\cap V_{j}(\mu),\mathscr{F}) & \to & H^{p}(X_{j}(\mu),\mathscr{F}) & \to & H^{p}(X_{j-1}(\mu),\mathscr{F}) & \to & 0 \\ \downarrow & & \downarrow & & \downarrow \\ H^{p-1}(X_{j}(\lambda)\cap V_{j}(\lambda),\mathscr{F}) & \to & H^{p}(X_{j}(\lambda),\mathscr{F}) & \to & H^{p}(X_{j-1}(\lambda),\mathscr{F}). \end{array}$$

Lemma 3 applied for $X_1 := X_{j-1}(\lambda), X_2 := V_j(\lambda)$; the *p*-completeness of X_2 and $X_1 \cap X_2$; and corollary 1 yield (\heartsuit) .

Statement (b) is similar to (a), (and, in fact easier) so we omit its proof. In order to prove statement (c), one chooses a a special covering \mathcal{U} of X and showes that the coboundary map

$$\delta: C^{q+r-2}(\mathscr{U}_{|_{X(\omega)}},\mathscr{F}) \to Z^{q+r-1}(\mathscr{U}_{|_{X(\omega)}},\mathscr{F})$$

has dense range. This follows by lemma 4 and the proof of (a) given above by using (1) to (4).

Now the cohomological statement of the theorem follows in a standard way, because for all $\nu=0,1,\ldots$, we have that $H^i(X(\nu),\mathscr{F})$ vanishes for all $i\geq q+r$, and the restriction maps $H^{q+r-1}(X(\nu+1),\mathscr{F})\to H^{q+r-1}(\nu),\mathscr{F})$ have dense image.

In order to obtain "the moreover", note that for every special covering $\mathscr U$ of X, the restriction maps $C^{p-1}(\mathscr U_{|_{X(\nu+1)}},\mathscr F)\to C^{p-1}(\mathscr U_{|_{X(\nu)}},\mathscr F), \nu=0,1,\ldots,$ are surjective. Also by lemma 2 and (a) from above, the restrictions $Z^p(\mathscr U_{|_{X(\nu+1)}},\mathscr F)\to Z^p(\mathscr U_{|_{X(\nu)}},\mathscr F)$ have dense range. A standard argument of Fréchet spaces yields that the coboundary map $\delta:C^{p-1}(\mathscr U,\mathscr F)\to Z^p(\mathscr U,\mathscr F)$ has dense range.

Here we give an improvement of theorem 1 in a particular case.

COROLLARY 2 Let $\pi: X \to S$ be q-convex and locally q-complete. If S is r-complete, then X is cohomologically (q+r-1)-complete.

PROOF. Let $\mathscr{F} \in \operatorname{Coh}(X)$. One has to check that the cohomology group $H^{q+r-1}(X,\mathscr{F})$ is separated. If r=1, this follows from ([11]); for $r \geq 2$ one applies ([10]).

REMARKS. 1) ([10], p. 995]) Let $\pi: X \to S$ be a q-convex morphism. Then the canonical topologies on $H^i(X, \mathcal{F}), \mathcal{F} \in \text{Coh}(X)$, are separated for all indices $i \ge q+1$. (No further assumption on S!) It is unknown if this is true for i=q.

2) If $\pi: X \to S$ is locally q-convex and $\mathscr{F} \in \operatorname{Coh}(X)$, then the higher direct image sheaf $R^i\pi_*(\mathscr{F})$ is coherent for all $i \geq q$. However, this and the Leray spectral sequence do not imply our theorem, since $R^i\pi_*(\mathscr{F})$ for i < q may not be coherent.

The result from theorem 1 is sharp, in fact we show:

Example 2. For every positive integers q, r, there exists a holomorphic fi-

bration π from X to S with typical fiber F such that S and F are r-complete and q-complete respectively, and nevertheless, $H^{q+r-1}(X,\mathcal{O}_X)$ does not vanish. (In fact, it has infinite dimension over C.)

Before getting involved with the example, we recall some facts:

- (•) Let \mathscr{F} and \mathscr{G} be coherent analytic sheaves on the complex spaces Y and Z. We denote by $\mathscr{F} \square \mathscr{G}$ the (coherent analytic) sheaf $p_Y^* \mathscr{F} \hat{\otimes} p_Z^* \mathscr{G}$ on $Y \times Z$, where p_Y and p_Z stands for the canonical projections on Y and Z respectively. E.g. $\mathscr{O}_Y \square \mathscr{O}_Z = \mathscr{O}_{Y \times Z}$.
- (•) The following Künneth formula due to Cassa ([4]) holds. Assume that the cohomology groups $H^j(Z,\mathcal{G}), j=0,1,\ldots$, are Hausdorff. Then for every non-negative integer k there exists a *topological* isomorphism

$$H^k(Y imes Z, \mathscr{F} \square \mathscr{G}) \cong \bigoplus_{i+j=k} \left(\left(H^i(Y, \mathscr{F})_{\operatorname{sep}} \ \hat{\otimes} \, H^j(Z, \mathscr{G}) \right) \oplus R_{ij} \right)$$

where R_{ij} are complex vector space of infinite dimension (with the trivial topology) if $H^i(Y, \mathcal{F})$ is not-Hausdorff and $H^j(Z, \mathcal{G})$ does not vanish; otherwise $R_{ij} = \{0\}$.

Now, the example goes as follows. Skoda ([14]) produced a locally trivial holomorphic fibration $f: M \to D$ with fibre \mathbb{C}^2 and base $D \subset \mathbb{C}$ open, such that M is not Stein. Notice that $H^1(M, \mathcal{O}_M)$ is not separated ([7]).

Set $X = M \times (C^r \setminus \{0\}) \times (C^q \setminus \{0\})$, $S = D \times (C^r \setminus \{0\})$ and π from X to S canonically induced by f and the natural projection on $C^r \setminus \{0\}$. It is evident that π is a fibre bundle with q-complete fibre and r-complete base space. Now, the above Künneth formula says that $H^{q+r-1}(X, \mathcal{O}_X)$ is infinitely dimensional; a fortiori $H^{q+r-1}(X, \mathcal{O}_X) \neq 0$.

Here we give some immediate consequences to theorem 1.

COROLLARY 3. Every locally q-complete open subset of a r-complete complex space is cohomologically (q + r)-complete.

COROLLARY 4. Let $E \to S$ be a holomorphic fibre bundle with fiber F. Suppose that F and S are q-complete and r-complete respectively. Then E is cohomologically (q+r)-complete.

COROLLARY 5. Let X be a r-complete complex space and $D \subset X$ an open set such that the inclusion map $\iota: D \to X$ is q-convex. Then D is (q+r-1)-complete.

PROOF, Let $\psi: X \to \mathbb{R}$ be r-convex and exhaustive, and $\varphi: D \to \mathbb{R}$ the function which gives the q-convexity of ι . Then the set $\{x \in D; \varphi(x) \le c_{\sharp}\}$ is closed in X; therefore, by standard arguments there exists a smooth rapidly.

increasing and convex function $\chi : \mathbb{R} \to \mathbb{R}$ such that the function $\tilde{\varphi} : D \to \mathbb{R}$ defined by $\tilde{\varphi} = \chi(\psi) + \varphi$ is (q + r - 1)-convex and exhaustive.

Remark. This corollary does not hold for arbitrary q-convex mappings. (See the example 1 in \S 2.)

The same method used for the proof of theorem 1, together with the subsequent two lemmas

LEMMA 6. Let Y be a p-complete complex space of dimension n and U a p-Runge domain. Then $H_i(Y, U; G) = 0$ for $i \ge n + p$ and every abelian group G.

LEMMA 7. Let Y be a p-complete complex space of dimension n which is locally a set theoretic complete intersection and U a p-Runge domain. Then for every abelian group G, $H_c^i(Y;G)=0$ for $i \leq n-p$ and the natural map $H_c^{n-p+1}(U;G) \to H_c^{n-p+1}(Y;G)$ is injective.

from [15] and [16] respectively give us, mutatis mutandis, the following result concerning the vanishing of other cohomology groups on X, namely;

THEOREM 2. Let $\pi: X \to S$ be locally q-complete. Let $n = \dim(X)$ and assume that S is r-complete. Then, for every abelian group G we have:

- (1) $H_i(X,G)$ vanishes for $i \ge n+q+r-1$.
- (2) $H_c^i(X,G)$ vanishes for $i \le n (q+r) + 1$ if X is of pure dimension and locally a set theoretic complete intersection.

(We recall that a complex space Y of pure dimension n is said to be *locally* a set theoretic complete intersection if each point $y \in Y$ admits a local chart $\iota: V \to \hat{V} \subset \mathbb{C}^N$ with \hat{V} open such that $\iota(V) \subset \hat{V}$ is an analytic subset given by precisely N - n equations.)

As an interesting application of our method, we have:

COROLLARY 6. Let D be a locally q-complete open subset of a r-complete complex space X of dimension n. Set p=q+r-1. Then $H_{n+p-1}(D;Z)$ is torsion free and $H_i(D;Z)$ vanishes for $i \ge n+p$. Moreover, if ∂D is real-analytic, then $H_{n+p-1}(D,Z)$ is free.

REMARK. The first part of corollary 6 was proved by Bolondi ([3]) in the case q = r = 1.

4. Some remarks on locally 1-convex maps.

Motivated by what we proved by now, one should ask if there are also similar global finiteness theorems for X, when $\pi: X \to S$ is locally q-convex and S enjoys some convexity properties, like r-convexity.

In general, this is not true, e.g. let $\pi: X \to \mathbb{C}^n$ be as in example 1 from § 2 with A an infinite discrete set. Then π is 1-convex, \mathbb{C}^n is Stein, and X fails to be even cohomologically (n-1)-convex. The situation does not improve even if we assume S compact. A simple example is the canonical map $\pi: X = \mathbb{C}^n \setminus \{0\} \to S = \mathbb{P}^{n-1}$, which, of course, is locally 1-convex, and, again X fails to be cohomologically (n-1)-convex. (However, without any further assumption on S, if $\pi: X \to S$ is q-convex and $\pi(X)$ is relatively compact in S, then X is q-convex.)

There is one particular case of the situation (\clubsuit) considered in the introduction which may be of some interest, namely; Let $\pi: X \to S$ be locally 1-convex. Then for every $s \in S$ the fiber $X_s := \pi^{-1}(s)$ is a 1-convex space which contains an exceptional compact analytic set E_s . Put $q_s := \dim(E_s)$ if X_s is not Stein; otherwise we take $q_s = 0$. We assume $q := q(\pi) := \sup_{s \in S} q_s < \infty$.

Recall the relative Stein factorization from ([9]). There exist: a complex space Y together with a proper surjective holomorphic map $\rho: X \to Y$ such that $\rho_*(\mathscr{O}_X) = \mathscr{O}_Y$, and Stein morphism $\sigma: Y \to S$ such that $\sigma \circ \rho = \pi$. Moreover, if $E = \{x \in X; \dim(\rho^{-1}(\rho(x))) > 0\}$ denotes the degeneracy set of ρ , then the restriction of π from E into S is proper. In particular, $\pi(E)$ is an analytic subset of S, and the restriction σ from $\rho(E)$ onto $\pi(E)$ is a finite map. One checks easily that $q = \sup\{\dim \pi^{-1}(\pi(x)); x \in E\}$.

PROPOSITION 2. If q > 0, then X is cohomologically (q + r)-complete.

PROOF. Since S is r-complete, $\rho(E)$ is r-complete and then E is (q+r)complete ([17]); hence $\rho(E)$ and E have a fundamental systems of r-complete and (q+r)-complete neighborhoods respectively. By theorem 1, Y is cohomologically (r+1)-complete; hence from a well-known exact sequence one has $H^i_{\Phi}(Y \setminus \rho(E), \mathscr{G}) = 0$ if $i \ge r + 1$ and $\mathscr{G} \in Coh(Y)$, where " Φ " means the family of supports made up from all subsets of $Y \setminus \rho(E)$ which are closed in Y. Similarly, one gets surjections $H^j_{\Psi}(X\backslash E,\mathscr{F})\to H^j(X,\mathscr{F})$ for $j\geq q+r$ and $\mathscr{F} \in \operatorname{Coh}(X)$, where " Ψ " means the family of supports made up from all subsets of $X \setminus E$ which are closed in X. Since π is proper, by Grauert's coherence theorem, $\mathscr{G} := \rho_*(\mathscr{F})$ is coherent. On the other hand, as π is closed $X \setminus E \cong Y \setminus \rho(E),$ may identify and and we Φ $H_*^k(X \setminus E, \mathscr{F}) \cong H_*^k(Y \setminus \rho(E), \rho_*(\mathscr{F}))$ for every k, whence the proposition.

Remark. For q=0 we deduce only the cohomological (r+1)-completeness of X.

Now, we extend a result from [17] to families of 1-convex spaces.

PROPOSITION 3. If $\pi: X \to S$ is 1-convex and S is r-complete, then X is (q+r)-complete.

PROOF. (Sketch) We consider $\varphi: X \to \mathsf{R}$ and c_\sharp according to the definition. By replacing φ with $\chi(\varphi)$ for a smooth convex function $\chi: \mathsf{R} \to \mathsf{R}$ such that $(-\infty, c_\sharp] = \{\chi = 0\}$ and χ is strictly increasing on $[c_\sharp, \infty)$, we may assume that $c_\sharp = 0$ and φ is plurisubharmonic on the whole space X. For every non-negative real number c we set $X(c) := \{x \in X; \varphi(x) \le c\}$.

Let $\psi: S \to \mathbb{R}$ be r-convex and exhaustive. Then for every closed subset $T \subset Y$ such that the restriction of σ from T to S is proper, there is a smooth function f on Y which is r-convex on T. In fact, if $\{V_i\}_{i \in I}$ is a locally finite open covering of S such that $Y_i := \sigma^{-1}(V_i), i \in I$, are Stein, and $f_i: Y_i \to \mathbb{R}$ are 1-convex and exhaustive, we put

$$f := \phi \circ \sigma + \sum \epsilon_i(\lambda_i \circ \sigma) f_i$$

where $\{\lambda_i\}_{i\in I}$ is a partition of unity subordinate to the covering $\{V_i\}_{i\in I}$ and $\epsilon_i > 0, i \in I$, are sufficiently small constants (which depend on T).

Now, since $E \subset X(c_{\sharp})$ and for $T := \rho(X(c_{\sharp}))$ with some fixed $c_* > c_{\sharp}$, there exists a smooth function Φ on X which is (q+r)-convex on $X(c_*)$, and here Φ and $\psi \circ \pi + \varphi$ have the same positivity directions ([17]).

Since $\psi \circ \pi + \varphi$ is exhaustive for X and r-convex on $X \setminus X(c_{\sharp})$, there exist a smooth rapidly increasing convex function $\mu : \mathbb{R} \to \mathbb{R}$ and $\theta \in C^{\infty}(X, \mathbb{R})$ which equals 1 on $X(c_{\sharp})$ and $\sup(\theta) \subset X(c_{*})$ such that the function $\mu(\psi \circ \pi + \varphi) + \theta \Phi : X \to \mathbb{R}$ is (q + r)-convex and exhaustive.

ACKNOWLEDGEMENT. This paper was finished when the author held a position at the Institute of Mathematics of the Zürich University.

REFERENCES

- A. Andreotti, H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259
- E. Ballico, Finitezza e annullamento di gruppi di coomologia su uno spazio complesso, Boll. Un. Mat. Ital. (6), 1-B (1982), 131-142.
- G. Bolondi, Homologie des espaces complexes, Singularities, Banach Center Publ. 20, Warsaw 1988, 79–84.
- A. Cassa, Formule di Künneth per la coomologia a valori in un fascio, Ann. Scuola Norm. Sup. Pisa 27 (1973), 905-931.
- J.-E. Fornæss, 2-dimensional counterexamples to generalizations of the Levi Problem, Math. Ann. 230 (1997), 169-174.
- B. Jennane, Groupes de cohomologie d'un fibre holomorphe a base et a fibre de Stein, Invent. Math. 54 (1979), 75-79.
- B. Jennane, Problème de Levi et morphisme localement de Stein, Math. Ann. 256 (1981), 37–42.
- 8. B. Jennane, Remarques sur les ouverts localement de Stein, Math. Ann. 263 (1983), 371-375.

- K. Knorr, M. Schneider, Relativexzeptionelle analytische Mengen, Math. Ann. 193 (1971), 238-254.
- 10. J.-P. Ramis, Théorèmes de separation et de finitude pour l'homologie et la cohomologie des espaces (p,q) convexes-concaves, Ann. Scuola Norm. Sup. Pisa 27 (1973), 933-997.
- P. Siegfried, Un théorème de finitude pour les morphismes q-convexes, Comment. Math. Helv. 49 (1974), 417-459.
- 12. Y.-T. Siu, The 1-convex generalization of Grauert's direct image theorem, Math. Ann. 190 (1971), 203-215.
- 13. Y.-T. Siu, Dimensions of sheaf cohomology groups under holomorphic deformations, Math. Ann. 192 (1971).
- 14. H. Skoda, Fibrés holomorphe à base et à fibre de Stein, Invent. Math. 43 (1977), 97-107.
- V. Vâjâitu, Cohomology with compact supports for q-complete spaces, J. reine angew. Math. 436 (1993), 45-56.
- V. Vâjâitu, Approximation theorems and homology of q-Runge pairs, J. reine angew. Math. 499 (1994), 179-199.
- V. Vâjâitu, Some convexity properties of morphisms of complex spaces, Math. Z. 217 (1994), 215-245.

INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY P.O. BOX, 1–764.
RO 70700, BUCHAREST ROMANIA