CONVERGENCE OF TIGHT ASYMPTOTIC MARTINGALES IN A BANACH SPACE

ŁUKASZ KRUK*

Abstract.

In this paper we show that a L^1 -bounded martingale $(X_n, F_n, n \ge 1)$ taking values in a Banach space E converges almost surely iff a family (P_{X_n}) of distribution of (X_n) is tight. A L^1 -bounded tight asymptotic martigale (amart) need not converge a.s., although it always converges in probability and, if E^* is separable, it also converges weakly (in the sense of weak convergence in a Banach space) with probability 1.

1. Introduction.

A classical problem in the theory of martingales is to give conditions which assure their almost sure (a.s.) convergence. In [5] and [7] one can find theorems solving this problem in terms of vector measures and the Radon-Nikodym derivatives. In [8] another approach has been presented: a L^1 -bounded asymptotic martingale (X_n) taking values in a Banach space E converges a.s. in norm iff it is strongly tight, i.e. for every $\varepsilon > 0$ there exists a compact set K_ε such that $P\left(\bigcap_{n=1}^\infty \left[X_n \in K_\varepsilon\right]\right) > 1 - \varepsilon$. It is natural to pose a question: can we replace strong tightness by tightness of a family of distributions of (X_n) ? In this paper we prove that it is, in general, false: a tight L^1 -bounded asymptotic martingale in a Banach space converges in probability to a Bochner integrable r.v. X, moreover, if the dual space E^* is separable, it also converges weakly for almost every $\omega \in \Omega$, but convergence in norm need not hold even in a separable Hilbert space and if E^* is not separable, weak convergence with probability 1 need not hold. However, it can be proved that every tight L^1 -bounded martingale taking values in a Banach space converges a.s.

2. Notation and definitions.

Let N denote a set of natural numbers, i.e. $N = \{1, 2, 3, ...\}$. Let (Ω, A, P) be a probability space. We can always assume that it is complete, i.e. for every $B \in A$

such that P(B) = 0 and for every $C \subset B$ we have $C \in A$ [3]. Let $(F_n, n \ge 1)$ be an increasing sequence of sub- σ -fields of A (i.e. $F_n \subset F_{n+1} \subset A$ for every $n \in N$). Let $F_{\infty} = \sigma\left(\bigcup_{n=1}^{\infty} F_n\right)$. A mapping $\tau: \Omega \to N \cup \{\infty\}$ will be called a stopping time with respect to (F_n) iff for every $n \in N$ the event $[\tau = n]$ belongs to F_n . A stopping time τ will be called bounded iff there exists $M \in N$ such that $P[\tau \le M] = 1$. A set of all bounded stopping times will be denoted by T. Let E be a Banach space with a norm $\|\cdot\|$. Let E^* be its dual and let $\|\cdot\|_*$ be a norm in E^* . The set of all Bochner integrable r.v.s with values in E (more precisely, the set of all their equivalence classes) will be denoted by L_E^1 or simply by L_n^1 , where it does not lead to confusion. Let E be a sub-E-field of E. Definitions and basic properties of the Bochner integral E and the conditional expectation E-E of a r.v. E and be found e.g. in [9].

Throughout this paper, let $(X_n, F_n, n \ge 1)$ be an adapted sequence of Bochner integrable random variables with values in a Banach space E.

DEFINITION 1. A sequence $(X_n, F_n, n \ge 1)$, will be called a martingale if, for every $n \in \mathbb{N}$, $E^{F_n}X_{n+1} = X_n$ a.s.

DEFINITION 2 ([6]). A sequence $(X_n, F_n, n \ge 1)$ is called an asymptotic martingale (amart) iff for every $\varepsilon > 0$ there exist $\tau_0 \in T$ such that for every $\tau, v \in T, \tau, v \ge \tau_0$ a.s. we have

$$(1) \|\int X_{\tau}dP - \int X_{v}dP\| < \varepsilon.$$

Obviously, every martingale is an asymptotic martingale.

It is well known that every (strongly) measurable r.v. with values in E is essentially separable valued (see [5], theorem 2.1.2). Thus, considering a sequence (indexed by elements of N) of such r.v.s, we can always, without loss of generality, assume that they take values in a separable subspace of E. We shall use this fact, assuming in proof (without loss of generality in the statements of the results) that E is itself separable.

DEFINITION 3. We shall say that a sequence $(X_n, n \ge 1)$ of E-valued r.v.s is L^1_E (or simply L^1)-bounded iff $\sup_n E \|X_n\| < \infty$ and that is strongly tight iff for every $\varepsilon > 0$ there exists a compact subset K_ε of E such that

(2)
$$P\left(\bigcap_{n=1}^{\infty} [X_n \in K_{\varepsilon}]\right) > 1 - \varepsilon.$$

Let us recall that an indexed family $(\mu_t, t \in T)$ of probability measures defined on the σ -field B(E) of the Borel subsets of E is called tight iff for every $\varepsilon > 0$ there exists a compact set $K \subset E$ such that for every $t \in T$ we have $\mu_t(K) > 1 - \varepsilon$. Obviously if a sequence $(X_n, n \in N)$ is strongly tight, the family of their distributions $(\mu_{X_n}: n \in N)$ is tight, but the reverse implication does not hold, e.g. take a sequence of i.i.d. real r.v.s having a standard normal distribution.

3. Main results.

In [8] the following theorem was proved.

THEOREM 1. An L^1 -bounded asymptotic martingale in a Banach space converges almost surely if and only if it is strongly tight.

Now we shall investigate convergence of tight martigales in a Banach space. We begin with a following lemma.

LEMMA 1. Let $(X_n, F_n, n \ge 1)$ be a L^1 -bounded asymptotic martingale taking values in a Banach space. If the family (P_{X_n}) of distributions of (X_n) is tight, (X_n) converges in law.

PROOF. It is well known that a tight family of distributions in a complete and separable metric space is conditionally compact in the Prokhorov metric and that convergence in this metric is equivalent to convergence in law (c.f. e.g. [10]). Thus the closure of the family (P_{X_n}) is compact in the Prokhorov metric. Let us suppose that (X_n) does not convergence in law. In this case there exist subsequences (X_{m_k}) , (X_{m_l}) and two distinct probabilitites measures P_1 , P_2 such that $P_{X_{m_k}} \xrightarrow{D} P_1, P_{X_{m_i}} \xrightarrow{D} P_2.$

Let us consider a countable family $\Gamma \subset E^*$ which separates points of E, i.e. such that for every $x \in E$ x = 0 iff x * x = 0 for all $x * \in E *$ (for example, a family $\Gamma_0 = \{x_{i,k}^* \in E^* : \|x_{i,k}^*\|_* = 1, x_{i,k}^*(e_i - e_k) = \|e_i - e_k\|, j, k \in \mathbb{N}, j \neq k\}, \text{ where } (e_n) \text{ is }$ a countable dense subset of E). By theorem 2.1 [10] the Borel σ -field B(X)coincides with a cyllindrical σ -field $C(X, \Gamma)$ generated by cyllindrical sets C = $\{x \in E : (x_{k_1}^*(x), \dots, x_{k_n}^*(x)) \in C'\}$, where $n, k_1, \dots, k_n \in N, x_{k_1}^*, \dots, x_{k_n}^* \in \Gamma$ and $C' \in B(R^n)$. By the Dynkin theorem [3] there exist a cyllindrical set C such that $P_1(C) \neq P_2(C)$. Applying the Dynkin theorem once again to a π -system of finite intersections of open balls in R^n and a λ -system R^n we find that there exists a cyllinder $G = \{x \in E : (x_{k_1}^*(x), \dots, x_{k_n}^*(x)) \in G'\}$, where G' is a finite intersection of open balls in R^n and $P_1(G) \neq P_2(G)$.

A random vector $((x_{k_1}^*(X_m), \dots x_{k_n}^*(X_m)), m \ge 1)$ converges a.s. (so it also converges in law to some distribution P' on R^n), because for every $x^* \in E^*$ a sequence $x^*(X_m)$ is a L^1 -bounded real asymptotic martingale and thus it converges a.s. [1]. Let $x_0 \in G'$. Let us denote $\lambda \cdot G' = \{x_0 + \lambda(x - x_0) : x \in G'\}$. It is easy to see that if $0 \le \lambda_1 \le \lambda_2$, then $\lambda_1 \cdot G' \subset \lambda_2 \cdot G'$ and that if we take an increasing sequence $\lambda_n \to 1$ as $n \to \infty$, then $\bigcup_{n=1}^{\infty} \lambda_n \cdot G' = G'$. Let us denote $\lambda \cdot G = (x_{k_1}^*, \dots, x_{k_n}^*)^{-1} (\lambda \cdot G')$. Using the axion of continuity we can choose such $\lambda < 1$ that $P_1[\lambda \cdot G] \neq P_2[\lambda \cdot G]$, and $P_1[(x_{k_1}^*, \dots x_{k_n}^*)^{-1}(\delta(\lambda \cdot G'))] = P_2[(x_{k_1}^*, \dots x_{k_n}^*)^{-1}(\delta(\lambda \cdot G'))] = P'[\delta(\lambda \cdot G)] = 0$, where δC denotes the boundary of C. Thus we have (see [10], theorem 3.5)

$$P[X_{m_k} \in \lambda \cdot G] = P[(x_{k_1}^*, \dots, x_{k_n}^*)(X_{m_k}) \in \lambda \cdot G'] \rightarrow P_1[\lambda \cdot G]$$

and

$$P[X_{m_1} \in \lambda \cdot G] = P[(x_{k_1}^*, \dots, x_{k_n}^*)(X_{m_1}) \in \lambda \cdot G'] \rightarrow P_2[\lambda \cdot G],$$

But $P[(x_{k_1}^*, \dots, x_{k_n}^*)(X_m) \in \lambda \cdot G'] \to P'[\lambda \cdot G']$, so $P_1[\lambda \cdot G] = P_2[\lambda \cdot G]$. This contradiction completes the proof.

LEMMA 2. Let $(X_n, F_n, n \ge 1)$ be a tight L^1 -bounded asymptotic martingale. There exist an F_{∞} -measurable, Bochner integrable r.v. X such that (X_n) converges to X in law and scalarly.

PROOF. By hypothesis, for every $m \in N$ there exists a compact set $K_{\frac{1}{m}} \subset E$ such that for every natural $n P[X_n \in K_{\frac{1}{m}}] \ge 1 - \frac{1}{m}$.

We can assume that for $m_1 \leq m_2 K_{\frac{1}{m_1}} \subset K_{\frac{1}{m_2}}$. Let $A_m = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} [X_k \in K_{\frac{1}{m}}]$ denote an event that infinitely many of points $X_n(\omega)$ belong to $K_{\frac{1}{m}}$. Obviously $P(A_m) \geq 1 - \frac{1}{m}$.

Let $\omega \in A_m$. By definition of A_m and compactness of $K_{\frac{1}{m}}$ there exist a subsequence (n_k) and a point $x_1 = X(\omega, (n_k), K_{\frac{1}{m}})$ such that $X_{n_k} \in K_{\frac{1}{m}}$ and $X_{n_k}(\omega) \to x_1$ as $k \to \infty$. Let Γ_0 be the same as in lemma 1 and let C be a set of such ω that for every $x^* \in \Gamma_0$ a sequence $x^* X_n(\omega)$ converges. As it was mentioned in the proof of lemma 1, for every $x^* \in E^* \times X_n$ is a L^1 -bounded real amart and thus converges a.s., so P(C) = 1. Let $B_m = A_m \cap C$. Obviously $P(B_m) = P(A_m)$. Now we shall show that for every $\omega \in B_m$ and every subsequence (η_l) such that $X_{n_l}(\omega) \in K_{\frac{1}{m}}$ and $X_{n_l}(\omega) \to X(\omega, (\eta_l), K_{\frac{1}{m}}) = x_2$ as $l \to \infty$ $x_1 = x_2$, so the limit depends only on ω and $K_{\frac{1}{m}}$. If $\|x_1 - x_2\| = \varepsilon > 0$, there exist e_i , e_j belonging to the countable set dense in

E which has been used in the definition of Γ_0 such that $||x_1 - e_i|| < \frac{\varepsilon}{5}$ and

$$||x_2 - e_j|| < \frac{\varepsilon}{5}$$
. Thus, for k , l sufficiently large, $|x_{i,j}^* X_{n_k}(\omega) - x_{i,j}^* e_i| < \frac{\varepsilon}{5}$,

$$|x_{i,j}^*X_{n_i}(\omega) - x_{i,j}^*e_j| < \frac{\varepsilon}{5}$$
 and, by definition of $x_{i,j}^*, |x_{i,j}^*(e_i - e_j)| = ||e_i - e_j|| > \frac{3\varepsilon}{5}$.

By the triangle inequality we have $|x_{i,j}^*X_{n_k}(\omega) - x_{i,j}^*X_{n_l}(\omega)| > \frac{\varepsilon}{5}$ for k, l sufficiently large, so $\omega \notin C$, contradiction. Thus $x_1 = x_2$.

It is obvious that if $m_1 < m_2$, then $B_{m_1} \subset B_{m_2}$ and if points $X_{n_k}(\omega)$ belong to

 $K\frac{1}{m_1}$ and converge, they also belong to $K\frac{1}{m_2}$ and converge in this set to the same limit. Thus for $\omega \in B_{m_1}$ $X(\omega, K\frac{1}{m_1}) = X(\omega, K\frac{1}{m_2}) = X(\omega)$. Thus we have defined a mapping $X: B \to E$, where $B = \bigcup_{m=1}^{\infty} B_m$. Obviously P(B) = 1. Put $X(\omega) = 0$ for $\omega \notin B$. By definition, X is almost separably (even separably!) valued. By the definition of B, for every $\omega \in B$ there exists a subsequence (n_k) such that $X_{n_k}(\omega) \to X(\omega)$, so for every $x^* \in E^*$ and $\omega \in B$ such that an L^1 -bounded real amart $x^*X_n(\omega)$ converges (a set of such ω has probability 1) we have $x^*X_n(\omega) \to x^*X(\omega)$. By this fact and completeness of the probability space, x^*X is F_{∞} -measurable for every $x^* \in E^*$, so, by the Pettis Measurability Criterion (see e.g. [5]), X is F_{∞} -(strongly) measurable.

It remains to show that $X_n \xrightarrow{D} X$ and that X is integrable. Let us remark that for every $x_{k_1}^*, \dots, x_{k_n}^* \in \Gamma_0$ a random vector $(x_{k_1}^*, \dots, x_{k_n}^*)(X_n)$ converges almost surely to $(x_{k_1}^*, \dots, x_{k_n}^*)(X)$, so, by reasoning similar to that given in lemma 1, a limit distribution of (X_n) (which exists by lemma 1) and the distribution of X coincide. Now let a > 0. We have

$$\infty > \sup_{n} E \|X_{n}\| \ge \int_{\Omega} \min(\|X_{n}\|, a) dP = \int_{E} \min(\|x\|, a) dP_{X_{n}} \rightarrow$$
$$\int_{E} \min(\|x\|, a) dP_{X} = \int_{\Omega} \min(\|X\|, a) dP,$$

letting $a \to \infty$ we obtain $E ||X|| \le \sup E ||X_n||$. The proof is complete.

We are now ready to prove our main result.

THEOREM 2. Let $(X_n, F_n, n \ge 1)$ be a L^1 -bounded tight asymptotic martingale taking values in a Banach space E. There exists an integrable r.v. X such that (X_n) converges to X in probability. Moreover, if the dual space E^* is separable, then for almost all $\omega \in \Omega$ a sequence $(X_n(\omega))$ converges weakly to $X(\omega)$.

PROOF. Let X be a E-valued random variable fulfilling the conditions given in lemma 2. It is well known that $E^{F_n}X \to E^{F_\infty}X = X$ almost surely and in L^1 [9]. Let $Y_n = X_n - E^{F_n}X$. (Y_n) is a L^1 -bounded asymptotic martingale with respect to (F_n) . It is easy to see that if K_1 , K_2 are compact subsets of E, then $K_1 - K_2 = \{x_1 - x_2 : x_1 \in K_1, x_2 \in K_2\}$ is compact, so (Y_n) is tight. Thus, by lemma 2, (Y_n) converges in law, the method of construction of a limit given in its proof assures that $Y_n \xrightarrow{D} X - X = 0$. Thus $Y_n \xrightarrow{P} 0$, because convergence in law to a constant is equivalent to convergence in probability to the same limit. Thus $X_n = Y_n + E^{F_n}X \xrightarrow{P} X$.

The second statement of the theorem follows from the fact that, by lemma 2, for every $x^* \in X^* \times X^* = X^* \times X^* \times X^* \times X^* = X^* \times X^* \times X^* \times X^* \times X^* \times X^* = X^* \times X^$

EXAMPLE 1. Almost sure convergence need not hold even in a separable Hilbert space. Let $(\Omega, A, P) = ([0, 1], B([0, 1]), \mu)$, where μ is the Lebesgue measure. Let $E = l^2$ and let $(e_n^i, n \in \mathbb{N}, i = 1, \dots 2^n)$ be a standard orthonormal basis in l^2 in some order. Let, for every $n \in \mathbb{N}$, A_n^i , $i = 1, \dots 2^n$, be such sets that $A_n^i \cap A_n^j = \emptyset$ for $i \neq j$, $P(A_n^i) = \frac{1}{2^n}$, $i = 1, \dots 2^n$, and $\bigcup_{i=1}^{2^n} A_n^i = \Omega$. Let $Y_n^i = e_n^i I_{A_n^i}$, $n \in \mathbb{N}$, $i = 1, \dots 2^n$. Put $X_{2^n-2+i} = Y_n^i$ and let $F_n = B([0,1])$ for every natural n and $i = 1, \dots 2^n$. We shall show that $(X_n, F_n, n \geq 1)$ is a L^1 -bounded asymptotic martingale.

It is obvious that $||X_n|| \le 1$ a.s., so $\sup E ||X_n|| < \infty$. Let $\tau \in T$ and let

$$I_{\tau} = \{(n,i) : n \in \mathbb{N}, i \in \{1,\ldots,2^n\}, P[\tau = 2^n - 2 + i] > 0\}.$$

It is easy to see that if $\tau \ge 2^{k+1} - 2$ a.s., then for every $(n, i) \in I_{\tau}$ we have $k \le n$. Let $B_n^i = A_n^i \cap [\tau = 2^n - 2 + i], n \in \mathbb{N}, i \in \{1, \dots 2^n\}$. Let us remark that $B_n^i \cap B_m^j = \emptyset$ for $m \ne n$ or $i \ne j$ and that obviously $P(B_n^i) \le P(A_n^i)$. Therefore $X_{\tau} = \emptyset$

$$\sum_{(n,i)\in I_{\tau}} Y_n^i \, I_{[\tau=\, 2^{\,n}\, -\, 2\, +\, i]} = \sum_{(n,i)\in I_{\tau}} e_n^i I_{B_n^i}, \text{so } E\, X_{\tau} = \sum_{(n,i)\in I_{\tau}} e_n^i P(B_n^i) \text{ and }$$

$$||EX_{\tau}||^2 = \sum_{(n,i)\in I_{\tau}} P(B_n^i)^2 \le \frac{1}{2^k} \sum_{(n,i)\in I_{\tau}} P(B_n^i) \le \frac{1}{2^k}.$$

Thus (X_n) is an amart.

It is clear that for $n \ge n_0 P[Y_n^i = 0] = 1 - \frac{1}{2^n} \ge 1 - \frac{1}{2^{n_0}}$, so if $K_{n_0} = \{0, e_m^i, m < n_0, i = 1, \dots 2^m\}$, (it is finite, hence compact), K_{n_0} contains all the values taken by $Y_m^i, m < n_0, i = 1, \dots 2^m$ and thus $P[Y_n^i \in K_{n_0}] \ge 1 - \frac{1}{2^{n_0}}$ for all $n \in N$. We have proved that (X_n) is tight.

Let us consider an arbitrary $\omega \in \Omega$. For every n there exist $i_n, j_n \in \{1, \dots 2^n\}$ such that $\omega \in A_n^{i_n}$ and $\omega \notin A_n^{j_n}$. Obviously $||Y_n^{i_n}(\omega)|| = 1$, $||Y_n^{j_n}(\omega)|| = 0$. Thus a sequence $(X_n(\omega))$ does not convergence for any ω . By theorem 1 it is not strongly tight, moreover, it is easy to see that for every compact set $K \subset E \cap_{n=1}^{\infty} [X_n \in K] = \emptyset$. Indeed, for every $\omega \in \Omega$ $Y_n^{i_n}(\omega) = e_n^{i_n}$ and a set $\{e_n^{i_n}, n \in N\}$ does not have a compact closure, because for $m \neq n$ $\|e_m^{i_m} - e_n^{i_n}\| = \sqrt{2}$.

Thus a tight L^1 -bounded asymptotic martingale need not converge a.s. (or, equivalently, be strongly tight) even under some additional assumptions (separability of E^* , the Radon-Nikodym property of both E and E^* , etc.

EXAMPLE 2. If E^* is not separable, weak convergence with probability 1 need not hold. Let (Ω, A, P) and (X_n) be like in example 1, but now $E = l^1$. By the Schwarz inequality $\|x\|_1 \le (\|x\|_2)^{\frac{1}{2}}$, where $\|\cdot\|_1$ and $\|\cdot\|_2$ denote the l^1 and l^2 -norm respectively. Thus X_n is again a tight L^1 -bounded asymptotic martingale such that for every $\omega \in \Omega$ the sequence $(X_n(\omega))$ does not converge in norm. It is well known that in l^1 weak convergence is equivalent to convergence in norm [2], so it does not converge weakly, either. Let us remark that $(l^1)^* = l^\infty$ is not separable.

Now we shall show that every L^1 -bounded tight martingale converges a.s.

THEOREM 3. An L^1 -bounded martingale in a Banach space converges almost surely if and only if it is tight.

PROOF. It is obvious that every sequence of r.v.s which converges a.s. is tight. Conversely, if (X_n) is a tight L^1 -bounded martingale in a Banach space, then, by lemma 2, there exist a r.v. X such that (X_n) converges to X scalarly. It is known (see [7], Proposition 5.3.21) that for L^1 -bounded martingales scalar convergence and almost sure convergence are equivalent, so (X_n) converges to X almost surely.

COROLLARY 1. A Banach space E has the Radon-Nikodym property iff every L^1 -bounded martingale with values in E is tight.

It is known that every real amart (X_n) has the so called "Riesz decomposition", i.e. it can be (uniquely) written as $X_n = Y_n + Z_n$, where (Y_n) is a martingale and (Z_n) is an amart which converges to 0 a.e. and in L^1 [6]. Corollary 2 and its proof show that it is, in general, not true even in a separable Hilbert space, although it has the Radon-Nikodym property. Thus the structure of asymptotic martingales in Banach spaces is more complicated than in the real case.

COROLLARY 2. There are asymptotic martingales taking values in a separable Hilbert space which do not have the Riesz decomposition.

PROOF. Consider the amart (X_n) constructed in example 1. Suppose that it has the Riesz decomposition $X_n = Y_n + Z_n$. Thus, by L^1 -boundedness and tightness of (X_n) and (Z_n) , (Y_n) is L^1 -bounded and tight (compare the proof of theorem 2). Thus, by theorem 3, (Y_n) converges a.s., so (X_n) converges a.s. The obtained contradiction ends the proof.

This result can be compared with (5.2.27) and (5.2.29) from [7], where a slightly different definition of the Riesz decomposition was given.

ACKNOWLEDGMENTS. The author thanks the referee for his helpful comments.

REFERENCES

- 1. D. G. Austin, G. A. Edgar and A. Ionescu Tulcea, Pointwise convergence in terms of expectations, Z. Wahrsch. verw. Gebiete 30 (1974), 17–26.
- 2. S. Banach, Theory of Operators. Part I: Linear Operators, Warsaw. (in Polish), 1931.
- 3. P. Billingsley, Probability and Measure, Wiley, New York, 1979.
- 4. S. D. Chatterji, Martingale Convergence and the Radon-Nikodym theorem in Banach spaces. Math. Scand. 22 (1968), 21-41.
- 5. J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, Rhode Island, 1977.
- 6. G. A. Edgar and L. Sucheston, (1976). Amarts: a class of asymptotic Martingales. A. Discrete Parameter, J. Multivariate Anal. 6 (1976), 193-221.
- 7. G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes. Cambridge University Press, Cambridge/New York, 1992.
- 8. Ł. Kruk and W. A. Zieba, Criterion of almost sure convergence of asymptotic Martingales in a Banach space, Yokohama Math. J. 43 (1995), 61-72.
- 9. J. Neveu, Discrete-Parameter Martingales, North Holland/American Elsevier, 1975.
- 10. N. V. Vahania, V. I. Tarieladze, S. A. Chobanian, Probability distributions in Banach spaces, Nauka, Moscow (in Russian), 1985.

COURANT INSTITUTE OF THE MATHEMATICAL SCIENCES 251, MERCER STREET NEW YORK, NY 10012 U.S.A

email. Kruk@acf4,nyu.edu

INSTITUTE OF MATHEMATICS MARIA CURIE-SKLODOWSKA UNIVERSITY PL. MARII CURIE-SKLODOWSKIEJ I 20-031 LUBLIN POLAND email: kruk@golem.umcs,lublin.pl