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VITALI SYSTEMS IN R” WITH IRREGULAR SETS

LEIF MEJLBRO and FLEMMING TOPSQE

Abstract.

Vitali type theorems are results stating that out of a given family of sets one can select pairwise disjoint
sets which fill out a “large” region. Usually one works with “regular” sets such as balls. We shall
establish results with sets of a more complicated geometrical structure, e.g., Cantor-like sets are
allowed. The results are related to a generalisation of the classical notion of a differentiation basis.
They concern real n-space R" and Lebesgue measure.

1. Introduction.

We shall work in real n-space R" provided with a metric induced by a norm. The
closed, resp. open, ball of centre x and radius r is denoted by B[x, r], resp. B(x, r).
We more generally define B[C,r] = {xeR"|dist(x,C) < r}, if @ + C = R". The
diameter of a set A # @ is denoted by diam(A).

We use |A4| to indicate the (outer) Lebesgue measure of a set A.

Let ¢" denote the class of (measurable) functions ¢: ]0, + o0 [—]0, + o[
satisfying ¢(r) < (2r)"for allr > 0.In the applications, the functions ¢ € ®" will be
nondecreasing for geometrical reasons, but this assumption is in general not
necessary for the proofs.

Let o € " and let A be a class of compact subsets of R". By #"[¢, #"] we
denote the differentiation basis (cf. also [1], [3]) with 4&,(x) = Z7(x; ¢, #") defined
by

By(x;0,4) = {KeA | K < B[x,r],|K| = o(r)}.

The class #"[¢, 4] = {#.(x)| xeR",r > 0} is nonempty for proper choices of
¢ and X". Any element of the associated Vitali system ¥ ™"[¢p, ] is defined as
a pair (4, &), where 4 = R" and & is a class of closed subsets of R” such that

VxeArgVr Sro: S n B[, 4] + 0.

For a formal introduction of Vitali systems, cf. [6].
We say that the Vitali system ¥~ = %[, #"] has the packing property, if for
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every pair (A4, #)e ¥ there exists a countable subclass #', = & consisting of
disjointed sets, such that

[A\U {S|Se Lo} = 0.

We shall consider special classes #” of compact subsets. For given constants
n >0,k > 0,let ", denote the class of compact sets K such that for any closed
ball B, either [B N K| 2 «|B|, or else there exists an open ball B, = B\K such that
diam(B,) = n-diam(B).

The classes ', are crucial for our investigations. We shall study them closer
in Section 2, where it will be proved that A, contains the class of closed balls, if
and only if

() m+ Ml

Usually, the classes #;", will contain sets which are much more “irregular”
than balls. This fact will allow us to derive results going beyond previously
known ones.

Let us write #"[¢;n,x] and ¥"[¢,n,k] instead of #"[¢,#,'.] and
Vo, Ay, .

The main result of this paper is the following

THEOREM 1. Let n,x > 0 be constants, such that 2n + \"/; < l,i.e. (1) holds, and
let e @". Then ¥""[@,n, ] has the packing property, if and only if

(2 joﬂﬂ=+w forall ro>0.

o M 1
Theorem 1 generalises Theorem 2 of [4]. The necessity of (2) follows from that
result. The sufficiency will be proved in Section 4.
It follows from Theorem 1 and Proposition 1 of Section 2 that if (2) holds, then
¥""[¢, #] has the packing property, where " is the class of compact convex sets.
By applying a standard argument it also follows from Theorem 1 that if (2)
holds and if (4, &) satisfies the condition

VxeAdrg, n, kVr < ro: L 0 BHx; 0,1, k) + 0,

then|4\u {S|Se ¥,}| = 0, where & is some countable disjointed subfamily of
&.

Finally, we note that from Theorem 1 and from the proof of the necessity of
Theorem 2 of [4] it follows that if ¥™[¢,n, k] has the packing property, then
every ¥"[ o, n, k]-meagre set is a nullset. A set C is called ¥"-meagre, where ¥ is
a Vitali system, if (C, &) € ¥~, where & is the class of all closed sets disjoint from C,
cf. e.g. [7].

The result above on meagre sets depends on the special nature of the Vitali



88 LEIF MEJLBRO AND FLEMMING TOPS@E

systems under consideration. It is actually easy to construct Vitali systems which
only involve sets from the classes ", such that every meagre set is a nullset,
while the packing property does not hold. In fact, it suffices to work with sets
which are unions of just two balls and so that only the empty set is meagre.

2. The classes .1,’,

For a bounded subset A of R" we define ker(A), the kernel of A, as a closed ball
B of maximal radius such that int(B) < 4. There may of course be several such
balls, so we assume that ker (A) selects one of these according to some fixed rule.
When no such ball B exists, we define ker(4) = 0. With this notation, a compact
set K < R" lies in the class #,’,, where 5, x €]0, 1], if and only if for every ball
B either

3 |BN K| = k|B|,
or
4 diam (ker(B\K)) = # - diam(B).

Clearly, the classes ¢}, increase with decreasing # and with decreasing «.

PROPOSITION 1. For positive constants n and x the following conditions are
equivalent:

(i) A . contains the class of all closed balls in R",

(ii) A7), contains the class of all compact convex sets in R”,

(i) 27 + 9/x < 1.

PRrOOF. (iii) = (ii). Let K be a compact and convex set. Assume that
B[x,r]1n K # @ and |B[x,r] " K| < k |B[x, ]|, i.e. (3) does not hold for B[x, r].
Then B[ x, \"/; rI\K # @, so by the Hahn-Banach theorem we can find y and y*,
ly*Il = 1, such that

Iy = xll = <y = x,3*> = Zx-r,
and
{z—x,y*> < \'/;-r for every ze K.
Let

B= B(x + l—-'_—z:\/——'i(y - x),L%@r).

As (z — x,y*> > \"/;;-rfor all ze K, we get K " B = (), and as \"/; < 1, we also
have B < B[x,r]. Hence,
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diam(ker(B[x,r]\K)) = diam(B) = #diam(B[x, r]) = n-diam(B[x, r]),

and we have proved (4).

(ii) = (i). Trivial.

(1) = (iii). Let K = B[0,1] and B = B[0,r] with r > 1/\"/;. Then (3) fails,
hence (4) holds. It follows that r — 1 = #-2r. As this is true for all r > 1 /\'/;, we
get (iii).

In Section 4 and Section 6 we shall work with a generalisation of the classes
H > in Which 7 is replaced by a function. Let #: ]0, + oo [—]0, 1] be a function

n,x?

and k€]0,1] a constant. Then ;" denotes the class of compact sets K = R"
such that for every closed ball B either (3) holds, or else

%) diam(ker (B\K)) 2 n(diam(B))- diam(B).
Introducing the function

(6) n*(d) = d-n(d),

the inequality (5) may be written in the form

7 diam(ker (B\K)) = n*(diam(B)).

Obviously, #,", contains the class of all closed balls in R, if

2supn(d) + \"/; <1,

cf. Proposition 1.

3. The classes ;..

In the one-dimensional case we may generalise Proposition 1 as follows: To each
ne N, the family J#;!, contain the class of all sets which can be written as a union
of at most n intervals, if and only if

] m+Im+r=s1L

The simple proof is left to the reader. This result indicates that for n and
x sufficiently small, the classes #;!, contain sets which are far more “irregular”
than convex sets. As an example of an “irregular” set in these classes we mention
that the usual Cantor set belongs to th,,f,( if (and only if) n < 1/5, but this set is of
measure zero and therefore not so interesting for our purposes.

We shall show that if the inequality of Proposition 1 fails in the one-dimen-
sional case, i.e. if 2 + x > 1, then ;. only contains Lebesgue nullsets. We may
therefore in the one-dimensional case add to the equivalent conditions of Prop-
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osition 1 the condition that .#;!, contains at least one set of positive measure. It is
convenient first to introduce some notions.

Let K = R and r > 1. An interval I is said to be an r-component of K if the
endpoints of I belong to K and K n I, < I, where I, denotes the interval of the
same centre as I such that |I,| = r|I]. If k is an isolated point of K, then {k} is
a trivial component of K. We shall say that K dissolves into r-components if each
nontrivial r-component [ of K contains two disjoint (possibly trivial) r-compo-
nents of K, say I, and I, such that I nK < I, u I,. Note that if I, and I, with the
stated properties exist, then |I; U I,| < a|I| must hold for some o < 1. Indeed,
o = 4/(3 + r) will do. This fact leads to the observation that every set which
dissolves into r-components is a nullset (start with the convex hull of K and
construct successively more and more r-components). The indicated argument
also shows that a set which dissolves into r-components is homeomorphic to
a subset of the Cantor set. The Cantor set itself dissolves into 3-components.

Proposition 2. For 2n + k > 1, the class X', only contains nullsets.

PROOF. Assume 21 + k > 1 and choose r > 1, such that 1 — 2 <r~! < k.
LetKe .}i’,,‘x and let I be an r-component of K. As |I, n K| £ |I| < k|1,|, we must
have |J| = n-|I,|, where J = ker(I,\K). Each of the two intervals making up I,\/
have length 3(1 — r~')|L,|, which is less than |J|. Hence, J < I. By enlarging J if
necessary, we may assume that the endpoints of J lie in K (here J is taken to be
open). It is now straightforward to check that the two disjoint intervals making
up I\J are both r-components of K. This argument shows that K dissolves into
r-components, hence |[K| = 0.

Note that for 27 + x > 1, the classes .¢,', only depend on #, and they are
hereditary. If n > 3, then ¢;!, = {0}, and if < < 4, then #;', only contains @
and singletons (still assuming that 2n + x > 1). In general, the classes ', have
little stability. Indeed, they need not be closed under unions or under intersec-
tions. Some further considerations show that the class of nullsets which are
members of at least one !, ~class coincides with the class of sets which dissolves
into r-components for some r > 1.

In general, the classes J¢;", also contain Cantor-like sets of positive measure.
This is the content of the following proposition.

PROPOSITION 3. For every ae]0, 1[ there exists a subset of the unit cube in R"
which is homeomorphic to the Cantor set, has Lebesgue measure o and lies in one of
the classes X, .

PROOF. Assume that n = 1 (the general case may be dealt with by a consider-



VITALI SYSTEMS IN R" WITH IRREGULAR SETS 91

ation of product sets). Choose numbers a,€]0,3], n=1, such that

ol -a) =

Construct C = ()% C,in a similar way as the Cantor set: Let C, = [0, 1] and
let C, be a union of 2" disjoint closed subintervals of [0, 1], all of the same length.
If [a,b] is one of the 2"~! components of C,_,, then [a,b] contains two
components of C,, viz. [a,c] and [d,b] with a “hole” Jc,d[ of length
d — ¢ =a, (b — a). Clearly, C is homeomorphic to the usual Cantor set and
|C] = a. Note also that for any n and any component 4 of C, one has
|[AnC| Z alAl

We shall prove that if (1, k) satisfies the condition

) 2+ 60k < 1,

then Ce X" ;,w Assume (9) and let I = R be any interval. If the interior of
I contains no point of C, then (4) holds (with B = I and K = C).

If the interior of I contains a point of C, we let n be the smallest number for
which I contains one of the 2" components of C,. Let A be such a component.

Assume that neither 0 nor 1 belong to A. Then there is a component A~ of C,
lying closest to 4 among all components in C, to the left of A, and there is
acomponent A" of C, lying closest to A to the right of 4. We may assume that 4~
and A are “neighbours” (i.e. their convex hull is a componentin C,_ ). Let A* *
be the neighbour of A*. Then I is contained in the convex hullof 4~ U A* *. Let
x denote the common value of |[47|, |A], |[A*| and |4" *|, and let y denote the
common length of the hole between A~ and 4, and between 4™ and 4™ *. Note
that y < x, because a, < 3. Furthermore, let J be the hole between A and 47, i.e.

J=conv{duA*\(AUAY),

and putz = [I n J|.
Choose k such that

If z £ kx, then

na 4] o ox

| 4x + 2y + kx = 6x + kx

v

K,

so (3) holds. If z > kx, then

|ker (I\C)| S I J| S z S S
T ST S axeyzo 6k

=

5o (4) holds in this case.
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The analysis of the cases in which A contains either 0 or 1 (or both)is left to the
reader.

4, Proof of Theorem 1.
We shall derive Theorem 1 from the more general Theorem 2 below. We first
prove
LEMMA 1. Let @ be a family of subsets of R" such that
Y {IDI|DeP} < + o0.

Let  be a nonnegative function on ]0, + co[ satisfying
Yl dr
< ph —
Yyr)sr* and L " =+ 00

For any given t > 0 and o€ 0, 1], each of the following properties of a set E — R"
ensures that |E| =
(i) For every xeE and every r < t the ball B[x,r] contains a set D€ 2 with

ID| 2 y(r).

(i) For every x€E and every r < t the ball B[x,r] either contains a set De %
from 2 with |D| = y(r), or it contains a ball B with |B| 2 y(r) and
[BNE| = (1 —a)|B|.

ProOF. (i) The condition implies that

E = | ){B[D,r]| D€ 2, diam(D) < 2r, |D| 2 (1)},
whenever r < ro. We introduce N(s) = card{D € 2 ||D| > s}. Then
|E| = (2r)*|BLO, 1]]- N(¥(r))

The lemma follows, if we can prove that lim inf,_, o ”"N({/(r)) = 0.

Let us assume that this is not the case, i.e. we assume that N(y(r)) = c¢-r~ " for
re]0,ro[. Let M(t) = sup{s|t £ N(s)}. Then y(r) £ M(c-r ") for re]0,r,[, from
which we deduce that

o W(r) ii_r_ < M(er™")

el R dr—ncJM(s)ds
0

= ncJN(s)ds =c) {ID||De2} < + 0.

contradicting the assumption on .
(i) Let us assume that |E| > 0. By the density theorem one can find a bounded
set Eq < E and s€]0,t[, such that |E¢| > 0 and

|[EnB[x,r]| >(1 —47")|B[x,r]] for xeE, and re]0,s[.
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Let # be the family of all closed balls B[x,r] = B[E,, s] for which r € ]0, s/4[ and
|En B[x,r]] £(1 — a)|B[x,r]|. According to Theorem 2.8.4 in [2] there exists
a disjointed subfamily € of # such that for every ball Be # there is a Ce¥%
satisfying

CnB+0 and |B| <2|C|

We claim that for every x e E, and every re ]0,s/4[ wecanfind aDe 2 U ¥,
such that

D < B[x,r] and |D| =iy (%)

Infact, our assumptions imply that either thereisa D € 2, such that D = B[x,r/2]
and |D| = y(r/2), or there is a Be % such that B = B[x,r/2] and |B| = y(r/2). In
the former case there is nothing to prove. In the latter case we choose D € &, such
that

@+ DABcBnB[x,r2] and |B| <2|D|

Let B be the smallest ball of centre x containing D. Since the radius of B is less
than s, we have

(10) |[EnB] > (1 —4")|B|.
If D\B[x,r] + 0, then diam(D) > Ldiam(B), so
|[EnB| < |B\D| + [EnD| £(1 — 4 "9)|B|,

contradicting (10). Hence, D = B[x, r], which proves our claim.
Finally, (ii) is deduced from (i) with , 2 and ¢ replaced by ¥(r/2)/2, 2 U € and
s/4, respectively.

THEOREM 2. Assume that k € ]0, 1] and that ¢ and n are nonnegative functions on
10, + oo[ satisfying
1

pr)srnr)<r and J @n(r)/2r~"""dr = + co.
0
Let A" be a family of compact subsets of R", such that whenever K € A" every ball
B[x,r] in R" satisfies at least one of the following two properties:
(i) B[x,r]contains aball B of measure at least g(31(r)) such that |K n B| = x|B|.
(i) B[x,r]\K contains a ball of radius y(r).

Then A contains a countable disjointed subfamily € covering almost all of the set
of those x € R" for which

(11) IroVr < rodK e :K < B[x,r] and |K| Z ¢(r).
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PROOF. We may assume that the union of ¥ is bounded. Using the standard
procedure from Theorem 2.8.4 in [2] we can find a maximal subfamily ¢ of ¢,

such that
(a) whenever C, and C, are different sets from &, then

(12) B[C,,diam(C,)/4]nC, =0 or B[C,,diam(C,)/4]1nC, =9,

(b) for every Kex either B[K, ;diam(K)]nC =@ for all Ce%, or
B[K,}diam(K)] n C # @ and |K| < 2|C| for some Ce%.

The standard argument in [2] then shows that for every K € " thereisa Ce ¥,
such that B[K,1diam(K)] ~ C # 0 and |K| £ 2|C]| for some Ce¥. Note that
since € is a disjointed family of measurable sets and U% is bounded we have
Y{ICl|Ce%} < + 0.

We shall prove that & has the required property of the theorem. Let ry > 0 and
let E denote the set of all xe R"\U% such that for every r < rq the ball B[x,r]
contains a set K e 4 with |K| = ¢(r). The theorem follows if we can prove that
|El = 0.

In the proof of |E| = 0 we shall use the statement (ii) of Lemma 1 with y, 2 and
a replaced by 4~ "o(in(2r/27)), €, ro and k, respectively. Thus we start by showing
that the assumptions of (i) in Lemma 1 are satisfied.

Let xe E and re]0,ro[. Then we can find K € ¥ such that K < B[x,2r/27]
and |K| = ¢(2r/27). Choose C, €% such that |Cy| = 3|K| and

0 % B[K,diam(K)/4] n Co < B[x,r/9] 1 C,.

If Cy < B[x,r], then |Cy| = Y(r), and the required property is verified.

If Co\B[x,r] # 0, we either get a ball B, = B[x, 2r/27] of measure at least
@(n(2r/27)/2),such that |Cy N By| = k|By|, or a point y such that B[y, n(2r/27)] =
B[x,2r/27T]\C,.

In the former case the required property is obvious, so consider the latter case.
Since | B[y, §1(2r/27)]| = ¥(r), the required property also holds if B[y, 37(2r/27)] N
E = §. We may therefore assume that we can find z e B[y, 17(2r/27)] 1 E. Then
there exists a K, € X', such that K; < B[z,4n(2r/27)] and |K,| = ¢(n(2r/27)).
Choose C, €%, such that B[K,,;diam(K,)]nC, + @ and |C,| = }|K,|. Since
B[K,,}diam(K )] < B[y, n(2r/27)], we get B(y, n(2r/27)] n C, % §. This implies
that C, + C, and C,;n B[x,r/9] + 0. We note that Cn B[x,r/9] + @ and
C\B[x,r] % @ imply that B[C, }diam(C)] > B[x,r/9]. Since Co N B[x,r/9] + 0,
we infer that C;n B[Co,}diam(Co)] £ 0. By (12) this implies that
Co N B[C,,%diam(C,)] = 0, and the argument above shows that C, = B[x,r].
Hence, we have shewn that the assumptions of (ii) in Lemma 1 are fulfilled.

By applying (ii) in Lemma 1 we finally get |E| = 0.
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PROOF OF THEOREM 1, SUFFICIENCY. Let k,7 > 0 be constants satisfying (1),
and let @ € @" satisfy (2). Then every point x € R" satisfies (11) with # = A

We define n(r) = n-r. Then obviously, o @(3n(r)r " 'dr = + 0. Further-
more, for each K e %}, and every ball B[x, r], either |B[x,r] n K| = x |B[x,r]],
or there exists a ball B < B[x,r] such that BAK =@ and diam(B) =
n-diam(B[x,r]) = 2nr. Thus, %, satisfies (i) and (ii) of Theorem 2, and Theorem’
1 follows from Theorem 2.

In Section 2 we introduced the classes .#,",, where 5:]0, + oo [=]0,1] is
a function and k € ]0, 1] is a constant. Let n* be given by (6), i.e. n*(d) = d - n(d).
Then ", denotes the class of compact sets K < R", such that for every closed
ball B,

[BN K|z k|B| or diam(ker(B\K))= n*(diam(B)).

THEOREM 3. Assume that A,", contains all closed balls where n is a nondecreas-
ing function and x a constant. Let p € @". If

J ' o(ry(r)) dr _ J o) dr _

- 9
0 r r o rt r

then the Vitali system ¥""[, A, ] has the packing property.

PRrROOF. Just repeat the proof of Theorem 1 with the constant  replaced by the
function #(r).

As to the kind of density theorems and differentiation theorems one can derive
as immediate corollaries from Theorem 1 and Theorem 3, we refer to [4], [7].

5. A Nullset Criterion.

We shall, by applying Theorem 1, obtain a sufficient criterion for a set C < R",
n Z 2, to be a nullset. '

Let ¢ be a nondecreasing positive function on ]O, + oco[. Let £ be an oriented
halfline in R" with @ as endpoint and let R >0. Consider the set
T = T(g,/,R) = R" consisting of all points PeR" for which the orthogonal
projection P’ of P onto the line determined by ¢ satisfies the properties

P'et, |OP|; =R, |PPlz=elOP]2),

where ||-||, denotes the Euclidean norm. Such a set is called a g-trumpet. The
point ( is the vertex of the g-trumpet. We refer to g as the shape function. The class
of all o-trumpets in R" is denoted by 7"

LEMMA 2. There exist positive constants n and x such that 7' < X", for any
shape function o.



96 LEIF MEJLBRO AND FLEMMING TOPS@E

Proor. Let T = Tg,/,R)e 7" and consider any ball B. There exists a cube
Q < B such that ¢ is parallel to one of the edges in Q and such that |Q| = a|B|,
where a is a positive constant depending only on n and the metric. Divide Q into
3" subcubes of the same size. An easy geometrical consideration shows that if all
the 3" subcubes of Q intersect T, then the middle subcube is entirely contained in
T. Hence, there exists at least one of these subcubes Q’, such that either Q' < T or
T Q = §. Now, Q' contains a ball B such that |B| = b|Q'| for some positive
constant b depending only on n and the metric, so |B| = ab-37"|B|, proving the
lemma for k =" =ab-37"

THEOREM 4. Let ¢ be a shape function such that

(13) () 2t
0 r r

If a set C = R" has the property that to every x € C there exists a g-trumpet with
vertex x and no other points in common with C, then C is a nullset.

ProOF. We just outline the essential argument. Assume for simplicity that the
metric is induced by the maximum norm. Let T, be a g-trumpet with vertex xe C
and no other point in common with C, and let & be the family of all such
o-trumpets. Assume, as we may, that g(r) < r for all r. Let 6 be sufficiently small
and assume for simplicity that the axis of T is parallel to an edge in B[x, §]. Then
T N B[x, 8] is a g-trumpet of measure

. F
(14) @(9) = CJ o(s)" "t ds,
(4]
where ¢ only depends on n. Then (C, &) e ¥™"[, #, k] with n and k as in Lemma
2 and ¢ given by (14). By Theorem 1, it only remains to verify (2). This is an easy
exercise because of (13).

ReEMARKS. If the trumpets are ordinary cones corresponding to a shape func-
tion of the form g(6) = ¢ §, Theorem 4 gives a nullset criterion which also follows
immediately from Lebesgue’s density theorem.

If C is any curve in R? without double points, and |C| > 0, and g is any shape
function such that for every x € C one can find a g-trumpet T, of vertex x and no
other point in common with C, then we get by contraposition of Theorem 4,

1
j-@‘ﬁﬁ’;<+w

o T

’

which shows that the family of all g-trumpets with only their vertices in common
with C must have a very “thin” shape near their vertices.
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If we had applied the weaker Theorem 2 of [4] instead of Theorem 1 we would
have obtained a weaker criterion with (13) replaced by

[y
o\ T r

We believe that condition (13) is close to the best possible condition for a nullset
criterion of the type considered.

6. A Cantor-set Construction in R.

For simplicity we restrict our attention to the one-dimensional case n = 1. Let

+ o
2N — U on
n=0
denote the set of finite multi-indices of 0’s and 1’s including the empty
multi-index. To a given sequence a = (a,),» o With 0 < g, < 1, we construct two
systems (Hausdorff schemes) of intervals C(¢) and J(e), e€ 2™, in [0, 1] according
to the following rules:
1. C@) =[0,1].
2. J(gy,...,&,) is the open middle subinterval of C(e,,...,¢,) of length

'J(gla LT} gn)l =day IC(EI, Rl gn)l’
3. Cley,...,&,,0) is the left component, and C(ey,...,,, 1) is the right compo-
nent of the set C(ey,...,,)\J(€,.--,&pn)-
We put

C.={JCle) nz0,

ge2n

and
+ o
C=C,= () Cn
n=0

In case of a, = Qitis understood that J(e) = @, and C(¢0) is the left halfand C(el)is
the right half of C(e).

LEMMA 3. Let K be a compact subset of R, denote by J the convex hull of K and
put £ = |J|. Assume that there are only finitely many components of J\K and denote
by A the minimal length of these components.

Let k < 1/3 and let :]0, + oo [—]0, 1/3] be a function such that n* defined by
(6) is never decreasing. If n*(3¢)) < 4, then Ke X},

PrOOF. Let I be a compact interval, and decompose I into three subintervals,
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I =1, ul, Ul,, of equal length (with I, as the central interval). If one of the
subintervals is disjoint with K, then (5) holds with Breplaced by I. In the contrary
case, there must exist k;e K n I, and k;e K nI5. Thus |I| £37. If k; and k;
belong to the same component of K, then I, € K, and hence (3) holds with
B replaced by I. If k; and k; belong to different components of K, then I must
contain a component of J\K which has length at least 4. As

4 2 n*(374) 2 n*()),
we see that (7) holds in this case.

LEMMA 4. Assume that n* and ¢ are nondecreasing, that n*(r) < r/3 for allr and
that k £ 1/3. Assume that for all (¢,)€2™ and all n = 1 the following inequality
holds
(15) max |C(ey, ..., em\Croml Z @(C(Ey, - .., 80— 1))

m2n
where f(n) denotes the largest integer such that
(16) n*(3-1Cey, .. &) S |Clexs - - s Epmy]l-
Then C is ¥ [, n, K]-meagre.

PrOOF. The common value of |C(e,, ..., ¢,)| for all (¢4,.. ., ¢,)€2" is denoted by
8, Given xeC and >0, determine (g,)e2™ and n=1 such that
xe (5 Cley,....&,) and §, £ 6 < 6,_,. Put

Km = C(els'“aem)\cf(m)’ m g n.

Then K,, < B[x,d]\C and K,,,e)if,,f,c for all m = n. This follows from (16) and
Lemma 3. Finally, (15) shows that |K,,| = ¢(d,-,) = ¢(J) for some m = n.

THEOREM 5. Let k < 1/3 and let n* be nondecreasing. If ¥ *[p,n,x] has the
packing property for every ¢ € ®* which satisfies the condition

1

1
amn j ﬂﬂt:‘[ o(r)r~2dr = 4+ o0,

o r 1 Jo

or, if just every ¥ [ @, n, k)-meagre set with ¢ of this type is a nullset, then there
exists a constant o > 0 such that n*(6) 2 196 forall0 <5 < 1.

ProoF. Choose ¢ > 0, such that

+ oo

+ o +
(18) ros1-Jl0-a)227 q
v=0 v=0

v=0
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for every sequence (a,),50 Of nonnegatlve numbers with Y * % a, < e Then

choose B, 2 0,v 2 0, such that ) % B, < egand ¥ [ % vf, = + 0. Put
+
p=1I10-8).
v=0

Then p > 0. For n = 0 let g(n) be the largest integer, for which

(19) n*3-27") < 3p-27",

Assume that the conclusion of the theorem does not hold. Then we can find an
increasing sequence (n)x > o Of positive integers such that

(20) glm) — e >k, k20,

and such that the sequence (g(n)).> o is also increasing.
Define a = (a,),z0 by
ag(nk) = ﬂk’ k é 07 and a, = 0 fOr V¢ {g(n())’ g("l)" . °}7
and carry out the Cantor construction based on this sequence.

Forn = 1 put

_1l.,.9-(n+1),
Pn=7%D2 Y a,
n+1=<vsgn+1)

and define g € ®! by

00 =supo, for 27"<5<27" Y nx1.

mzn

We claim that C = C, is ¥ [, n,x]-meagre, that ¢ satisfies (17) and that
|C|] > 0. The latter is obvious since |C| = p. To verify (17), note that

+ 0 2n + oo N
IR U S LER O D
n=0

n=0 n=0n+135vSgn+1)
+ o
g% 33 (tgnn + 1 2 90 S gl + 1)
+ o0
2 E Z kﬂk = -
4 k=0

which is equivalent to (17).
Finally, we prove that C is ¥ '[¢, 7, k]-meagre. First note that for (e,)e 2™
andn > 1,

”*(3'|C(El’ 9£n)l) s n (3 2 n) < p 2 9 < lC(Sl, 5gg(n)+1)”
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50 f(n) = g(n) + 1, where f is defined as in Lemma 4. Then (15) may be verified as
follows:

max IC(£19 R3] ‘gm)\Cf(m)I .Z_ max IC(SI’ ey gm)\cg(m)+ 1,

m2n m2n

g(m) p g(m)
= max<1 - [1a- av)>~lC(el,...,em)l > max = Y a,-27m

mn v=m mn v=m

=max @, = @2~ """) 2 ¢(|Cley,....&,-1)).

It then follows from Lemma 4 that C is meagre.
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