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CONVERGENCE OF TIGHT ASYMPTOTIC
MARTINGALES IN A BANACH SPACE

LUKASZ KRUK*

Abstract.

In this paper we show that a I!-bounded martingale (X,, F,,n = 1) taking values in a Banach space
E converges almost surely iff a family (Py,) of distribution of (X,) is tight. A L'-bounded tight
asymptotic martigale (amart) need not converge a.s., although it always converges in probability and,
if E* is separable, it also converges weakly (in the sense of weak convergence in a Banach space) with
probability 1.

1. Introduction.

A classical problem in the theory of martingales is to give conditions which assure
their almost sure (a.s.) convergence. In [5] and [7] one can find theorems solving
this problem in terms of vector measures and the Radon-Nikodym derivatives.
In [8] another approach has been presented: a I'-bounded asymptotic martin-
gale (X,) taking values in a Banach space E converges a.s. in norm iff it is
strongly tight, i.e. for every & > 0 there exists a compact set K, such that

P( ﬂ [X.eK s]) > 1 — ¢. Itis natural to pose a question: can we replace strong
n=1

tightness by tightness of a family of distributions of (X,,)? In this paper we prove
that it is, in general, false: a tight L'-bounded asymptotic martingale in a Banach
space converges in probability to a Bochner integrable r.v. X, moreover, if the
dual space E* is separable, it also converges weakly for almost every we €, but
convergence in norm need not hold even in a separable Hilbert space and if E* is
not separable, weak convergence with probability 1 need not hold. However, it
can be proved that every tight I!-bounded martingale taking values in a Banach

space converges a.s.

2. Notation and definitions.

Let N denote a set of natural numbers, i.e. N = {1,2,3,...}. Let (2,4, P) be
a probability space. We can always assume that it is complete, i.e. for every Be 4
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such that P(B) = 0 and for every C = B we have Ce 4 [3]. Let (F,,n = 1) be an
increasing sequence of sub-g-fields of 4 (i.e. F, = F,,; < Afor every ne N). Let

F, = a< U P,;) A mapping t: Q — N U {00} will be called a stopping time with
n=1

respect to (F,)iff for every ne N the event [t = n] belongs to F,. A stopping time
7 will be called bounded iff there exists M € N such that P[t < M] = 1. Aset of all
bounded stopping times will be denoted by T. Let E be a Banach space with
anorm | ||. Let E* be its dual and let || ||, be a norm in E*. The set of all Bochner
integrable r.v.s with values in E (more precisely, the set of all their equivalence
classes) will be denoted by L} or simply by L!, where it does not lead to confusion.
Let F be a sub-o-field of A. Definitions and basic properties of the Bochner
integral EY and the conditional expectation Ef Yofar.v. Y e L'y can befound e.g.
in [9].

Throughout this paper, let (X,, F,,n = 1) be an adapted sequence of Bochner
integrable random variables with values in a Banach space E.

DEFINITION 1. A sequence (X,,, F,,, n = 1), will be called a martingale if, for every
neN,EfX,,, = X, as.

DEFINITION 2 ([6]). A sequence (X, F,,n = 1)is called an asymptotic martingale
(amart)iff for every ¢ > O there exist 7o € T such that for every t,ve T, 7,v 2 70 a.s.
we have

(1) If X.dP — | X,dP| < e.

Obviously, every martingale is an asymptotic martingale.

It is well known that every (strongly) measurable r.v. with values in E is
essentially separable valued (see [5], theorem 2.1.2). Thus, considering a se-
quence (indexed by elements of N) of such r.v.s, we can always, without loss of
generality, assume that they take values in a separable subspace of E. We shall
use this fact, assuming in proof (without loss of generality in the statements of the
results) that E is itself separable.

DErFINITION 3. We shall say that a sequence (X,,n = 1) of E-valued r.v.s is
L (or simply L)-bounded iff sup E || X,,|| < oo and that is strongly tight iff for every

& > 0 there exists a compact subset K, of E such that
V)] P< 0 [X,,eKe]> >1—c¢
n=1

Let us recall that an indexed family (u,, t € T) of probability measures defined
on the o-field B(E) of the Borel subsets of E is called tight iff for every ¢ > 0 there
exists a compact set K « E such that for every te T we have pu,(K)> 1 —e.
Obviously if a sequence (X,,neN) is strongly tight, the family of their dis-
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tributions (uy, : ne N)is tight, but the reverse implication does not hold, e.g. take
a sequence of i.i.d. real r.v.s having a standard normal distribution.

3. Main results.
In [8] the following theorem was proved.

THEOREM 1. An L'-bounded asymptotic martingale in a Banach space converges
almost surely if and only if it is strongly tight.

Now we shall investigate convergence of tight martigales in a Banach space.
We begin with a following lemma.

LEMMA 1. Let (X,, F,,n 2 1) be a L'-bounded asymptotic martingale taking
values in a Banach space. If the family (Px ) of distributions of (X,) is tight, (X,)
converges in law.

Proor. It is well known that a tight family of distributions in a complete and
separable metric space is conditionally compact in the Prokhorov metric and
that convergence in this metric is equivalent to convergence in law (c.f. e.g. [10]).
Thus the closure of the family (Py, ) is compact in the Prokhorov metric. Let us
suppose that (X,) does not convergence in law. In this case there exist subse-
quences (X, ), (X,,) and two distinct probabilitites measures Py, P, such that
Py, > Py, Py, P,

Let us consider a countable family I' = E* which separates points of E, i.e.
such that for every xe E x = 0 iff x*x = 0 for all x*e E* (for example, a family
Iy = {x¥ eE*: |xX ], = 1, x¥(e; — &) = lle; — ecll.j, ke N,j # k}, where (e,) is
a countable dense subset of E). By theorem 2.1 [10] the Borel o-field B(X)
coincides with a cyllindrical o-field C(X, I') generated by cyllindrical sets C =
{x€E:(x¥(x),...x}(x)eC'}, where n,k,,...k,e N, x¥,...x¢ e and C'€ B(R").
By the Dynkin theorem [3] there exist a cyllindrical set C such that
P,(C) % P,(C). Applying the Dynkin theorem once again to a n-system of finite
intersections of open balls in R" and a A-system R" we find that there exists
acyllinder G = {xeE: (x}(x),...x} (x)€G'}, where G' is a finite intersection of
open balls in R" and P,(G) % P,(G).

A random vector ((x}(Xn), . ..x¥ (X)), m 2 1) converges a.s. (so it also con-
verges in law to some distribution P’ on R"), because for every x* € E* a sequence
x*(X,,)is a I!-bounded real asymptotic martingale and thus it converges a.s. [1].
Let x,€G'. Let usdenote A- G’ = {xo + A(x — xo):x€ G'}. It is easy to see that if
0< 1, <A, then 4,°G' = 4,-G' and that if we take an increasing sequence

An—lasn— co,then | ) 4,"G' = G'. Letusdenote 4-G = (x§,,.. xE)THAG).
n=1

Using the axion of continuity we can choosesuch A < 1that P,[1-G] # P,[1-G].
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and Py[(xf,...x5) " (6(2 GN] = Pol(x,. .. xE) " 1(6(A-G)] = P'[6(A-G)] =
0, where dC denotes the boundary of C. Thus we have (see [10], theorem 3.5)

P[X,, €A-G] = P[(x§,... x¢)(Xm)€EA G'] = P[4 G]
and
P[X,, €G] = P[(x¥,...x¥)(Xn)eL G] - P,[1-G],

But P[(x{,...x} )X, €A G']— P'[A-G], so P[4 G] = P,[A-G]. This con-
tradiction completes the proof.

LemMA 2. Let (X,,F,,n=1) be a tight I'-bounded asymptotic martingale.
There exist an F ,-measurable, Bochner integrable r.v. X such that (X,) converges
to X in law and scalarly.

Proor. By hypothesis, for every me N there exists a compact set Kl < Esuch

1
that for every natural n P[ X, € K;'ll.] 21— P

0 e o)
We can assume that for m; Sm, K1 < KL Let 4, = "Ol kkzjn [XieK1]

denote an event that infinitely many of points X ,(w) belong to K.’}T Obviously
1

P(An) 21— —.
m

Let we A, By definition of 4,, and compactness of K1 there exist a subsequ-
ence (n,) and a point x; = X(w, (), K%) such that X, e Ki and X, (w) > x; as
k — oo. Let I'y be the same as in lemma 1 and let C be a set of such w that for every
x* eI’y a sequence x* X, (w) converges. As it was mentioned in the proof of lemma
1, for every x* € E* x*X,, is a I!-bounded real amart and thus converges a.s., SO
P(C) = 1. Let B,, = A4,,n C. Obviously P(B,,) = P(A,,). Now we shall show that
for every w e B,, and every subsequence (r;) such that X, (w)e KL and X, (w) -
X(,(m), KL) = x; as | - 00 x; = X, s0 the limit depends only on w and KL. If
llx; — x,|| = & > 0, there exist ¢;, e; belonging to the countable set dense in

E which has been used in the definition of Iy such that ||x; — ¢ < a and

5

Ixs — el < % Thus, for k, | sufficiently large, |[x¥X, () — x*eil < %
| 3

[x¥Xn (@) — x¥je)] < %and, by definition of x¥;, |x¥(e; — ;)| = lle; — ¢;ll > ~§£—

By the triangle inequality we have |x}; X, (®) — x¥; X, (w)| > —;—for k, I sufficiently

large, so w ¢ C, contradiction. Thus x; = x,.
It is obvious that if m; < m,, then B,, < B,,, and if points X, (w) belong to



CONVERGENCE OF TIGHT ASYMPTOTIC MARTINGALES IN A BANACH SPACE 157

KL and converge, they also belong to KL and converge in this set to the same
11m1t Thus for weB,,, X(w, K 1) X(w 'K l) = X(w). Thus we have defined

amapping X : B— E, where B = U B,.. Obviously P(B) = 1. Put X (w) = 0for

m=1

w¢ B. By definition, X is almost separably (even separably!) valued. By the
definition of B, for every weB there exists a subsequence (n,) such that
X, (0) = X(w),soforevery x* € E* and w € Bsuch that an L' -bounded real amart
x* X, (w)converges (a set of such w has probability 1) we have x* X, (w) - x* X (w).
By this fact and completeness of the probability space, x*X is F_,-measurable for
every x* e E*, so, by the Pettis Measurability Criterion (see e.g. [5]), X is
F-(strongly) measurable.

It remains to show that X, 2, X and that X is integrable. Let us remark that for
every x{,...x{ e I'; arandom vector (xf ,. .. x§ )(X,) converges almost surely to
(x¥ ... x5 )(X), so, by reasoning similar to that given in lemma 1, a limit distribu-
tion of (X,,) (which exists by lemma 1) and the distribution of X coincide. Now let
a > 0. We have

0 >sup E[|X,| = Jmin(IIanl,a)dP = Jmiﬂ(IIXH,a)dPxn -

Q E

Jmin(llx“,a) dPy = jmin(\\XH,a)dP

E 2
letting a — oo we obtain E || X|| £ sup E | X, ||. The proof is complete.

We are now ready to prove our main result.

THEOREM 2. Let (X,, F,,n = 1) be a L'-bounded tight asymptotic martingale
taking values in a Banach space E. There exists an integrable r.v. X such that (X,)
converges to X in probability. Moreover, if the dual space E* is separable, then for
almost all w € Q a sequence (X,(w)) converges weakly to X (w).

PrROOF. Let X be a E-valued random variable fulfilling the conditions given in
lemma 2. It is well known that Ef*X — EF*X = X almost surely and in L' [9]. Let
Y, = X, — EF»X.(Y,)is a I*-bounded asymptotic martingale with respect to (F,).
It is easy to see that if K, K, are compact subsets of E, then K; — K, =
{x; — x,:x,€Ky,x,€K,} is compact, so (Y,) is tight. Thus, by lemma 2, (Y,)
converges in law, the method of construction of a limit given in its proof assures
that ¥, 3 X — X = 0. Thus ¥, %, 0, because convergence in law to a constant
is equivalent to convergence in probability to the same limit. Thus X, =
Y, + EX 5 X
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The second statement of the theorem follows from the fact that, by lemma 2, for
every x*e X* x* X, = x* X and that, by X,, 5 x, P[sup | X,|| < o] = 1. The
remainder of the proof is the same as the end of the proof of the theorem 5.2a)
from [6].

EXAMPLE 1. Almost sure convergence need not hold even in a separable Hilbert
space. Let (2, A, P) = ([0, 1], B([O0, 1]), u), where p is the Lebesgue measure. Let
E =% and let (¢{,neN, i = 1,...2") be a standard orthonormal basis in [? in

some order. Let, for every ne N, A%, i =1,...2" be such sets that 4\ N 4] =
27]

o . o
Ofor i), P(A}) = o i=1,...2% and |J 4, = Q. Let ¥, = )Ly, neN, i =
i=1

1,...2" Put X,._,4;=Y! and let F, = B([0,1]) for every natural n and
i=1,...2". We shall show that (X,, F,, n=1) is a L'-bounded asymptotic
martingale.

It is obvious that | X,|| < 1 a.s.,so sup E || X,,|| < co. Let 1€ T and let

I ={(n,i):neN,ie{l,...2"}, P[r=2" -2 + i] > 0}.

It is easy to see thatif t = 2¢*! — 2 a.s., then for every (n, i) € I, we have k < n.
Let B = A, N[t =2"—2+i],neN,ie{l,...2"}. Let us remark that B; " B, =
0 for m#+n or i+j and that obviously P(B.) < P(Al). Therefore X, =

Z YniI[:=2"—2+i1= Z e;IB;»SOEXr;‘ Z e, P(B;) and

(n,i)el (n,i)el, (n,i)el,
. 1 . 1
IEX|1*= ). P(B,)? =5 > P(B,) = 5.
(n,iel, el
Thus (X,) is an amart.
. ; 1 .
It is clear that for n = no P[Y, =0]=1— o =1- o7 SO if K, =

{0, ef,,,m < ng,i=1,...2"}, (it is finite, hence compact), K,, contains all the

values taken by Yi,m < no,i =1,...2" and thus P[Y,/eK, ] =1 — for all

2"
ne N. We have proved that (X,) is tight.

Let us consider an arbitrary w e Q. For every n there exist i,, j, € {1,...2"} such
that we Ar and w ¢ 4i~. Obviously || V()| = 1, | ¥/"(w)|| = 0. Thus a sequence
(X,(w)) does not convergence for any w. By theorem 1 it is not strongly tight,

a0
moreover, it is easy to see that for every compact set K = E ﬂ [X,eK]=49.
n=1

Indeed, for every w € 2 Y,"(w) = ei»and a set {ei",ne N} does not have a compact
closure, because for m # n |leim — eir|| = ﬁ
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Thus a tight L'-bounded asymptotic martingale need not converge a.s. (or,
equivalently, be strongly tight) even under some additional assumptions (separ-
ability of E*, the Radon-Nikodym property of both E and E*, etc.

EXAMPLE 2. If E* is not separable, weak convergence with probability 1 need not
hold. Let (22, A, P) and (X,) be like in example 1, but now E = ['. By the Schwarz
inequality || x|; < (||x|,)}, where || ||, and | |, denote the I' and [>-norm respect-
ively. Thus X, is again a tight I'-bounded asymptotic martingale such that for
every w €  the sequence (X,(w)) does not converge in norm. It is well known that
in I' weak convergence is equivalent to convergence in norm [2], so it does not
converge weakly, either. Let us remark that (/')* = [ is not separable.

Now we shall show that every I!-bounded tight martingale converges a.s.

THEOREM 3. An L!-bounded martingale in a Banach space converges almost
surely if and only if it is tight.

PROOF. It is obvious that every sequence of r.v.s which converges a.s. is tight.
Conversely, if (X, is a tight I'-bounded martingale in a Banach space, then, by
lemma 2, there exist a r.v. X such that (X,) converges to X scalarly. It is known
(see [7], Proposition 5.3.21) that for I!-bounded martingales scalar convergence
and almost sure convergence are equivalent, so (X,) converges to X almost
surely.

COROLLARY 1. A Banach space E has the Radon-Nikodym property iff every
L}-bounded martingale with values in E is tight.

It is known that every real amart (X,) has the so called “Riesz decomposition”,
i.e. it can be (uniquely) written as X, = Y, + Z,, where (Y,) is a martingale and
(Z,) is an amart which converges to 0 a.e. and in L' [6]. Corollary 2 and its proof
show that it is, in general, not true even in a separable Hilbert space, although it
has the Radon-Nikodym property. Thus the structure of asymptotic martingales
in Banach spaces is more complicated than in the real case.

COROLLARY 2. There are asymptotic martingales taking values in a separable
Hilbert space which do not have the Riesz decomposition.

ProOF. Consider the amart (X,,) constructed in example 1. Suppose that it has
the Riesz decomposition X, = Y, + Z,. Thus, by I!-boundedness and tightness
of (X,) and (Z,), (Y,) is L!-bounded and tight (compare the proof of theorem 2).
Thus, by theorem 3, (Y,) converges a.s., so (X,) converges a.s. The obtained
contradiction ends the proof.

This result can be compared with (5.2.27) and (5.2.29) from [7], where a slightly
different definition of the Riesz decomposition was given.
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