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COHOMOLOGY GROUPS OF LOCALLY ¢g-COMPLETE
MORPHISMS WITH r-COMPLETE BASE

VIOREL VAJAITU

To the memory of my Professor Martin Jurchescu

1. Introduction.

Vanishing theorems are important in complex analysis. One general way to
obtain them was given by Andreotti and Grauert ([1]), where they showed
that every g-complete complex space is cohomologically g-complete. (For
the definitions, see below.)

Our main concern in this paper is to prove a variant of this theorem for
families of g-complete spaces. We consider the following situation:

(%) Let m:X — S be a holomorphic map of complex spaces such that its fi-
bres n=1(s),s € S, are g-complete. What can be said about the vanishing of the
cohomology groups H'(X, %), % € Coh(X), for i in a suitable range?

Simple examples show that there are holomorphic maps 7: X — S of
complex manifolds such that .S and all the fibes of  are Stein, and, however,
H"!(X,0) does not vanish, where n is the complex dimension of X; e,g.
X = C"\{0},S = C"!, and 7 the projection onto the first n — 1 coordinates.
Therefore, to answer our question, we have to make additional assumptions
on the dependence of the family of g-complete spaces on the base points. In
this way we are lead to locally q-complete morphins, and, the vanishing
theorem holds; viz. theorem 1 in §3, which says that X is cohomologically
(g + r)-complete provided that w and S are locally g-complete and r-com-
plete respectively. See also corollary 2 in §3.

As consequences (viz., theorem 2 and corollaries 3, 4, and 6), one gets
vanishing theorems for the cohomology of locally g-complete open sets in r-
complete spaces.
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Particular cases of our results were treated by various authors; Ballico
([2]), Bolondi ([3]), and Jennane ([6], [7], [8]).

Throughout this paper all complex spaces are assumed to be reduced and
with countable topology.

2. Preliminaries.

Let D be an open subset of C” and f € C*°(D,R). Let zy,...,z, be the com-
plex coordinates of C”". For every point w € D, the quadratic form

n

n N O =
C" 3¢ L(f,w)(§) = iFlm(W)ﬁifj €R,

is called the Levi form of f at w. We say that f is g-convex on D if its Levi
form L(f,w) has at least n — g + 1 positive eigenvalues for every w € D.

Let X be a complex space. A function ¢ : X — R, X a complex space, is
said to be g-convex if for each point x € X there is an holomorphic imbed-
ding ¢: U — U,U 3 x, U c C" open, and a g-convex function ¢ € C2(U,R)
which extends ¢|;.

We say that X is g-complete (resp. g-convex) if there exists a smooth ex-
haustion function ¢ : X — R which is g-convex on X\K for some suitable
compact subset K of X). The normalization is such that Stein spaces corre-
spond to 1-complete spaces.

Finitely many g-convex functions ¢, . .., ¥k, on X have the same positivity
directions if for each point xo € X there are: an holomorphic imbedding
U U, Usx,0UccC" open; g-convex extensions ¢; of ¢;,j=1,...,k;
and a complex vector subspace E of C" of dimension at least n — ¢ + 1 such
that all the Levi forms L(@1,2,), - - ., L(@k, Z0), 2, = t(xp) are positive definite
when restricted to E.

The motivation for this notion is the following: Let ¢; and ¢, be g-convex
with the same positivity directions. Then ¢; + ¢, is again g-convex and
max (¢, p2) can be approximated in the C°-topology by g-convex functions

([16D.

DEFINITION. Let w: X — S be a holomorphic map between complex
spaces. (We consider S as a space of parameters.)

(®) We say that 7 is: g-convex (resp. g-complete) if there exists a smooth
function ¢ : X — R and a real number c; (resp. ¢y = —o0) such that:

(i) ¢ is g convex on the open set {x € X;p(x) > ¢};
(ii) For every real number ), the restriction of 7 from {x € X;p(x) < A}
to S is proper.
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We call ¢ the exhaustion function of X and ¢y the convexity bound.

(e) We say that 7 is: locally g-convex (resp. locally g-complete) if every
point s € S has an open neighborhood U such that the restriction of 7 from
7~ 1(U) to U is g-convex (resp. g-complete).

REMARKS. 1) If 7: X — S is locally g-convex (resp. locally g-complete),
then its fibres X; := n~!(s),s € S, are g-convex (resp. g-complete) complex
spaces. In particular, if S is a point, the definitions of g-complete and g-
convex spaces are regained.

2) One verifies readily that 7 : X — S is locally g-complete if, and only if],
every point s € S has a neighborhood U such that 7~!(U) is g-complete. (An
analogous situation does not occur for g-convex mappings as the example 1
from below shows).

Moreover, in this case, if ¥ C U is an arbitrary Stein open set, then
7~ 1(V) is again g-complete.

3) Also, it is easy to check that if 7 is g-complete and S is r-complete
(resp. r-convex), then X is (g +r — 1)-complete (resp. (g + r — 1)-convex).
(This does not hold for locally g-complete mappings as the example 2 in § 3
shows.)

4) Locally 1-complete morphisms are also called locally Stein morphisms

(61, [7D.

ExamPLE 1. Let 4 C C" be a closed submanifold of pure dimension
d<n-2,and 7: X — C" the blowing-up of C" at A. Then = is l1-convex.

Indeed, if A={fi=...=fn=0} for some holomorphic functions
fiyeriif on C" we set h:C"—R by h(z)= (i@ +...+ (@)
exp(|| z ||?). Then, ¢ = h(r) together with ¢; = 0 as convexity bound show
the 1-convexity of . However, if d > 0, then for each open subset U C C
with UN A4 # 9,7~ '(U) is not 1-convex. (In fact, not even (n — d — 1)-con-
vex.)

By extending the usual notion of Runge domains in Stein spaces, we say
that an open subset D of a complex space X is g-Runge if for every compact
set K C D there is a g-convex exhaustion function ¢ : X — R (which may
depend on K) such that

K C {x € X;p(x) < 0}&D.

(Note that X is g-complete if and only if the empty set is g-Runge in X.)
With this definition, we reinterprete a result due to Andreotti and Grauert

(1.

PROPOSITION 1. Let D be a g-Runge domain in a g-complete complex space
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X. Then, for every coherent analytic sheaf F on X, H'(D,%) vanishes for
i > g, and the restriction map Hi' (X, %) — H9 (D, %) has dense range for
the natural topology.

A complex space X is said to be cohomologically q-complete (resp. coho-
mologically g-convex) if the cohomology groups H'(X,#),# € Coh(X)
vanish (resp. are finite dimensional complex vector spaces) for every i > g.

An open subset D of a complex space X is said to be locally g-complete if
for each point x € 9D there exists an open neighborhood U of X such that
U N D is g-complete. Equivalently, the inclusion map j: D — X is locally g-
complete.

In the sequel, topological vector spaces are such that its zero element has a
countable base of open neighborhoods. For such a topological vector space
E we denote by E,, the separated topological space associated with E,
namely; the quotient of E modulo the closure of its zero-element. The fol-
lowing result is evident.

LEMMA 1. Let u : E — F be a continuous map of topological vector spaces.
The following statements are equivalent one another:

a) u has the lifting property of sequences, i.e., for every sequence
{fu} Cu(E) with f, — 0 there is another sequence {e,} C u(E),e, — 0 and
u(e,) = fun>1.

b) u is quasi-open, i.e., the induced map ' : E — u(E) is open where
u(E) C F is endowed with the trace topology which comes from F.

By diagram chasing, the following is a consequence of the preceding lemma.

COROLLARY 1. Assume we have a commutative diagram of topological vec-
tor spaces with exact rows

E - F - G —- 0

al bl cl

E - F 5L @
where a, b, c, v are continuous linear maps. Suppose a and ¢ have dense range.
Then b has dense range provided that v is quasi-open.

Let X be a complex space. A Stein open covering % = (U,),c; of X is said
to be a special covering of X if % is a countable base of open subsets of X. If
D C X is open, we let %p :={U € %; U C D}. Obviously, % p is a special
covering of D.

Now, we let # € Coh(X). Since the spaces of Cech cochains C?*! (%,F),
p=0,1,..., are Fréchet spaces, and the coboundary maps
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§=8:CP(U,F)— CPY(U,%) are continuous, the spaces of cocycles
ZP(U,F) := Ker & are also Fréchet spaces.
Thus we have a simple:

LEMMA 2. For every non-negative integer p, the following statements are
equivalent:

a) The restriction map H?P (X, %) — HP (D, %) has dense range.

b) The restriction map ZP(U,F) — ZF(U\p,F) has dense range for any
special covering U of X.

c) Statement b) holds for one special covering ¥~ of X.

The next lemma is probably well known, but since we did not found any
reference in the literature we give it here.

LEmMMA 3. Let X be a complex space and X\, X, be open subsets. Let also
F € Coh(X) and p a non-negative integer such that H? (X, N X,, ¥ ) is Haus-
dorff. Then the natural map which comes from the Mayer-Vietoris sequence

H (X, UXy, F) — HY (X1, F)® H (X2, F)
is quasi-open. In particular, this holds if H?(X| N Xy, &) vanishes.

PRrOOF. Since the case p = 0 is clear, we may assume p > 1; and without
any loss of generality, let X = X; U X>. We break the proof into three steps.

Step 1. There is an special covering % = (U;);c; of X such that for the
next three sets of indices I, :={i€ I;U; C X;},:={ie I, U; C X} and
I := {i eLU cCcXin Xz}, it holds: (#) If i € 11\112 and j € 12\]]2, then
UnT; =0.

Indeed, first select %, an arbitrary special covering of X7 N X,. Then there
are disjoint open sets D; C X; and D, C X, such that X;\X, C D, and
X2\ X; C D,. Further choose %; and %, special coverings of Dy and D, res-
pectively. Finally, set % = the collection of all open sets from %, %, and
U1y. Note that, if U, N...N U, # 0, then U, U...U U, is either contained
in X7 or in X5.

Step 2. With the notations from above , there is a commutative diagram

O\ U, F) @ 22U, F) S (U, F)O 2 (U F) - (U, F)
al Bl vl
HP(X, U X, F) L OHN (X, F) @ H (X0, F) D HY(Xi N X, F),
where 3,7, 4,V are the natural maps, a is obtained by extending with zero
the natural map Z7(%, %) — HP(X; U X, %), and v,u are to be constructed
as follows:
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For
(¢,6) € 2°(U\, F) © Z° (U2, F),
set
(£1,€2) = &2p0n, ~ Elyry-
For
(n,6) € O (12, F) © 2 (U, F),
set

“(TL 5) = (5])(1 a€|X2 + 6ﬁ)7

where 7 € CP~1 (%2, F) is the trivial extension of n to CP~! (%, F).

We claim that: Im u = v~! (Ker 7).

Only “D” needs a proof. Let & € Z°P(%,,F),& € Z°P(%», %) and
n€CP (U, #) be such that &, . — iy, =60 Now let 7€
CP~! (%>, F) be the trivial extension of 7. Then (& — 67)y,nx, = 1y or,- We
define € € ZP (%, F) by

{ §x, ==&
€ix, =& — 6n.

This is well-defined because of (#), and we have u(n,&) = (&, &).

Step 3. Here we conclude the proof of the lemma. By hypothesis Ker 7 is
separated; and by the above claim u has closed image since v is continuous.
On the one hand, by the Banach open theorem u is quasi open. On the other
hand, from the commutativity of the left square in the diagram from step 2
' results quasi-open.

For the bumping techniques we shall need the next

LeEMMA 4. Let Y be a complex space and Y, Y, open subsets such that
Y=Y,UY, Let # € Coh(Y) and q a positive integer. Then HI(Y ,F)
vanishes if the subsequent two statements hold.

(a) HY("h,F )sep vanishes.

sep

(b) Y1 N Y, is g-Runge in Y>.

PrOOF. We let % be a special covering of Y and set: %) := U|y , U2 =
Uy, and Uz :=U ’YlﬁYz‘ Statement (a) means that the natural coboundary
map §: C Ny, F) — Z%(%|y,,#) has dense range. We have to show
that 6 : C9~1(%,#) — Z9(%, ) has dense range. For this, we consider the
map
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p: CU YU, F)® CT Uy, F) — Z9 (U1, F)

defined by p(&1, &) = 8(&ily,, — &ly,,) where Yy := Y1 N Ya.

We claim that p is surjective. To show this, note that by proposition 1 one
has Z9(%1y, F) = 6CT (W12, F). Now let a € CI~1(%,,, %) and consider
& = a,& =0, where & is the trivial extension of o to C9~!(%,,#). Then
p(&1,&) = 6o, whence the surjectivity of p; hence p is open. Consequently, it
has the lifting property of sequences. In order to finish the proof of the
lemma, we fix {€ Z%%,%) arbitrary. Then choose a sequence
(6™}, c CT V@, F), 66" — ¢€ly,. Let 6, € CI~\ (U, F), 80, = g|y (Note
that Y, is g-complete.) Therefore in Z%(%;,,%) one has (5(91 Iyn) -
6(62ly,,) = 0

Now choose sequences {al } c CTY(%,,#) and {a },l C C YUy, F)
which converge to zero and such that

8(al”) — 6(c”) = 6(6") — 5(62).

Thus u® :=o{" — 6, — ol + 6\ € Z9(U12, F). Now Z9'(U, F) —
Z9 (U3, %) has dense range from (b), proposition 1, and lemma 2. Thus
there exists a sequence

{(h™}, c ZI (U, F), with A, —u™ -0
on Yyp. Let A" ™ be the trivial extensions to CP~'(#;,#). Define a se-
quence {7}, in CT (%, F) by:
o 6" — o + B — 5" on @
9, — ag") + hg"), on ¥,
Then 6™ — ¢, whence the lemma.
We conclude this paragraph with the next:

LEMMA S Let m: X — S be a holomorphic map of complex spaces and
D&S an open subset such that n~'(D) is q-complete. Let also
@1, € C®(S,R) be two r-convex functions with the same positivity direc-
tions. Set U;:={s€ D;pi(s) <0},i=1,2, and p=g+r—1 Then
7~ (Uy 0 Us) is p-complete and p-Runge in 7 1(Uy).

PROOF. Let 9 : 7~!(D) — (0,00) be g-convex and exhaustive. For every
real number C > 0 define a family of continuous exhaustion functions
Yc : 71 (Uz) — R by

Ve =19 — 1/(p2 0m) + C - max(ypy o m, 2 0m).
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If K c 7~'(U; N U,) is a compact set, then, with a large enough C > 0, we
get

K C {th < 0}en ' (Uy).

A suitable smooth p-convex approximation of ¢ in the C°-topology ([16])
enables us to conclude that 7~1(U; N Uy) is p-Runge in 771 (U,).

The p-completeness of 7~ !(U; N Uy) results if one approximates the func-
tion

¥ — 1/ max(p; o7,y 0m) € C°(x~1 (U N U,),R)

in the C°-topology by smooth p-convex functions ([16]).

3. The results.

Here is our relative vanishing theorem for families of g-complete complex
spaces.

THEOREM 1. Let w: X — S be a locally q-complete morphism of complex
spaces. If S is r-complete, then X is cohomologically (q + r)-complete. More-

over, H**""\(X, & )sep vanishes for every coherent analytic sheaf # on X.

ProoF. We consider ([16]) a r-convex exhaustion function 4 : S — R such
that for every real number A if S(\) := {s € S;h(s) < A}, then the set

{s € S;h(s) = \}\OS(N)

contains at most one point. Correspondingly, define the sets X()):=
71 (S(A)).

Put p=g+r—1 and let & € Coh(X). We claim that for every pair of
real numbers A < p we have:

(a) The restriction H? (X (u), #) — HP(X()\), #) has dense range;
(b) H'(X()), #) vanishes for all i > g +r;
(c) HP(X(p), F),,, vanishes.

First we show that (a) holds. For this, we define T C R to be the set of all
real numbers p such that the restriction map HP (X (u), ) — HP(X()\), F)
has dense image for every real number A with A < p.

Obviously, T is not empty. In fact if u, := min{A(s);s € S}, then one sees
easily that (—oo,u.] C T. Also, by lemma 2 and a standard argument of
Freéchet spaces, T is closed. To prove T is open, we use the bumping tech-
nique of Andreotti and Grauert. To begin with, fix some yx € T. We shall
find €, > 0 such that y, + ¢, € T. Recall that {h = u,}\0S(y,) is empty or

sep
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equals {s,} for some s, € S. We treat only the second case since the first one
is similar (so we omit its proof).

Let U C S be a Stein open neighborhood of s, such that #~'(U) is g-
complete and UNS(u,) =0. Choose finitely many Stein open sets
{U;},j =1,...,k, disjoint from U, which cover 8S(u,) and such that 7~!(U;)
are g-complete. Let V;CU; be also open Stein sets such that {¥}}; still covers
OS(po). Then select {p;} € C*(U;,R),p; >0, and pj=1o0n V;,j=1,... k.
Define smooth functions 4; : X — R by

J
hi=h=Y cpnj=1,... .k

v=1

where ¢, > 0 are small enough constants such that h, := h, hy,..., h, are r-
convex with the same positivity directions. Set

S; = {s € S;hi(s) < po},j=1,...,kand S, := S(u,).

Obviously, S;\S;-1@U;. Also since h is proper, there exists ¢, >0 with
S(uo + €) C Sp U U. We define for an arbitrary real number y and integer
j=0,...,k, the set

(1) X)(u) == 77(8; N S(w)).

Since S(p) = (S(u) N Sk) U (S(p) NU) we get: X (u) = Xy(n) U V (1), where
V(p) := 7 1(S(u) N U) is p-complete by lemma 4. Moreover, we remark that

) Xi(1) N V() is p-Runge in V(u).

Therefore  HP(X (i), #) = H?(X(), F) ® HP(V (1), F) = H? (Xi(), F).
Now fix g and X with g, < u < po +¢€, and A < p. To get (a) we show in-
ductively on j that

© HP (X)), F) — HY(X(N), #)
has dense range. For j = 0 this is clear since u, € T. Now let j > 1. We have
3) Xj(1) = Xj-1(p) U Vi(p)

where Vj(u) := 7~1(U; U S(u)). Note also that

4) X;_1(n) N V;(u) is p-complete and p-Runge in Vj(u).

This is a consequence of lemma 5 for D := Uj, ¢ :=hi_1 — u,, and
@3 := h — p. Now, from Mayer-Vietoris sequence, one gets the subsequent
commutative diagram with exact rows (Note that V;(x) and V;()) are p-
complete)
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H X)) N Vi), #) - HXW),#) — H(XaW),F) — 0
!

! !
H (XN NV, %) — HXO),%) - HXa(),#).

Lemma 3 applied for X; := Xj_;(\), X2 := Vj(A); the p-completeness of X
and X N X3; and corollary 1 yield (©).

Statement (b) is similar to (a), (and, in fact easier) so we omit its proof.
In order to prove statement (c), one chooses a a special covering # of X
and showes that the coboundary map

§: C1 N, F) - 27N, F)

has dense range. This folows by lemma 4 and the proof of (a) given above by
using (1) to (4).

Now the cohomological statement of the theorem follows in a standard
way, because for all v=0,1,..., we have that H (X (v),#) vanishes for all
i>q+r, and the restriction maps H™"!(X(v+1),%) — HI"1(v), F)
have dense image.

In order to obtain “the moreover”, note that for every special covering #
of X, the restriction maps CP‘I(%X(M),.@') — P“(%lx(v),ﬁ),vzo,l,...,
are surjective. Also by lemma 2 and (a) from above, the restrictions
2Py F ) — ZP (U, F ) have dense range. A standard argument of
Fréchet spaces yields that the coboundary map & : CP~Y (U, F) — ZP (U, F)
has dense range.

Here we give an improvement of theorem 1 in a particular case.

COROLLARY 2 Let m: X — S be g-convex and locally q-complete. If S is r-
complete, then X is cohomologically (q + r — 1)-complete.

ProoF. Let # € Coh(X). One has to check that the cohomology group
HT"-1(X,#) is separated. If r = 1, this follows from ([11]); for > 2 one
applies ([10]).

ReMARksS. 1) ([10], p. 995]) Let 7 : X — S be a ¢g-convex morphism. Then
the canonical topologies on H'(X,%),# € Coh(X), are separated for all
indices i > ¢ + 1. (No further assumption on S !) It is unknown if this is true
fori=gq.

2)If 7: X — Sislocally g-convex and &# € Coh(X), then the higher direct
image sheaf R'm,(#) is coherent for all i > g. However, this and the Leray
spectral sequence do not imply our theorem, since R'm,(#) for i < g may not
be coherent.

The result from theorem 1 is sharp, in fact we show:

EXAMPLE 2. For every positive integers q, r, there exists a holomorphic fi-
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bration m from X to S with typical fiber F such that S and F are r-complete and
q-complete respectively, and nevertheless, H1*"~'(X,0y) does not vanish. (In
fact, it has infinite dimension over C.)

Before getting involved with the example, we recall some facts:

(e) Let # and ¢ be coherent analytic sheaves on the complex spaces Y
and Z. We denote by # (0% the (coherent analytic) sheaf Py FSps% on
Y x Z, where py and p; stands for the canonical projections on Y and Z
respectively. E.g. Oy 00z = Oy .

(o) The following Kiinneth formula due to Cassa ([4]) holds. Assume that
the cohomology groups H/(Z,%),j = 0,1,..., are Hausdorff. Then for every
non-negative integer k there exists a topological isomorphism

HNYxZ,70%) = P ((H"(Y, Fyp & H(Z,9)) @R,-,-)

i+j=k

where R;; are complex vector space of infinite dimension (with the trivial
topology) if H'(Y,#) is not-Hausdorff and H/(Z,%) does not vanish;
otherwise R;; = {0}.

Now, the example goes as follows. Skoda ([14]) produced a locally trivial
holomorphic fibration f : M — D with fibre C?> and base D C C open, such
that M is not Stein. Notice that H' (M, 0);) is not separated ([7]).

Set X = M x (C"\{0}) x (C\{0}),S = D x (C"\{0}) and = from X to §
canonically induced by f and the natural projection on C"\{0}. It is evident
that 7 is a fibre bundle with g-complete fibre and r-complete base space.
Now, the above Kiinneth formula says that H9*"~1(X, @Oy) is infinitely di-
mensional; a fortiori H9+"~1(X, 0y) # 0.

Here we give some immediate consequences to theorem 1.

COROLLARY 3. Every locally q-complete open subset of a r-complete com-
plex space is cohomologically (q + r)-complete.

COROLLARY 4. Let E — S be a holomorphic fibre bundle with fiber F. Sup-
pose that F and S are g-complete and r-complete respectively. Then E is coho-
mologically (q + r)-complete.

COROLLARY 5. Let X be a r-complete complex space and D C X an open set
such that the inclusion map v : D — X is g-convex. Then D is (q +r — 1)-com-
plete.

ProoOF, Let 3 : X — R be r-convex and exhaustive, and ¢ :D — R the
function which gives the g-convexity of ¢. Then the set {x € D; p(x) < ¢y} is
closed in X; therefore, by standard arguments there exists a smooth rapidly



172 VIOREL VAJAITU

increasing and convex function x : R — R such that the function ¢ : D — R
defined by ¢ = x(v) + ¢ is (¢ + r — 1)-convex and exhaustive.

ReMARK. This corollary does not hold for arbitrary g-convex mappings.
(See the example 1 in § 2.)

The same method used for the proof of theorem 1, together with the sub-
sequent two lemmas

LEMMA 6. Let Y be a p-complete complex space of dimension n and U a p-
Runge domain. Then H,(Y,U; G) = 0 for i > n+ p and every abelian group G.

LEMMA 7. Let Y be a p-complete complex space of dimension n which is lo-
cally a set theoretic complete intersection and U a p-Runge domain. Then for
every abelian group G, H(Y;G) =0 for i<n—p and the natural map
H' 7Y (U; G) — H'P*1(Y;G) is injective.

from [15] and [16] respectively give us, mutatis mutandis, the following result
concerning the vanishing of other cohomology groups on X, namely;

THEOREM 2. Let 7 : X — S be locally g-complete. Let n = dim(X) and as-
sume that S is r-complete. Then, for every abelian group G we have:

(1) Hi(X,G) vanishes fori >n+q+r— 1.

(2) Hi(X,G) vanishes for i <n— (q+r) + 1 if X is of pure dimension and
locally a set theoretic complete intersection.

(We recall that a complex space Y of pure dimension # is said to be locally
a set theoretic complete intersection if each point y € Y admits a local chart
t: ¥V — ¥ c CN with ¥ open such that (V) C ¥ is an analytic subset given
by precisely N — n equations.)

As an interesting application of our method, we have:

COROLLARY 6. Let D be a locally q-complete open subset of a r-complete
complex space X of dimension n. Set p =q+r — 1. Then H,,,_1(D;Z) is tor-
sion free and H;(D; Z) vanishes for i > n+ p. Moreover, if 8D is real-analytic,
then Hy,,, (D, Z) is free.

REMARK. The first part of corollary 6 was proved by Bolondi ([3]) in the
caseg=r=1.
4. Some remarks on locally 1-convex maps.

Motivated by what we proved by now, one should ask if there are also si-
milar global finiteness theorems for X, when 7: X — S is locally g-convex
and S enjoys some convexity properties, like r-convexity.
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In general, this is not true, e.g. let 7: X — C” be as in example 1 from § 2
with 4 an infinite discrete set. Then n is 1-convex, C" is Stein, and X fails to
be even cohomologically (n — 1)-convex. The situation does not improve
even if we assume S compact. A simple example is the canonical map
m: X = C"\{0} — S = P""!, which, of course, is locally 1-convex, and, again
X fails to be cohomologically (n — 1)-convex. (However, without any further
assumption on S, if 7 : X — § is g-convex and 7(X) is relatively compact in
S, then X is g-convex.)

There is one particular case of the situation () considered in the in-
troduction which may be of some interest, namely; Let 7 : X — S be locally
1-convex. Then for every s € S the fiber X, :=n"!(s) is a 1-convex space
which contains an exceptional compact analytic set E;. Put g, := dim(E;) if
X; is not Stein; otherwise we take g, =0. We assume ¢q:=gq(n):=
SUPyes gs < 00.

Recall the relative Stein factorization from ([9]). There exist: a complex
space Y together with a proper surjective holomorphic map p: X — Y such
that p,(0y) = Oy, and Stein morphism ¢:Y — § such that cop=r.
Moreover, if E = {x € X;dim(p~!(p(x))) > 0} denotes the degeneracy set of
p, then the restriction of 7 from E into S is proper. In particular, 7(E) is an
analytic subset of S, and the restriction o from p(E) onto w(E) is a finite
map. One checks easily that ¢ = sup{dim 7~ (n(x)); x € E}.

PROPOSITION 2. If ¢ > 0, then X is cohomologically (q + r)-complete.

PRroOF. Since S is r-complete, p(E) is r-complete and then E is (g + r)-
complete ([17]); hence p(E) and E have a fundamental systems of r-complete
and (q + r)-complete neighborhoods respectively. By theorem 1, Y is coho-
mologically (r + 1)-complete; hence from a well-known exact sequence one
has H5(Y\p(E),%) =0if i >r+ 1 and % € Coh(Y), where “9” means the
family of supports made up from all subsets of ¥\p(E) which are closed in
Y. Similarly, one gets surjections Hy(X\E,#) — H/(X,F) for j>q+r
and # € Coh(X), where “@” means the family of supports made up from all
suubsets of X'\ E which are closed in X. Since = is proper, by Grauert’s co-
herence theorem, % := p,(F) is coherent. On the other hand, as  is closed
and X\E=Y\p(E), we may identify & and ¥. Therefore
HY(X\E, %) =~ H*(Y\p(E), p.(%)) for every k, whence the proposition.

REMARK. For g = 0 we deduce only the cohomological (r + 1)-complete-
ness of X

Now, we extend a result from [17] to families of 1-convex spaces.
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PrOPOSITION 3. If m: X — S is 1I-convex and S is r-complete, then X is
(q + r)-complete.

ProOF. (Sketch) We consider ¢ : X — R and ¢y according to the defini-
tion. By replacing ¢ with x(¢) for a smooth convex function x : R — R such
that (—oo, ¢] = {x = 0} and yx is strictly increasing on [cy,0), we may as-
sume that ¢; = 0 and ¢ is plurisubharmonic on the whole space X. For every
non-negative real number ¢ we set X (c) := {x € X;¢(x) < c}.

Let ¢ : S — R be r-convex and exhaustive. Then for every closed subset
T C Y such that the restriction of o from T to S is proper, there is a smooth
function f on Y which is r-convex on 7. In fact, if {V;},; is a locally finite
open covering of S such that Y; := o~1(V;),i € I, are Stein, and f; : ¥; — R
are l-convex and exhaustive, we put

f:=¢00+26,‘()\,’00)f,'

where {\;},c; is a partition of unity subordinate to the covering {V;},.; and
€, > 0,i € I, are sufficiently small constants (which depend.on T).

Now, since E C X(cy) and for T := p(X(cy)) with some fixed c. > ¢;, there
exists a smooth function ¢ on X which is (¢ + r)-convex on X(c.), and here
@ and ) o m + @ have the same positivity directions ([17]).

Since 9 o 7 + ¢ is exhaustive for X and r-convex on X\ X(cy), there exist a
smooth rapidly increasing convex function p: R — R and 6 € C*(X,R)
which equals 1 on X(¢;) and sup(f) C X(c.) such that the function
uw(om+@)+6&: X — Ris (¢+r)-convex and exhaustive.
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