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ELLIPTIC BOUNDARY PROBLEMS AND THE BOUTET
DE MONVEL CALCULUS IN BESOV AND
TRIEBEL-LIZORKIN SPACES

JON JOHNSEN*

Abstract.

The Boutet de Monvel calculus of pseudo-differential boundary operators is generalised to the scales
of Besov and Triebel-Lizorkin spaces, B, ,and F, ,, with seR and p and g€]0, o] (though with
p < oo for the F,  spaces).

The continuity and Fredholm properties proved here extend those in [Fra86a] and [Gru90], and
the results on range complements of surjectively elliptic Green operators improve the earlier known,
even for the classical spaces with 1 < p < 0.

The symbol classes treated are the x-uniformly estimated ones. On R". a trace operator T and
a singular Green operator G, both of class 0, are defined in general to be

0.1) T = K*e*, G =r"Gle*

where the Poisson operator K is OPK (¢/® "P&f(x’, x,, £)) and the singular Green operator G, equals
OPG (e P& §(x', y,, xp, £')), respectively.

1. Summary.

As a main example of the considerations in this article one may take an elliptic
differential operator A = Y |, <ad,(x)D* on an open bounded set @ = R" with C*
boundary I' := 0Q2 and a trace operator T for which

Au(x) = f(x) in Q,

(1) Tu(x) = @(x) on T,

is a boundary value problem that is elliptic in the sense of Agmon, Douglis and
Nirenberg [ADNS59].

The topics to be discussed in this connection are:

(I) solvability and regularity results in the Besov and Triebel-Lizorkin spaces
B, ,and F5  with seR and p and g€]0, o0] (and p < co in the F case),

(I) a generalisation of the pseudo-differential calculus of Boutet de Monvel
[BdM71] (for problems like that in (1.1), e.g.) to the setting in (I).
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Infact (I) and (II) are treated simultaneously in order to give a unified treatment
of these two systematic points of view.

It is also the purpose to present modifications of some basic facts in the
calculus with full proofs. The arguments should be of interest, partly because they
are fairly elementary, and partly since they bring the R" -part of the calculus
closer to the pseudo-differential theory of Hérmander [Ho6r85, Sect. 18.1].

The results are presented in the rest of this section, and Section 2 settles the
notation and the prerequisites on the B, ,and F, , spaces. Section 3 describes the
operator classes of the calculus relatively to the half-space R"., whereas the
continuity properties in the R”, -case are proved in Section 4. Fredholm proper-
ties are treated in Section 5, even for multi-order systems acting in vector bundles,
and applications are indicated in Section 6.

On the spaces. The project in (I) covers many different spaces at the same time,
since:

e C° = B  fors > 0(Holder-Zygmund spaces),

e W, =B, ,forseR,\Njyand 1 < p < oo (Slobodetskii spaces),

° W: = F} ,for keNgand 1 < p < oo (Sobolev spaces),

e Hy=F, ,forseR and 1 < p < oo (Bessel potential spaces).

In particular F;,"Z =L,forl <p<ooand B, =F; , = H*for se R (Lebes-
gue and Sobolev spaces).

For these relations the reader is referred to the books of H. Triebel [Tri83,
Tri92]. As a further motivation, note that the local Hardy space h, equals F , for
0 < p < o0, and that the relation to Morrey-Campanato spaces is explained in
[Tri92], together with the fact that also F; . has been considered earlier on in
[Chr84, DS84]. (The local BMO space bmo equals F?2 ,, which is not treated
here. However, a recent work of J. Marschall [Mar] may provide a point of
departure for an extension of the present results to the F, , spaces.)

For a presentation of the results the reader is referred to Theorems 1.1 and 1.3
and to Corollaries 1.2 and 1.4 below.

The calculus of Boutet de Monvel was originally worked out for the H*
Sobolev spaces [BAM71], and an extension to B} ,and F; , with1 < p < co and
1 £ g £ o was given by G. Grubb [Gru90]. Among the earlier attemptsatan L,
theory for the calculus the shortcomings of [RS82] are accounted for in [Gru90,
Rem. 3.2], so the reader may refer to the details there.

An extension of the calculus to the B}, , and F, , scales, with the restriction
p < oo in the F case, has been worked out already by J. Franke. However, at the
central point the arguments are not contained in his thesis [Fra86a], and the only
published material on this work is the review article [Fra85], which does not
contain proofs. In addition to this, the concept of negative class for operators of
the form P, + G — and hence for general Green operators &/— was first intro-
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duced in [Gru90], and already for classical problems like (1.1) this notion is
indispensable for an optimal description of parametrices, cf. [Gru90, Thm. 5.4
ff.].

On these grounds the author has included in his thesis [Joh93] an extension to
the B , and F, , spaces. It is presented here with some improvements.

It should also be mentioned that the L, theory of differential boundary
problems, studied in [ADNS59, ADN64], [Sol66] ..., was considered first in the
B; ,and F, ,scales by H. Triebel in [Tri78], cf. also [Tri83], although with some
restrictions for p and g < 1. An extension to the case with p and q also in the
whole of ]0, 1] has been worked out by Franke and T. Runst [FR95].

On the calculus. Boundary problems like (1.1) are represented here by Green
operators in the pseudo-differential boundary operator calculus of Boutet de
Monvel, cf. (IT). A typical example is obtained from a matrix operator

Po+G K\ C@" @
(1.2) .91=< "T S): ® - &
Coo(r)M Cw(r)M’
where

® P, = rqPey is the truncation to Q of a pseudo-differential operator on R"
with the symbol lying in §9 , and satisfying a transmission condition at I' = R";

e G is a singular Green operator,

e K is a Poisson (or potential) operator,

e T is a trace operator,

e S is a pseudo-differential operator on I.

(See Section 3 below for the expressions of these operators in local coordi-
nates.) Then ./ is said to have order d and classr, for numbersde Rand reZ, if all
eéntries have this order and both T and P, + G have class r.

As an example, if in (1.1) P, = A = 4% (the biharmonic operator) and

ou . A .
Tu = (you,y,u) with you = ulr and yu = —i—a—ﬁT , i being the outward unit
r

normal vector field at I, then N =1 =N, M =0 and M’ = 2 together with
G =0, K = 0 and S = 0 allows one to read (1.1) as an equation for the operator
<. (This is actually a slightly more general situation with multi-order and

multi-class.)
The five types of operators listed above are also defined on more general

distributions than C® functions. In this respect the following theorem is proved
here:

THEOREM 1.1. Let se R and p and g€ 10, o0}, and suppose that o/ has orderde R
and class re Z.
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1
Ifs > r + max (—- - l,l - n), then o/ has the continuity properties
p p

Bp @ B @Y
(1.3) g ® - @

s—d—l

1
S — M M’
B, F(I) B, ., P

P @ @Y

(1.4) g D - @
_1 soa-l o,
B, fOM B, rM

provided p < oo in (1.4).

1 n .
Furthermore, if o/ for some s; < r + max (—— — 1,— — n ] is continuous from

Py Py
- 1 _ 1
either B3 (V@B ;D™ or F3  (Q¥® B, (M to the space

DN x (M, then both T and Py + G have class < r — 1.

The theorem also gives statements for each kind of the operators Py, G, K, T
and S by consideration of examples of .o/ with suitable zero-entries. Thus the
“working definition” of the class concept — namely that an operator is of class r if
and only if it is continuous from H'(Q) to 2’ — is generalised to the B;, , and
F; , setting.

When &/ is elliptic (and in particular has polyhomogeneous symbols of order
d e Z), the theorem applies equally well to its parametrix </, which may be taken
of order —d and class r — d (cf. [Gru90]). Then & is is continuous from the right

1
to the left in (1.3) and (1.4) for every s > r + max(; - 1,—3 — n).
Consequently & has the expected inverse regularity properties:

COROLLARY 1.2. Let o be elliptic of order d and class r. Let (u, ) belong to
-1 ’
B, (" ® B;‘qP(I’ Y for some s> r + max <% - 1,% — n) and assume that

1
(u,¥) — for a parameter with s; > r + max <-— - I,L - n) — satisfies

D1 141
Po+G K\(u f Fnal @
(1.5) = € ®
T S l// ¢ Ba.-d—l/p,(r)M'
1
Then (u, @) is also an element of B}, , (Q)" @ B, P (M.

In the F, , spaces s/ has analogous inverse regularity properties (if ¢ = p in the
spaces over I'), and the statements likewise carry over to the mixed cases with (u, )
given in Besov spaces and (f, ¢) prescribed in Triebel-Lizorkin spaces, or vice versa.
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In the elliptic case, the Fredholm properties of o/ are improved and extended
to the following Theorem 1.3. Thus an elliptic Green operator is a Fredholm
operator with (s, p, g)-independent kernel and index (1° and 2°), for which each
choice of a smooth range-complement (by 3°) can be used as such for every
admissible (s, p, q).

THEOREM 1.3. Let o be elliptic of order de Z and class r e Z. Consider for each
1
p and g€ 10, 0] and s > r + max <;— - 1,% - n) the two operators in formulae

(1.3) and (1.4) above.

1° For each such (s, p, q) the operators in (1.3) and (1.4) have the same kernel,
ker /. Here ker o/ is a finite dimensional subspace of C*(Q)¥ @ C®(I'™, which is
independent of (s, p, q).

2° For each (s, p,q) the operators have closed ranges. Moreover, there exists
a finite dimensional subspace /" = C*(Q) @ C>(I'™" which for each (s, p,q) is
a range-complement of both operators. That is,

1 IS S
(1.6) N @ AB (O ® B, 2(NM = B, 4D @B, #NM

1 R S
(L) N @ AF, (D DB, F(IM) = F A @Y ©B,, ()™

1 n
whenever s > r + max <; - 1,; - n).
3 If N < CQ)N @ C(INM is any subspace such that either (1.6) or (1.7)

holds for some parameter (sy,py,q,) with s; > r + max (;’11— - 1,—;1— - n), then
A has finite dimension and both (1.6) and (1.7) hold for every (s, p, q) that satisfies
G-13-
s>r+max|{——1,——n}|.
p p

In the determination of specific examples of 4" the following result concerning
annihilation should be of importance.

For a given subspace 4 < C*(Q)V @ C*(IN™ it is convenient to let A
denote the distributions f and ¢ for which {f,g>q + {@, ) makes sense and
equals O for all (g, ) in 4. These questions are meaningful for .2/’s codomains
provided each element (g, ) has sufficiently many vanishing traces y;g:

COROLLARY 1.4. Let o be as in Theorem 1.3,and let /' < C*(Q) & C=(N™’
be a subspace for which each element (g,n) satisfies y;g = 0 for j < d —r (void if
d < r). Moreover, let one of the identities

(18) A aBADY ® Bl WD) = (B, (@ @ By 2(0))
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s g1 , - o1
(19)  #EA(FAQY @ B THDM) = A(F (D) ® B, 2(I)™)
1
hold for a parameter (s, p1,q,) with s; > r + max <—p— - 1,—:— — n).
1 1

Then A is a range complement and both (1.8) and (1.9) hold for all (s, p, q) with

G-15-7)
s>r+max{——1,——n]).
p p

—4
EXAMPLE 1.5. & = < . ) represents the Neumann problem for the Lap-
1

lacian, and for (s, p, q) = (2, 2, 2) the data (f; ¢) belong to the range of .o« precisely
when [of + ijrq) = 0. By Corollary 1.4, this annihilation of (1, i1,) character-

. 1
ises the range of & for every (s, p, ) with s > 2 + max <; - 1,% - n).

In the preceding exposition the scope has been restricted somewhat for sim-
plicity’s sake. In fact o/ could equally well have been a multi-order and
multi-class system in the Douglis-Nirenberg sense, even with each entry
matrixformed over Q and I' - i.e. P = (P, ; o) where P, j o: C*(E;) » C*(E)) etc.
—asin [Gru90, Cor. 5.5]. Theorem 1.1 and 1.3 are both proved in this generality
below, the latter even in a version for one-sided elliptic operators.

The methods. To carry out the analysis in the B}, , and F, , spaces the defini-
tions and results based on Fourier analysis, as presented in [ Tri83], are adopted.
Together with M. Yamazaki’s theorems on convergence of series of distributions
satisfying spectral conditions, [Yam86, Thm.s 3.6 and 3.7], these are the main
tools used here concerning the function spaces.

For the treatment of the five types of operators in the B}, , and F; , spaces it is
used that a pseudo-differential operator P on R" is known to be bounded

(1.10) P: B; ,(R") — B} A(R"), P:F5 (R™ — F5"4(R"

for seR and p and g€]0, co] (with p finite in the F case) whenever the symbol
belongs to the Hormander class ${ (R x R"); that is, whenever the x-uniform
estimate — with (&) := (1 + |¢|?)? -

(1.11) sup{<&> @1 IDEDIp(x, &) | x, € R"} =:Cpp < 0

is valid for p(x, £) e £&(R>") for all multi-indices « and B.

The central result in (1.10) was obtained for p < 1 (even for more general
symbols) by Bui Huy Qui and L. Péivirinta [Bui83, Pii83], and it has been
reproved (with further generalisations) in M. Yamazaki’s paper [Yam86], e.g.,
where also the history of this L, theory is outlined.
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In order to carry over the continuity in (1.10) to a version of Theorem 1.1 for
the halfspace R", the x-uniformly estimated symbols and symbol-kernels of
[Gru90] and [GK93] are treated here. Cf. (3.6) ff. below for these classes.

For the Py,’s'in particular, the so-called uniform two-sided transmission condi-
tion at I is required to hold for P. In local coordinates this amounts to the
fulfilment of (3.5) below.

By and large, the R" -version of Theorem 1.1 is deduced from (1.10) by
a method of attack that is rather close to the one adopted in [Gru90], and hence
in a way that is quite standard within the calculus. However, to include the
interval ]O, 1[ for the integral-exponents p, a fresh approach is needed. For this
point J. Franke [Fra86a] has given an argument based on estimates of
para-multiplication operators (like those in [Yam86], for example) and on
complex interpolation of the Besov and Triebel-Lizorkin spaces.

In addition to this there is a main technical difficulty in the fact that denseness
of the Schwartz space #(R") in either of B; ,(R") and F; ,(R") holds precisely
when both p < 00 and ¢ < oo do so. The approach taken here is to define trace
operators T = OPT(f) and singular Green operators G = OPG(g) of class 0 on
R" by the formulae

(1.12) Tu = K*e*u, Gu=r*G¥e'u

when e* makes sense on ue &'(R" ). Hereby K = OPK (¢'”~ " P*f(x’, x,, &) and
G, = OPG(e'®~ P §(x', Y, Xn, &), that have their adjoints K* and G¥ defined on
SLo(R%).

Comparison with other works. The continuity properties shown here extend
those in [Gru90, Thm. 3.11 ff.], mainly to the case with pe]0, co]. (The special
results on B}, ,n H; and B;, , v H}, there are recovered by use of the full state-
ments below, see Theorem 4.15 fI.) The results of [Fra86a] are extended to
multi-order systems, that can have class r < 0, in which case the ranges of s are
larger than his. Using techniques from [Gru90], the present restrictions on s are
proved to be essentially sharp. For the subscales B;, , and F, , the borderline

casess = r + 1 1 were first analysed in [Gru90], but here in the more compli-

cated situation with g€ ]0, co] this question is only given a rudimentary treat-
ment; cf. Remark 4.12 below. In Section 4, continuity from &'(R") is shown to
hold precisely for operators of class — co.

The result on ker & extends the one in [Gru90] to the full scales B, ;and F;, ,,
whereas 1° and 2° in Theorem 1.3 generalise [Fra86a] to the o/’s considered here.
The exact range characterisations of surjectively elliptic operators in [Gru90,
Thm. 5.4] amount to annihilation of a specific (s, p, g)-independent finite dimen-
sional C*® space. Extending this, Corollary 1.4 shows that a smooth space
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A" need only be annihilated by the range for a single (s, p, q), for then it is so for all
admissible parameters; cf. also Example 1.5 above. For the existence of such an
A" having vanishing traces in case r < d, see [Gru90, Rem. 5.3]. Moreover,
a smooth space /" complements the range either for all (s, p, q) or for none by
Theorem 1.3. Even for differential problems with 1 < p < oo this conclusion has
seemingly not been formulated before.

After submission of the first version of this paper, I became aware of a work of
D.-C. Chang, S. G. Krantz and E. M. Stein [CKS93], which also deals with
boundary problems in spaces with p < 1. They consider the solution operators
R; and Ry for the boundary homogeneous Dirichlét and Neumann problems,
respectively, for — 4, and they show that 0% Rp and 9} Ry are bounded from the
‘minimal’ local Hardy space roFy ,.o(Q) for every p > 0, whilst for FP ,(€) this

- : 1 and for 03 Ry if and only if p > 1.

On one hand, by application of Theorem 1.1 or 5.2 to 35 Rp and 05 Ry as
special cases, the present general theory also yields the boundedness on F ;’_2(@)
n
+1
(since the operators are known to have class — 1 and 0, respectively). On the other
hand, however, scales like roF; ,. (@) are not considered here.

Perhaps the spaces with p and g € ]0, 1[ deserve some extra attention in view of
the fact that B;, , and F, , with such exponents are merely quasi-Banach spaces.
For continuity questions it is well known that (2.9) below can be applied with
succes instead of the quasi-triangle inequality; cf. also Remark 2.2 below. So for
Theorem 1.1 the essential difficulties lie in the case with p = oo, which is handled
by means of (1.12).

To prove Theorem 1.3 it might seem necessary to generalise the notion of
Fredholm operators to quasi-Banach spaces (as in [Fra86a] and [FR95)).
However, this approach is neither necessary nor particularly useful here. In fact

holds for 03 R, if and only if p >

forp > ; : I and p > 1 as well as the unboundedness for p < " andp < 1

. 1
the restriction to s > r + max (; - 1,—'l - n> when T and P, + G are of class
p

r allows embeddings into spaces with p and g € ]1, o[ on which the operators are
defined. This gives a way to deduce the various properties from the Banach space
cases. Cf. also Remark 5.1.

In reality the “extra” spaces over  with p and g€ ]0, 1[ U {0} treated here do
not in comparison provide any “new” functions to which a given operator can be
applied, cf. Remark 5.1.

From this point of view the achievement in the present article consists rather of
continuity with respect to new topologies and of more detailed Fredholm
properties. )
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2. Preliminaries.

In this section an overview of the Besov spaces B;, , and Triebel-Liorkin spaces
F, ,is given. Subsections 2.4,2.5,2.7 and 2.8 are vital for the treatment of spaces
with integral-exponent p < 1, in particular because they provide a substitute for
the duality arguments in [Gru90], that only work for p > 1.

2.1. Notation. For a normed or quasi-normed space X, | x |X| denotes the
quasi-norm of the vector x. Recall that X is quasi-normed when the triangle
inequality is weakened to || x + y [X|| £ ¢(|| x |X|| + | y IX|)) for some ¢ = 1
independent of x and y. (The prefix “quasi-” is omitted when confusion is unlikely
to occur.)

As simple examples there are L,(R") and 7,:= ¢,(N,) for pe J0, 0], where

L. . .
¢ =21 is possible for p < 1. However, it is a stronger fact that

1
2.1 I+ gLl =S IL,I7 + 11 g Ly [P)e, for 0<p<=1,

and this inequality has an exact analogue for the 7, spaces.

The vector space of bounded linear operators from X to Y is denoted L(X, Y);
the operator quasi-norm |- |L(X, Y)| satisfies the quasi-triangle inequality with
the same constant as |- |Y].

The space of compactly supported smooth functions is written C§ () or 2(£2)
when Q < R" is open, and 2'() is the dual space of distributions on Q. The
duality between ue 2'(Q) and ¢ € C3(Q) is denoted {u, .

The Schwartz space of rapidly decreasing functions is denoted by & = ¥(R"),
and the dual space of tempered distributions by ¥’ = &'(R"). The seminorms on
&(R") are taken to be || ¥ |.¥, «, B|| = sup{|x*D*| | x e R"} for a, B € N}, or equiv-
alently || ¢ |#, N|| = max {|| ¢ |7, Bl o), |B] = N} for N € No.
aal “ee 6“"
x5t oxg’
With the norm || f |C(R")|| = sup|f], it is convenient to let

Throughout D* = (— i) where |a| = a; + -+ + a, for ae N§.

(2.2) C(R") = {f € L,(R"| f is uniformly continuous}.

Moreover, C§(R") = { /| D*f € C(R"), lo] £ k} and C*(R") = N C%R") is the space
of smooth functions with bounded derivatives of any order; it is equipped with
the semi-norms sup{|D% (x)|| xe R", |« < k}. (This distinguishes the space
Ck from the Holder-Zygmund space B, , = C*, s > 0. Then C* = C;~! and
C*" =nB, o)

For the Besov spaces B ,(R"), where seR and 0 <p,q = oo, and the



34 JON JOHNSEN

Triebel-Lizorkin spaces F, , (considered for 0 < p < 0o only) the notation of H.
Triebel in [Tri83] is adopted.

When Q < R"is open, C*(9), B;, ,(2)and F; ,(Q)etc. are defined by restriction
to 2. E.g., C(Q) = roC(R") where ro: 2'(R") —» 2'(Q) is the transpose of the
extension by 0 outside of Q, denoted ey: C5(2) » C5(R"). When Q = R’} the
abbreviations r* = ren and et = eqn are used. Here R”, denotes the halfspace

where x, = 0and R := {xeR"|x, % 0} its closure.
Moreover, B; ,.o(9), (@) etc. denote subspaces supported by &, e.g.,

2.3) Fo(R%) = {ue ¥ (R")|suppu = R" }.

The Fourier transform is denoted by #Fu(é) = #(¢) = [gne™ ™ *u(x)dx, and the
notation & ~'u(x) = (x) is used for its inverse; the co-Fourier transform is
written Z u(&) = [qn €™ ‘u(x)dx and its inverse is denoted & ~'v(x). For functions
u(x', x,) e £(R"), where x' = (xy,...,X,-1), @ partial transformation in x’ is in-
dicated by F, . pu(x’,x,) = (&, x,) = [gn-1€~ " ¢u(x’, x,)dx’. Indexations like
this are also used for the other transformations and for functions of, say, n — 1
variables. However, in any case “ A” indicates a Fourier transformation with
respect to all variables; when the meaning is clear this replaces &, »v(x') etc.

For ueC®(R%) we let you(x’)=u(x’,0) and yu=y,D] u. As usual
{x) = (1 + |x]*)* and (x> = {(x’, 0)), where || is the euclidean norm on R". The
measure (2r) " dx is abbreviated dx, and dx’: = (2n)! ""dx’ on R* !, Usually it is
clear from the context whether p denotes an integral-exponent in ]0, 0] or
a symbol p = p(x, &) (in $9 ;).

The convention that t, = max(0, +¢)is used for te R, and |¢ Jand [t ]denote
the largest integer < t and the smallest integer = t, respectively. For each given
assertion we shall follow D. E. Knuth’s suggestion in [Knu92] and let [assertion]
denote 1 and 0 when the assertion is true respectively false.

2.2. The spaces. For the definition of B, and F; , the conventions in
[Yam86] (that are equivalent to the ones in [Tri83, Tri92]) are employed.

First a partition of unity, 1 = Z;'D:o <1>J:, is constructed: From ¥ € C*(R), such
that ¥(¢) = 1 for 0 < t < 1§ and ¥(t) = 0 for 13 < t, the functions

2.4 P& = [ieN1PQ27I¢)
are introduced and used to define
2.5 Di(8)=Yid) — ¥;-1(), for jeZ

Secondly there is then a decomposition, with (weak) convergence in &,

(2.6) u= Y uj=y F '®Fu, forevery ue¥
i=o j

i=0
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Here the convention u;:= %~ '®,%u = # ~}(&;i) is used, as it is throughout.
Now the Besov space B;, q(R") with smoothness index s e R, integral-exponent
p€10, o] and sum-exponent g€ 10, 0], is defined as
< oo},

and the Triebel-Lizorkin space F, (R") with smoothness index seR, inte-
gral-exponent p € 10, o[ and sum-exponent q€ 10, 0] is defined as

o < <o

For the history of these spaces we refer to Triebel’s books [Tri83, Tri92].
The spaces B, , and F, , are quasi-Banach spaces with the quasi-norms given
by the finite expressionsin (2.7) and (2.8). Concerning an analogue of (2.1) one has

27 B, R"= {uey'(ﬂ") {29 F '@, Fu|L, |} 20|,

28) F (R")= {uey(R")

‘H{M' ', FubE I, ()|L

1 .
29) IS +91By Il (I £1B I + 11 g1B; 1%, for A =min(1,p,q),

with a similar inequality for the Triebel-Lizorkin spaces.

ExaMPLE 2.1. The delta distribution J,(x) belongs to Bé;: (R") for each
pe]0, co], since by definition (2.7),
(2.10) | 801BE "1 = max (6 || &L, ) < co.

i=0,1

REMARK 2.2 For the reader’s sake a piece of folklore is recalled, namely that
(2.9) leads to the fact that, say, d(u,v) = |u — v|F, ||’1 for A =min(l,p,q) is
a metric on F, ,(R"). For this reason both B;, ,(R") and F, ,(R") are topological
vector spaces with the topology induced by a translatlon invariant metric — even
when p or g is <1. The same conclusion applies to, say, L(B;, ,, B; ,) (where the
operator quasi-norm inherits the constants ¢ and A from B ,).

Concerning functional analysis, this shows that these spaces in any case are
examples of the F-spaces in W. Rudin’s monograph [Rud73], and hence one may
refer to the exposition there. In particular the closed graph theorem is applicable.

2.3. Properties. In the rest of this subsection the explicit mention of the
restriction p < oo concerning the Triebel-Lizorkin spaces is omitted. E.g., (2.11)
below should be read with p€]0, oo] in the B}, , part and with pe ]0, co[ in the
F, . part. Furthermore, to avoid repetition the underlying set is suppressed when
itis R".

Identifications with other spaces are found in Section 1.

The spaces B;, ,and F; , are complete, for p and g 2 1 they are Banach spaces
and in any case y — Bp o Fpqg = &' are continuous. Moreover, the image of
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& is dense in B}, , and in F, , when both p and q < o0, and C* is so in B}, , for
g < oo (where the latter assertion is inferred from Triebel’s proof of the former
[Tri83])).

The definitions imply that B} , = F; ,, and they imply the existence of simple
embeddings for se R, pe]0,00] and o and g€ ]0, o],

(2.11) B, ,=B,, F,,—F,, when g=o,
(2.12) B, B, F,,cF,’ when &>0,
(2.13) By, mintp.a) = Fp.g & Bp.maxip.ar

There are Sobolev embeddings if s — % >t— —’:— and r > p, more specifically

(2.14) B, , < B, ,, provided g < o whens — —Z— =t— %,

(2.15) F, ,= F, , foranyoandqe]0,o0].

Furthermore, Sobolev embeddings also exist between the two scales, in fact

under the assumptions c0 = p; > p > p, >Oands0—;n—=s—ll~=s1 _ L
0 p D1

one has that

(2.16) B 4o Fp By 4, forgo<pandp<q;.

Po,q0

This is obtained from (2.14), (2.15) and (2.13) except for the cases with equality,
which are interpolation results due to J. Franke [Fra86b] and B. Jawerth
[Jaw77], respectively.

By use of (2.6), (2.7) and (2.14), it is found when 0 < p, ¢ < oo that

B;.qL’Bgo,l C—»CC_)LOO C_.,Bgo,w,

(2.17
) it‘s>£,orifs=—'—1—andq§1.
p 14

F;.qL’B(a)o,l C)C Q}Lw,

2.18
) if s>, orif s=— and p< 1.
P P

1 n ..n n
Moreover, when n <~— - 1> < s < —one has, with — = — — g, that
p + 14 t p

F;,qc—yﬁ{L,lpérét},

2.19
(2.19) provided g <1+ [1 <p] if s=0.

See [Joh93] or [Joh95a] for a proof of this and of the corresponding fact that
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(2.20) B, ,csn{L|psr<t},

where r = t can be included in general when g < t. Fors = Oone has B, , = L,
for g < min(2,p) and p = 1. (Cf. [Tri92, p. 97] for the pitfalls in the case p < 1.)
For an open set 2 = R" the space B}, q(Q) is defined by restriction,

(2.21) B;, () =rgB;, , = {ueZ'(Q)|eB; ,:rqv = u}
222 I uiB;, () = inf{]| v]B}, Il | rov = u},

and F; (9) is defined analogously. By the definitions all the embeddings in
(2.11)~(2.20) carry over to the corresponding scales over Q.

Moreover, when Q is a suitable set of finite measure and o0 = p = r > 0 the
inclusion L,(Q) — L,(€2) carries over to the embeddings

(2.23) B} () = B (@), F;(Q) = F},(Q).

When Q is bounded this is shown in [Tri83, 3.3.1], except for the case ¢ = oo for
the F, , spaces. In [Joh95a] there is a (simpler) proof of (2.23) in its full generality.
For me Z the order-reducing operator E™:= % ~ 1{¢>F is bounded

(2.24) Em™ B, 5B, EMF,SF

and bijective for any (s, p, q), cf. [Tri83]. On R" ! the corresponding operator is
denoted =™,

2.4. Convergence theorems. Yamazaki’s theorems are recalled from the article
[Yam86], where the convergence of the series in the following two theorems was
proved first.

THEOREM 2.3. Let seR, p and q€]0, o] and suppose u;e &'(R") satisfies
(225)  suppé; < {¢|[j > 014 'Y <& < A2}, for jeN,,

for some A > Q. Then the following holds, if p < co in (2):

(1) If {2 | u; 1L, 11} 20 14l = B < oo, then the series Y% ou;j converges in
Z'(R" to a limit ue B, (R") and the estimate |u|B, || < CB holds for some
constant C = C(n, A, s, p, q).

() If [111{2%u;} 520 14l () ILy || = B < o, then the series Y % o u; converges in
&'(R") to a limit ue F; (R") and the estimate || ulF; Il < CB holds for some
constant C = C(n, A, s, p, q)-

Hence, when g < oo the series in (2.6) converges in Bj, , for ueBj ,, and

similarly for ue F5, ,
The second of these theorems states that the spectral conditions on the series

Z,:o u; can be relaxed if the smoothness index s is sufficiently large.

THEOREM 2.4. Let se R, p and q€10, c0] and suppose u;e '(R") satisfies
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(2.26) suppi; < {E11E < A2}, for jeN,
for some A > 0. Then the following holds, if p < oo in (2):
1) If s> n(% — 1) and if [{2% || u;|L,|1};2 02, = B < o0, then the series
+

Z,‘-’":o uj converges in #'(R") to a limit ue B}, ,(R") and the estimate |u|B;, ,| < CB
holds for some constant C = C(n, A4, s, p, q).

Q) Ifs> "(E%fcﬁ - 1>+ s and if | {29,320 14, ()L, | = B < oo then

the series Zj‘;ou,- converges in S'(R") to a limit ueF, ,(R") and the estimate
Il ulF, Il < CB holds for some constant C = C(n, A, s, p, q).

For the proofs of Theorems 2.3 and 2.4 the reader is referred to [ Yam86]. In part
Theorem 2.4 is based on [ Yam86, Lemma 3.8], which for later reference is stated
for s < 0 in a slightly generalised version (that is proved analogously):

LEMMA 2.5. For eachs < 0and q and r € ]0, c0] there exists a ¢ < oo such that
for any sequence {a;};> o of complex numbers
j j L © sj 0
(2.27) {25 =0 lal)r 3201441l < c 1{27a} %012,
(with modification for r = o).

2.5. Tensor products. As a tool in connection with the Poisson operators in
Section 4.1 a boundedness result for the operator that tensorises with the
delta-distribution d is included here.

1
PROPOSITION 2.6. Let p and q€]0, 0] and suppose that s + 1 — ; < 0. Then

228) [ f®dolB (R = clldo lBé,;‘(R)n | f 1B PR,
(2.29) I f ® 86IF5 (R < cp,q) Il 1B, “HREY),

when p < oo holds in (2.29).

s+1—

1
PrROOF. Let feB,, P(R""!)and introduce the decompositions

2.30 16)= T FELBF e f () =2 LA
231) Sol) = 3 Filo OPE) =2 Y mlxa)
k=0 k=0

where @, and #{" denote the kth element in the partition of unity associated with
the x'- and x,-space, respectively. In (2.30) and (2.31), and in the following,
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hi=F i O F e f (x') and = F, L &), whereas f*=F.1 ¥,

Froaef(x)and n* = F ;L WM(E,). This is used for the central relation
(2.32) SE)®@olxn) = ) fil ™' + Y s
k=0 k=0

which holds since it is shown below that each of the two sums on the right hand
side converges in &’ Indeed, given this convergence it follows that

(2.33)  lim Zﬁm" L4 lim Zf M = 11m Z fkn,

N k=0 N k=0

=1lim%F Y¥y® VYF(f ® do)
N

= f(xl) ® 50()("),

since ¥y ® YW(£) equals the CY function o2 NP2 ~Ne,).
In the following, Theorem 2.3 is applied to each sum in (2.32). The first step is
to note the spectral conditions,

(2.34) supp F(fir* ™) = {11627 S 1(E,0) < 1524 10, &)l = 182°7 "}
< {E1592° S 18 < 352,
(2.35) supp Z (f*m) = {£1362" < ¢ < 362},
Secondly the ¢#3(L,) norms of the sums are estimated. From n' = 2'4(2'x,) it is
seen that || fy*~! [L, (R = 26007 | nollip(R)Il I filLy(R"~ )], since the L,
norm is multiplicative. Then, with ¢ = | J IBEQO1 I,
(2.36) {21 fir 1Lyl 3o Il < 257t 12 D flLy 1o 4l
cf. Example 2.1. Concerning the second sum one finds in a similar way that

2.37) 2%|| fUmelLyll = 21 fo + -+ + Sl Lpll I mi|Ly |

SHED folLy I+ + | AL I 5o|3§,’~,'°0l Il
when r = min(l,p). The assumption s + 1 — ~;— < 0 in Proposition 2.6 now
allows an application of Lemma 2.5 above, leading to the estimate
238) (2% frlLP oIl S ¢ 12714 P | ALy I}io ol

1_ .
withc = ¢’ [| 0 |BE, ml || for some ¢’ < co depending on p and g. o
From (2.34),(2.35), (2.36) and (2.38) it follows by Theorem 2.3 that the series in
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(2.32) converge in ', and that the sums belong to B;, ,(R") with norms estimated
by constants times the right hand sides of (2.36) and (2.38), respectively. By use of
(2.32) it follows that also f ® d,€ Bj, ,, and by application of the quasi-triangle
inequality this implies (2.28).

For p £ q the estimate in (2.29) follows from (2.28) by use of the embedding
B, , = F; ,. Thecase g < pisobtained like(2.28) by application of Theorem 2.3
to the sums in (2.32). However, the necessary estimates of the L,(£;) norms are
substantially more complicated than (2.36) and (2.38). But with (mainly) nota-
tional changes one can proceed as in [Tri83, p. 136], where estimates analogous
to (2.28) and (2.29) are shown for a right inverse of j, (cf. Section 2.6 below).

[To be more specific one can treat the first sum in (2.32) by letting a, in [ Tri83,
2.7.2/31] be equal to f;, and for simplicity replace the reference to [Tri83, Thm.
1.6.3] by an application of Theorem 2.3. Concerning the second sum in (2.32) one
can start by showing an analogue of [Tri83, 2.7.2/34] for #, and then proceed as
before except with a, = f* instead; in suitable late stages of the various estlimates
one can then introduce || f*|L,| S (| folL,I"+ -+ || fil LI, for
r = min(1, p), together with Lemma 2.5.]

2.6. Traces. In preparation for Section 4.3 below on general trace operators
in the Boutet de Monvel calculus some well-known facts about restriction to
hyperplanes is modified to suit the purposes there.

The basic trace operator is the two-sided restriction operator, which takes v(x)
in C*(R") to v(x’, 0); it is denoted by F,v. The properties of j, are investigated in
numerous papers, see [FJ90], e.g., and the references therein.

For ue C*(R"), the one-sided restriction operator yyu is defined by letting

(2.39) yo = Jov, when r*v=u holdsfor veC®(R".

Evidently one has the intrinsic description you(x’) = u(x’, +0). Moreover, let
7j=7oD;, and yj = yo Dy, .

Henceforth the following simplifying notation is employed: for keZ the par-
ameter (s, p, q) is said to belong to the set D, if

(2.40) s>k+max<i—1,f——n>,
pp

cf. Figure 2 below. That s > k + max (-Il; - 1,—3— - n> means that (s, p, q) belongs

to the closure of Dy, so (s, p, q) € D is written then.
For the one-sided trace operator y; the following result is needed below
(whereas those for 7, in [Tri83, Tri92] do not suffice).



ELLIPTIC BOUNDARY PROBLEMS AND THE BOUTET DE MONVEL . . . 41

LEMMA 2.7. For eachje N, the trace yj extends uniquely to a bounded operator
(When p < oo in (2.42))

(2.41) B (R%)-> B, i~ P(R" Y, for (s,p.q)€Dj,,,

(242) Vi F;,q(ﬁi)—*F;;f—;(R"‘l), for (s,p,q)€D;.y,

Moreover, when (s,p,q) ¢ D, , there is not any extension of y; with the continuity
properties in (2.41) or (2.42).

PROOF. It is known that 7, has continuity properties corresponding to (2.41)
and (2.42), cf. [Tri83,2.7.2], so it is sufficient to see that y,, is well defined by (2.39),
i.e., Jov =0 should hold whenever v belongs to BS . o(R") or F; .oR%). Tt
suffices to treat ¢ < oo, and by the continuity of o, it is enough to prove that
{¢pe #(R"|R™ = supp ¢} is dense in BS, . ,(R" ) and F s so(R™) for p < o0, and
that {9 € C*(R")| R". > supp ¢} is dense in B%, . ,(R" ).

However,ift,f = f(- — he,), 7, — 1 strongly on #(R")and on C*(R")for h — 0.
By use of the denseness and the relations # ~'®,F1,f = 1,F ~ '@, Ff, it is seen
that 7, — 1 in the strong operator topology on B ».q(R") and F, q(R ) — for any
admissible (s, p, g).

ForueB; ,.o(R")and ¢ > 0 we take h < 0so small that ||u — t,u| B < —;j,
and let g e C*(R") satisfy suppg < R" and g = 1 on supp t,u. Because multipli-
cation by g is continuous in B}, (R"), we obtain that

&
S+ lgru—gulB, |l ¢

(2.43) lu = gvilBy 4l = 5

holds eventually, when v, € #(R") (resp. C*(R") for p = o0) converges to t,u in
B, ((R"). When ue F; . o(R") one can proceed in the same manner.
Forj > 0it is now obvious that the composite yo D’ _is bounded asin(2.41)and
(2.42). The uniqueness follows from the denseness of & or C* when q < oo.
When s, p,q) ¢ D; ., , the non-extendability of y; follows from Lemma 2.8 below
regardless of the choice of u % 0 and z'. Indeed, for p < 1 the existence of r*u,

shows that y; is not continuous at 0 from any space B, (R )or F, (R';) when

s < n_ (n — 1) +j. For 1 £ p < oo the existence of r*u, yields the same con-
14

clusion <f0r spaces with s < L + j) , while in the case p = oo and s < ja Sobolev
p

1, .
embedding B} ,’ =, B, , reduces the question to the case p < c.

The next lemma was used in the proof above, and it will later on provide
counterexamples that are strong enough to show that each trace operator T, that

1
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has class j € Z, is not extendable to spaces with (s, p, g) ¢ D, cf. Theorem 4.9 below.

LEMMA 2.8. For each je Ny, ue #(R"")\{0} and z’eR" ™! there exists two
sequences with elements w, and v, € (R") with the properties

[ Fiu(x") = u(x') for each keN,

1.
lim w, = 0 in BZ,'(R") for 1 < q < oo,

(2.44) k=
1
l lim u, = 0in F (R") for 1 < p < o,
k— o

lim §ju,(x") = 8,(x) in ¥L'(R"™Y),
(2.45) ko

limv, =0 in B” o 1Vr’(R") for 1 < q £ o0,

k=

provided 0 < p < oo in (2.44) respectively 0 < p < 1 in (2.45).
Proor. In the deduction of (2.44), recall the fact from [Fra86b] that for s > 0

(2.46) I £(x) ® glxa) 1B}, (Rl < c || £1B;, ((R*™ Il | 1B, ((R)II.

Here f will play the role of the given ue %(R"™!), while for g we shall take
wilx,) = k™1 Y% 274w(2'x,) for some auxiliary function we #(R) satisfying
suppw < {3 £ |&,| < 1} and [ W = 2. Observe that 7w = 1.

One can let u(x) = u(x’) wi(x,), for 7;u, = u and, since supp F(w(2'*)) =

{®{" = 1} where &{" is as in (2.31) ff,,

(2.47) |l w, IB"“II sc| ulB"”(R" D125 w2 ) LR Yoy 14,01k

[l

cl ulB””ll [ wiL, |l ket
by (2.46). Here ka~! =0 for k — o0, when g > 1.
When p > 1 there is an embedding B} (R) — F, P*’(R) for an re]l, p[ and
1
t— 7= J- Since there is an analogue of (2.46) for the F} , spaces, cf. [Fra86b],
there is an estimate | u, |FP+’|| <c| ulFP“u | wiL, | k=1, Because r > 1,
L
Uy — 0in F:‘;J
To obtain (2.45) for 2’ = 0 we take f e #(R"" ') and g e #(R) satisfying

2.48 suppf = {13}, JO) =1,
> suppg < {I&, < 3}, [ &G e, = 2m,
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‘ 1 .
and let v, = EZ,Z__’fH 1 2107 17) £(21x)g(2'x,). Now §v, = 71(—2 2!=1£(2!-) and,

by a modification of the usual proof of the fact that 2**~ 1 f(2¥-)%- — 1 in the
strong operator topology on C(R"™1), it is verified that 7;v, % — 1 strongly on
C(R"™'); in particular this implies 7;v,(x") = do(x’) in L'(R"~1).

Since supp Z (fg(2')) = {|¢| < 2"} and since p < 1, Theorem 2.4 can be applied
to the sum defining v;, which gives a constant ¢, independent of k, such that

B m—1)+j c n 1_
(2.49) [0 |BE " V| < Ell{zlv I fg@ )L, 1}, v 1 Vgl = Il fgIL, Il ka ™,

so for z' = 0 the properties of the v, are proved. For z’' + 0 one can simply
translate.

=3

Fig. 1. The borderline cases for j, (when n = 5)

REMARK 2.9. When applied to y; Lemma 2.8 gives a little more than stated in
Lemma 2.7. In fact, if we for simplicity consider 7, for each Hausdorff topologi-
cal space X, there does not exist any extension jo: B; (R") = X, that is continu-

ous when s = 1 andg > l,ors < i, cf. (2.44). Moreover, there does not exist
p p
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1 . 1
any continuous extension o: F; (R") - X whens < ; ,since B = F} , then,

1,
andfor 1 <p < ooevens= ; is excluded by (2.44).

These counterexamples, that were inspired by [Gru90, Lemma 2.2], are
sharper than previous ones obtained by H. Triebel, in that X = &'(R") is not

1
assumed and the borderline cases s = ; are included, cf. [Tri83, 2.7.2 Rem. 4].

Moreover, the counterexamples provided by the u, for the Besov spaces are
1

optimal for pe[l, o[, since iO(B;f,q(R")) = L,(R"™!) for g < min(1,p) when
pe€]0, o[, cf. [FJ85]. For p < 1 it is shown in [FJ85] that one can not take
X =L, + L, whengq > p. Contrary to this §,(BS, ;(R") = C(R"™'). In the cases
with p = o0 and p < g =1 a strengthening of the u,-counterexample above
would be appropriate.

For the Triebel-Lizorkin spaces it was obtained in [FJ90] that

Fo(F ,;llf «R") = L,(R"!),independently of gwhen p < 1, and that one can not take
X =9(R""1) for any pe]l,oo[ and qe]0,00]. So for these spaces the
u,-example removes the restriction on the space X.

For p<1 the v, yield stronger conclusions in the sense that even

s —Z- — (n — 1) is necessary for (2.41) and (2.42). On the other hand, the con-

. . n .
clusions are weaker in the sense that when s < — — (n — 1) any X with a con-
p

tinuous embedding X —, 2’ is impossible, while other choices of X might work.
Indeed, from the results quoted above it is seen that one can take the non-locally

1 1
convex space X = L, when — < s < n_ (n — 1) (except when g > pfor s = —
p p p

in the Besov case). Furthermore, in the borderline cases = % —(n—1)forp <1,

Fo(FE, " DR") + )70(32;‘" “D(R") = Fo(BY, 1(RM) = Ly(R"™ ') are well defined
subspaces of #/(R" ') when g < 1and re ]0,00]; this shows the optimality of the
ve-counterexample in this case.

n n
However, the range spaces for §, considered on B, ,, Be_"* ' and F2 " * ! with
q =1 and p < 1 seems to be undetermined yet.

2.7. Extension by zero. For a function f(x) e L,(R") there is an extension by
zero to the whole space, for example e*f(x) = [x, > 01£(x, |x,]).
The boundedness of e* L,(R") and the properties that
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(2.50) rfe*=1 and re* =0

extend to spaces with parameters (s, p, g) in a whole region around 0,2,2).
In fact, when (s, p, q) satisfies

1
2.51) max(——1,ﬁ—n)<s<l,
pp p

the operator e™ can be given a sense as a bounded operator
(2.52) e": B}, (R%) - B (R, e’ Fy J(R%)— F5 (R")

(when p < oo in the F case), which has the properties in (2.50).

For this it is convenient to use the product n(u, v) defined in [Joh95a] for u and
ve ¥'(R") as

(2.53) m(u,v) = lim F ~ YWY )a)F W2k )
k-
when the limit exists in the w*-topology on 2'(R") for each y € CP(R") that equals
1 on a neighbourhood of the origin. Here the limit is required to be independent
of Y.
Now, for uin B;, ,(R")or F; (R")with (2.51)satisfied by (s, p, g) one can define,
with y(x) = [x, > 0],

(2.59) etu=rn(y,v) when rfv=u
for ve B, ,(R") and ve F; ,(R") respectively.
Note thatve L,(R") when{l— =L sholdsfor s > Oin addition to(2.51). Then
p

[Joh95a, Prop. 3.8] gives that n(y,v) = yv, so e*u has the usual meaning.
Moreover, it was proved in [Tri83, Thm. 2.8.7] and [Fra86b, Cor. 3.4.6] that

(2.55)  m(y,): By JR" — B (R" and m(y,"): F3 ((R") — F; ,(R")

are bounded when (2.51) holds. By taking the infimum over v in (2.54) the
boundedness of e* follows.

However, (2.54) needs to be justified. So, if v; belongs to the same space as vand
r*v; = u, then n(y,v) and n(x,v,) coincide except at {x|x, = 0}. For with
w = v — v, at least one of the factors in n(y,w) is 0 in R". and in R", so that
r¥n(x, w) = 0 by [Joh95a, Prop. 3.7].

Fors > 0 or otherwise when B, , and F; , only countain functions, n(x, w) = 0
is necessary. When s < 0 this conclusion is obtained from the inequality

1 o, -5 n et} n
s >;—1 by duality: from the definition of (e*)*: B, (R"%)— B,*..o(R%)
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. 1.
(where e™ refers to one of the already covered cases with 0 < s < ;) it follows

when 1 < ¢’ < oo that
(2.56) (e Py, Ty = Ln vl = <D

when yeC*(R")nB,, and feB; (R"), so by closure the identity
(e*)*r*y = n(x, ¥) holds for every y € B,*,(R"). This shows that n(x, v) also in
these cases only depends on r*v. The case with ¢' = co are covered by simple
embeddings.

Finally it should be mentioned that the second part of (2.50) is a direct
consequence of [Joh95a, Prop. 3.7]. The first part also follows from this when
combined with [Joh95a, Prop. 3.6]: r*e*u = r*n(x,v) = r*n(1,v) = r"v. Alto-
gether the desired properties of e* as defined in (2.54) has been obtained.

REMARK 2.10. The extension operator e* has been defined with care above,
albeit a definition as a self-adjoint operator by (2.56) is simpler. The present
definition is more flexible, however, for it allows an analysis by means of
paramultiplication, which is crucial for the proof of Theorem 4.5 below.

2.8. Interpolation. For the proof of Theorem 4.5 below it is necessary to have
interpolation available. In addition to the real method, described in [Tri83,
2.3.2], properties similar to those of the complex method are needed.

Here it is on one hand well known that the usual complex interpolation
method due to A. P. Calderon [Cal64] does not extend to quasi-Banach spaces.
On the other hand, the so-called + —-method may serve as a substitute, as was
pointed out to me by both W. Sickel and J. Marshall.

The + —-interpolation of two quasi-Banach spaces Ay and 4, — both lying
inside some Hausdorff topological vector space X —is defined by J. Gustavsson
and J. Peetre [GP77], and it is usually denoted by {A4,, 4, p)>. Here the function
p will be t+—1° for some 0e]0, 1[, and (Ao, 4,)+ ¢:= (Ao, A1,t°) in order to
avoid confusion with dualities. In general (49, 4;)+ o is a quasi-Banach space.

Moreover, the interpolation property was proved in [GP77]. That is to say,
when T is a linear operator defined on X (or a subspace) such that

(2.57) T:A;—~ B;

is bounded for j = 0 and 1, it is so also for j = 2, when A, = (4o, 4,)+ .o and
B, = (Bo,By)+,e. Here |T|,<|T|S°|T|% holds for the operator
quasi-norms.

For the F,_ . scale it was shown by Frazier and Jawerth [FJ90] that
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(2.58) (F . (R, F*

Pos 90 P1,41

(RN 1,0 = Fp} 4,(R")

P2.42
for each 6 €]0, 1[ and any admissible parameters provided

S, = (1 — O)sg + Osy;
1 1—-6 0 1 1—-46 6

(2.59)

P2 Po P 4z o q:

This result is also valid for open sets Q < R", when they have the extension
property. This means that for each N e N there exists an operator £, which is
bounded

(2.60) £q: B}, ()~ B, ,(R"), ¢q:F; (@) - F; (R
1
for |s| < N and N < p,q < o0, and for which the composite

2.61) F5 (@) 2 Fs (R 25 F5 (D)

equals the identity, with a similar property for the Besov spaces.
The formulae (2.58) and (2.61) and the interpolation property now give

PROPOSITION 2.11. Let Q < R" be an open set with the extension property, let
0€]0,1[ and let 5;€ R, p;e]0, 0] and q;€]0, 0] for j =0and 1.
When (s,, p2, q2) satisfies (2.59), then

(2.62) F32, Q) = (F32 (D), F3 0.(D) 16

p2’q2 po.qo

holds with equivalent quasi-norms.

That Q has the extension property when it is bounded and C* smooth or
Q = R", was proved in [Fra86b] (and with some restrictions for the F case also in
[Tri83]). By the general result in [GP77, Prop. 6.1] the interpolation property
holds for the F; (€) spaces too.

REMARK 2.12. It deserves to be mentioned, that the B;, ,(R")and F; ,(R") scales
are invariant under a complex interpolation based on #’-analytical functions, cf.
[Tri83]. However, for this method the interpolation property has only been
verified for max(p,, ;) < oo in [Fra86a], and under the assumption that there is
continuity from, say, B3, to &'(R") the case g, = oo was included there too.

An overview of this is contained in [Joh93], even with a removal of the
restriction to p, < co. Although this approach works equally well for the appli-
cation in [Fra86a], and thus in the present paper too, the + —-interpolation is
preferred here because of the available references. Ultimately the proofs are also

more structured and less technical, then.
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3. Operators on R",.

To begin with the operators are defined on the spaces #(R" ) and #(R"~'). More
general spaces are introduced afterwards in Section 4.

Since the inclusion of the B, , spaces requires the Definitions 4.8 and 4.14 of
the operators (because & is not dense there), the exposition in Sections 3 and 4 is
intended to be fairly detailed.

In particular proofs are given for Propositions 4.1-4.13, albeit the contents are
essentially known. However, none of the references apply directly, and at least the
presented proofs should be of interest in view of their elementary nature.

For a general introduction to the Boutet de Monvel calculus the reader is
referred to the exposition in [Gru91] and to Section 1.1 ff. in [Gru86].

3.1. Review of the operators. Recall that a truncated pseudo-differential oper-
ator P, a Poisson operator K, a trace operator T and a singular Green operator
G,cf. (1.2)ff., act in the following way on ue #(R")and ve #(R" ')~ when T and
G are of class zero:

(.1 Piu(x) = r+(27t)""Ln e"Splx, ) u(&) dé,

(3-2) Kv(x) = (2m)' ™" L"_ , e Ck{x', x,, £)8(&) dE,
(3.3) Tu(x') = 2m)' =" L" e SR, Y, ENUE', yi) dyndl',
(34 Gu(x) = (2m)' ™" J . e EGX', Xy Yo EWHE', yy) dyndE

+

The fifth kind of operators in the calculus are the pseudo-differential operators
S acting on ve #(R"™ ') in the usual way, cf. (3.13). The definition of class r € Z of
T,G and P, + G is recalled in Subsections 4.3—4.5 below.

For P, the uniform two sided transmission condition will be employed to
assure that P, u belongs to C*(R".) when ue #(R",.), see [GK93] and [GH91] for
a discussion of this condition.

The starting point is the uniform class $¢ o(R" x R") given with seminorms
Ip1S%,0,2 Bll:= C, 5 in (1.11) above. While the symbol of § is taken in
51.0(R"™! x R"~1), that of P is required to belong to S¢ (R" x R":

1,0, uttr

DEFINITION 3.1. For deR the space S 4 ,.(R" x R") consists of the symbols
p(x,&)e 8% o(R" x R") satisfying the uniform two-sided transmission condition (at
x, = 0),i.e, for every a, e N% and I, me N, the condition
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(3.5 Co,p.1,m(p):=sup|z,D7. F, L. DEDEp(x',0,¢)| < 0
holds for each £’ when the supremum is taken over (x’, z,) € R"\{z, = 0}.

In formulae (3.2) and (3.4) the symbol-kernels k and § can belong to the
uniform spaces S{¢'(R""! x R"™!, #(R,)) and S{ J(R""* x R"™!, #(R%,))
respectively. This means that for all mdlcesoc and f'e N" Yand,m,I'and m e N,
the following seminorms are finite:

(3.6) [1KIS4 oo, B’ Lml|:= sup <&@ 11=14m |t pr DL DEK(X', x,, &),
(3.7) 1187 " ofs B Lm, I'm'|| 1= sup({¢y ~ @ mIwl=trm=iem) o
% D%, v D, D% DEG(X, X, Vs Sy

when the supremum is taken over (X, x,,£)eR" ™! x R, x R""! respectively
over (X', X, ¥u &) in R"™! x R, x R, x R"™!. The symbol-kernel f is usually
taken in S 4(R"™! x R""1, #(R.)) (yet here the normal variable is integrated
out, and hence denoted by y,, cf. (3.15) below).

Occasionally we shall use the equivalent family of seminorms

(3-8) Ip1S1.0. kI = max{|l pIST o, Bll| o, 18] < k}, keN,

When the meaning is clear the symbol space is suppressed, i.e.,
I plkll:=|Ip|S{ o, kll, and instead of S% (R" x R") we write S{, and
S™%:= ny8% . Similar abbreviations are used for the symbol-kernel spaces.
Endowed with the topology of the introduced systems of seminorms,
S1.0(R" x R"), 84 o(R"" ! x R""1, #(R,)) and S o(R"*' x R"~ !, #(R%,)) are
Fréchet spaces.

With the symbol-kernels belonging to the indicated spaces it is seen at once
that the integrals in (3.2)~(3.4) above are convergent, and hence Kv, Tuand Gu are
well defined:

PROPOSITION 3.2. Let ke S47'(#R ) with d e R, and define for v(x') in #(R" ™)
the function Kv(x', x,) = OPK (k)v by the formula (3.2).
Then (k, v)— Kv = OPK (k)v is continuous as a mapping

(3.9) S10(#(R+) x #(RY) 2H Z(RY).
Similarly the mappings

(3.10) 51.0(#(R+)) x L(R%) 2F Z(RY)

(3.11) 510 (#(R% ) x #(R%) 224 #(RY)

defined by (3.3) and (3.4) are continuous.
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ProoOF. By use of (3.6) , OPK (k)vis in #(R".): for any multiindices « and e N}
the seminorm sup {x*D?Kv|x e R" } is finite and dominated by

(1) o' Y ¥ (Z)<ﬁ>llk|510,a — B — sl X

oS vy
(1 — AH¥x'D¥v| L, || f(f’)dﬂa’-w’l*a,.+/3,.—21vdé,’

when N is so large thatd — |/ — 0| — &, + B, — 2N < —(n — 1).
OPT and OPG can be treated in a similar fashion.

Contrary to this, the formula (3.1) does not make sense for every u € #(R", ) as it
stands, so it should rather be read as P.u = r* OP(p)e*u, where

(G.13)  OP(p(x, O = (2m)™" j =ep(x, OP(C) e, for Ye F(RY).

Then P, u is well defined in view of (1.10). More precisely:

When P = OP(p) for p(x, £)€ ] ,, direct calculations show the continuity of
P: #(R") - &(R"). Since, by consideration of the sesqui-linear duality {u, ¢) for
ue ¥'(R" and ¢ € #(R"),

(3.14)  OP(p(x,&)* = OP(q(x, &), with q(x,&) = eP~"P4p(x, ),

the continuity of P: #'(R") - &'(R") follows, cf. [Hor85, Sect. 18.1]. Here 'z
is a homeomorphism on S¢ ,(R" x R").

Recall that P has the boundedness properties in (1.10), which in particular
apply when p(x, £) belongs to the subclass §9 . ,..,-

“For p(x,&)eS] , it follows that P. = r*Pe* is bounded from L,(R%) to
F;4(R%), so in particular P,u is defined for ue #(R"). When in addition
PESY. o0.uur one has P,ue #(R" ) then cf. Proposition 4.6 below. (The result there
supplements Proposition 3.2).

Moreover, letting OP(q(x', yn, )Ju:= (21) ™" [ &=~ %q(x’, y,, E)u(y) dyd¢ for
ue #(R"), the technique in (3.14) shows that

(3.15) P =OP(gx,yn¢) for g(x',y, &)= e P=Pinp(x, ), =y,

and P is then said to be given in (x', y,)-form. It is also known, cf. [Gru90], that
PESS 0. implies that g(x', y,, &€ S o, uurs i€, (3.5) holds when p(x',0,¢) is
replaced by g(x',0, &).

For the symbol-kernel spaces one has results analogous to (3.14) above, and
they follow from the pseudo-differential case by freezing x, and y,:

LemMa 3.3. Let ke $9'5 Y(#(R,)), fe S% 2o(L(R.)) and GeSiMR2 ), and let
there be defined symbol-kernels by
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(3.16) RH, %, €) = & P R(x', X, £)
(3.17). G*C's X Y &) = €0 P G(X', Y, X, &)
(3' 1 8) Eo f(x,a Xns Vns il) = eu)y' ~D"":(-)c’, Xns ﬂ')f(y', Yns é/)'y' =x",n"=¢

The mappings k— k* and §— §* define homeomorphisms on St Y #(RL)) and
S17 (L (R% ) respectively, and the bilinear mapping given by (k,t')t—»k~ of is
continuous from S{' g '(#(R+)) x $42o(L(R4)) to S4: 542~ 1(#(R% ,)).

In particular, for each je N there is a constant ¢ and a j' such that

(3.19) 1&*185:6 (SR, jIl < | k18316 (SR
(3.20) 1g* 1516 (LR, jl < e 141810 (L (RE L)
(3.21) 1k 71851547 (L RE Il S c I kISTG (SR T I

x I T1STo(L (R4, JI
hold for every k, t and § in the considered spaces.

PROOF. Obviously xiDm E( LX) EST o T™R" ™ x R"™Y) for each x,, and
therefore x,D™ k* = e‘Dx Dy (=D, Yk belongs to §{'5'*™ Moreover, for each
lo'l, |8'], I, and m there exist c and N = |«|, || such that with N’ = max(N, |, m),

(3.22) <&y~ @m0 DL DT X, DT k¥ < || x, DT (-, %) 1896 N
< c|k18§i6 (LR, NIl

The statements on §* and k - £ carry over from the pseudo-differential case in the
same manner.

3.2. The transmission condition. The requirement of the uniform two-sided
transmission condition in (3.5) is not as innocent as it looks, with a seemingly
arbitrary ¢’ dependence of C, 4, : Indeed, (3.5) is equivalent to a rather special
¢-dependence of p(x, &), cf. (i) in Proposition 3.4 below. Furthermore, there is
also equivalence with the condition (iii) below, that implies a slowly increasing
behaviour of C,, 5 ; m(&).

PROPOSITION 3.4. When p(x, £)e S| o(R" x R") for deR, the following condi-
tions on p(x, &) are equivalent:

(i) peST 0uu(R" x R”), ,
(i) Forallxand BeNithereexists; , s(x',&)eS{§ R x R*™1), forjeZ
with j £ d — ||, such that for every me N,

(3.23) [ErDEDEP(X,0,0) — X 8iap(*5 8T = C(i’)““"“"’"‘(@"‘

-m<j<d-—|a
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holds with a constant C independent of (x',&)eR"™! x R™
(iii) For all o, B N% and I, me N, the symbol p(x, &) satisfies

(3.24) sup &y @ri-la=tim )l pm Z o1 DEDEp(x',0,¢) < o0,

‘:n_’zn

when the supremum is taken over x' and & in R" ™ and z, % 0.
In the affirmative case, the symbols s; ,, s(X', &) are uniquely determined, and they
are polynomials in &€ R" ™! of degree £ d — j — |o].

Here and in the following C denotes a “global” constant (independent of
variables like x and &), while c is a “local” constant (that might depend on x, say).
The constants may differ on each occurrence, as usual.

In the rest of this section e*r* + e“r~ is denoted éi, where i stands for
restriction to the set R\{0}. One has & = % ~'h_ % on S(R), when h_ denotes
the projection of # onto #_,. See [Gru86, Sect. 2.2] where this terminology,
that is used in the following without further mention, is explained.

PROOF. It is obvious that (iii) = (i), and (ii) = (iii) follows by use of the Par-
seval-Plancherel identity together with an application of the inequality

(3.25) sup SO < /21 fIL2I1* || éD,f |L, |1,

valid for functions f eetW(R,) + e” W (R_), to the function defined for each
(x',&) as f(z,) = érz.D" F ' F L., DiDEp(x',0,¢). Indeed, for || f|L,|| in (3.25) one
finds

(3.26) Il flza) IL2(R)| = || h- 1D}, & DEDLR(X', 0, &) ILo(R))
S ORI LR £ G AT

when (3.23) is applied after Leibniz’ rule. An estimate of érD, f(z,)can be derived
from (3.26) with m + 1 instead of m.

In the proof of (i) = (ii) one observes first that %, - L..DiD Bp(x',0, &) for each
(x’, &) belongs to #(R), since the only distributions supported by {z, = 0} are the
finite linear combinations of derivatives of §,(z,). Hence D% 1Dip(x',0,é)e H, ie.,
there exist numbers s; , ; for j€Z, such that for |¢,| > 1 and I,NeN,,

(327) IDLDIDIX,0.8) = T sy g8 S clg N,
d~la|-N<j<d~-|al

Such numbers are necessarily unique — and zero for j > d — |«| — hence functions

Sj,a, ﬁ(x,! C’)

The construction of the s; , 4 is completed, and it remains to be shown by
a bootstrap-method that they are symbols with the desired properties.

From (i) and the well-known fact that (with y5v = lim, __,, ©(z,)) one has
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(3.28) Sy —ka (X&) = —i(yg — o)D" fg,.—-z,.Da p(x',0,¢)

for ke Ny, it follows that s; , 4(-, &) e C*(R"™!) for each ¢’ when j < 0.
The next step is to show that, with C independent of x’ and ¢,

(3.29) DL (ErDEDIP(x',0,8) — Y sj (¢, )G S CCEH T
—msjsd-|al

Observe that the left hand side is equal to D h_&rDiDp(x',0,¢&), which is
bounded in x’ and &, by (3.25) since, e.g., for the L, norm in &,

(3.30) [ D h-1EyDEDEP(X',0,8) L, || = lléiz,Df ¢ L. DEDip(x',0, &)Ly |
é “ (1 + |Zn|)_ ! |L2 ” Z Ca./).k,m'

k=1,1+1

Moreover & 1DL h_,EnDEDEp(x’, 0, &) is bounded with respect to x’ and &,, since
(3.31)  &*'DL h_ErDEDEp(X',0,¢) = (— 1)’1!5_,,,_1 2, 8(x, &)
él+ IDI émDaDﬂp(X 0 5)

Hence (1 + [&,'* 1)D’gnh.lé,':‘D‘é‘Dﬁp(x ,0,¢) is bounded, so (3.29) is obtained.
A consequence of (3.29) is that s; , 4(-,&)€ C*(R"~ ") for j 2 0. Indeed,

1 .
(3-32)  sj44(x,8) = j—,aén(DEDﬂp(X’, 0,£) — h-\DEDLP(x', 0,9))le, =0»

and here the fact that pe S , can be applied together with (3.29).

The rest is similar to [Gru91, Thm. 1.9]: Only the case o = = 0 will be
considered since p and d can be replaced by D;Dﬁp and d — |af in the following.
For d < —m there is nothing to show in (3.23) so d =2 —m is assumed. Let
‘y’:= (YD' . '»yn—lao)-

At this place the goal is to prove, for j > —m when meN,, that with
N=[dl+1+m
(3.33) 8j,0,0(x, &) = > 8j,y,0(x,0)¢”

[VI<N,|ylsd=j
For every j < d the function s; o o(x’, &) would then be a polynomial of degree
|d]— jin & with coefficients in C*(R" ') - i.e. 5j.9,0 € S{.¢ — so in addition only
(3.23) would still require a proof.

For (3.23) and (3.33) it suffices to show
(3.34) 1&Tp(x,0,8) — ) Y SiyoXL0)ETETT S CEHTIIE T,

[YI<N —-msjsd—|y'|

for on one hand (3.34) and (3.29) would imply that
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Ld)=1v’l ldi=1v'l .
(B35 | X Spyox,OET" - IZ Y SiyoxX, 0878 < CLE T
j=-m [VI<N j=—m
and here the &,-polynomial on the left hand side is identical to zero precisely
when (3.33) holds. On the other hand, (3.34) would then be the estimate required
in (3.23).
When ¢£,) < |&| both terms are O((&" )Y ***™(&> ') on the left hand side of
(3.34), since (&') ~ (&) there. In the other region, (£,> 2 |¢'|, one shows by use of
a Taylor expansion, cf. [Gru91], the uniform estimate

(3.36) &mp(x',0,8) — Y, app(x',0,0, é..)——éy &
I7I<N
&1\
_— N d—-N+m C d+1+m .
<|,§;~ o el 0||>|<§I & S CED & <<€n>>

Now (3.36) and (3.29) applied to &9} p(x',0,0, ¢,) lead to (3.34).

It was obtained during the course of the proof that s; , »is uniquely determined
and is a polynomial of degree <d — |¢| —j in & as claimed. The proof is
complete.

The contents of Proposition 3.4 is to some extent known. In fact the equival-
ence of (i) and (ii) was claimed but not proved in [GK93], so the proof of [Gru91,
Thm. 1.9] has been modified into the one above with the appropriate uniform
estimates.

Note that the essential thing is to show (3.29) and (3.34), since the proper x’ and
& behaviour of the s; , 5 is a gratis consequence, cf. (3.32) and (3.33).

The equivalence with (iii) fits in very naturally, so it seems reasonable to have
the short proof of this available. Indeed, (iii) states that r* %% . p(x',0,&) is the
symbol-kernel of a Poisson operator of orders d + 1, and this property is used in
Proposition 4.1 below.

4. Continuity on R",.

With the preparations made in the section above, the continuity properties of the
operators introduced in (3.1)+3.4) above shall now be described.

4.1. Poissonoperators. The treatment of Poisson operators given here follows
the line of thought in [Gru90]. Some observations are collected in the following
proposition, where the proofs of (4.3) and (4.4) are intended to be more elemen-
tary than those of the corresponding facts in [Gru86] and [Gru90].

PROPOSITION 4.1. 1° Let ve #(R"™') and we #(R) satisfy v(0) = 1 together
with {w(x,)dx, = 1 and suppw < {x,| —1 < x, < 0}.
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Then it follows for every ke S o(#(R.)) and d’ > d that
(4.1) (el )W, *, k(x', x,, &) € ST H(F(R L)),
4.2) e w,x k> Kk in S (L(R)),

when w*, k(x', x,,, &) = r* [ e k(x', X — yn, EYW(V) dy, and w,(-) = %w(—l— )
€

2° When P = OP(q(x',y, &) is given in (X, y,)form with qeSi o yur» then
k=r*F.L. 4x,0,8)in 8} o(#R.)) and

én—*xn
4.3) r*P(u® 6o) = OPK(kyu  holds for ueP(R"™1).
3° Foreach k €810 (L(R)) there exists a p(x', £) € S17¢" e SUch that
4.4 Kv=r*OP(p)(v®d,), for veF(R"™Y)

Proor. 1° The support condition on w implies that
(45) W(Yn)r+x£.D?,,(e+E(x'» Xn = Vns 6)) = w(y,,)xf,D;""E(x’, Xn = Yn» é’)’
so one shows straightforwardly that |v(e-)w, *,k| S Ly, B, Lml|is < oo foreach
NeN. Now || k — v(e-)k|SY o,0] < || k152 o,0[ supe (€'Y~ |1 — v(e&’)] — O for
¢ —0,and
0

(4.6) Il o)k — we , kY1540, 01 < 21 K1S%,0, 001+ | 0] Lo IIJ Iwl,
so || kK — v(e)w, *, k|S¢ { 0,0l = 0 for ¢ — 0. The other seminorms can be handled
in a manner similar to this; for ' % 0 terms with D”(v(e*)) obviously — 0 for
e—0.

2° The formula (4.3) is first verified for d = — o0, since Fubini’s theorem then
permits the following calculation, where ve CP(R"), and w,e CT(R") satisfy
Wy — dg in &,

4.7 {r*P(u® 6o), vy = lim U j e g(x, v, )

k-

x u(ywi(yn)e* v(x) dyacdx

= < u(y), jfe“"' Yy eixndng(x’, 0, E)et v dxa‘§>

= {OPK(r*#; L, a(x',0,&)u, v);

that #'q:=r*F; L, q(x',0,&)isinS% o(¥(R,))follows from (iii) in Proposition
3.4.
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For d e R the relation (4.3) follows from (4.7) by regularisation, since P(u ® Jy)
and Ku depend continuousiy on g and k, respectively.

More precisely, take v and w as in 1°, and define g, = v(ed)W(e€,)q(X’, yn, €) in
S;%. Then g, — q in S{ , when d' > d and, as verified below, 4:€5% o.uue and
A g, kin 8¢ o(#(R.)) for e » 0. Then (4.7) and (3.9) give, with limits taken in
7'(R%),

(4.8) r*Pu® o) =limr* OP(g,)(u ® d,) = lim OPK (A gq,)u = Ku.
adY =0
To show q,€ S ¢ s> ONE may write F,- 1, q(x',0,&) as §(x', X, &) = 54D
+ 4 8050 + éi4 by (ii) in Proposition 3.4.

Then r .z, D7 D D% G, (x', z,, &) equals

4.9) rezy DEDEDE Y siX', E)(ed)DE wel(z,)

0sk=d

trs Y (;‘) f DYV (e )2 D (Wilzn — e DE DL, Yoo €)Y,
y'sa

and using that ge S% , ,,, majorisations global in (x’, z,) can be obtained.

It remains to show that A'gq,—k But H'gq, = v(ef)w,*,H q, since
suppw < [—1,0], so 1° gives the rest.

3° To show the existence of p(x', &) one can proceed as in [Gru90] by extend-
ing k(x', x,,, &) for x,, < 0 to a function j(x’, x,, £') by Seeley’s method in [See64],
and let p(x', &) = &, ., p. It can be checked that pe S 7' .., where in particular
the uniform two- s1ded transmission condition is satisfied since for each ! and
me Ng and o and fe Nj the functions

(410)  ryz D7 F . L, DEIDip(X', &) = ryzh DRt (—z,*"DED% B(X', 2, &)

are bounded on R"~* x R, for each ¢ by the construction of p. (4.4) holds by
use of 2° since ip = r+tg;¢_,,—l+x,,p(x,7 é) = r+ﬁ(x’, Xns é') = ig

Since the composite r* P(- ® J,) is continuous from &/(R" ') to &'(R") and
& is dense in &’ we can obviously make the following

DEFINITION 4.2. For ve &' (R"™!) the action of a Poisson operator K with
symbol-kernel in §¢'(R""! x R""!, #(R,)) is defined as Kv =r*Pv ® d,),
where P is any pseudo -differential operator as in 3° in Proposition 4.1.

According to its definition K is a continuous operator
4.11) K: (R 1) > &£ (R").

To show that this extended definition of K has good continuity properties in the
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scales of Besov and Triebel-Lizorkin spaces also for p < 1 one can make use of
Proposition 2.6 concerning the operator f(x')— f(x') ® (x,):

THEOREM 4.3. Let K be a Poisson operator of order de R and let se R and p and
q€]0, o). Then the operator K is bounded

4.12) K: BS (R"™ 1) > BS A+ 5(R"),

@.13) K: Fs (R" 1) > FS 4+ 5(Rn,),
when p < o0 holds in (4.13).

PrOOF. The symbol-kernel of K is denoted by k(x', x,, &) e S4 /(#(R,)) and
Definition 4.2 is applied to write K = r* P(- ® ;) for some Pe OP(84 7! ,ur)-
1° For any s < 0, Proposition 2.6 and (1.10) give the boundedness of

(4.14) B;, (R 1) -2, gr-1+5Re) P, Bs-d+y(Rr),
(4.15) B (R"1) “B%, Fr 1+ yRY) 2 FSA¥5R"  (p < co).

Hence (4.12) and (4.13) follow for s < 0 for every Poisson operator K.
2° For a given s 2 0 it follows for any meR that on B}, (R"™")

4.16) K=r"P(E"™)® do)=™,

cf. (2.24). By 1°,if m > s = 0 is fixed, it suffices for the conclusion of (4.12) and
(4.13) to show that the operator r* P(E""™ - ®4,) acts on B} "(R"~!) as a Pois-
son operator K’ of order d — m. However, first it is seen from (3.2) that for
veF(R" 1),

4.17) r*P(E™y ® 5o) = KE'™p = OPK (R(x', x,,, &){&>™p = K'v,

where k(x, &)(&'Y ™ e St Y& (R.)). Secondly the formula (4.17) extends to
every v in &'(R"~!) by the denseness of #(R"~?).

The proof above of Theorem 4.3 seems to be the first to cover the full scales of
Besov and Triebel-Lizorkin spaces, since the (somewhat different) arguments in
[Fra86a]rely on an article that has not appeared in Mathematische Nachrichten
as announced. The proof is similar to the one in [Gru90], but in the present
context it is an important point to show that (4.17) holds also when ¥ is not dense
in B .

Partly for this reason Definition 4.2 and Propositions 3.4 and 4.1 are stated
explicitly. Another step in the above extension of the arguments in [Gru90] is to
show (2.28) and (2.29), since it seems impossible to carry through the duality
arguments from [Gru90]forp< lorg < 1.
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For later reference an observation on the operator norms of K is included.

COROLLARY 4.4. For a Poisson operator K = OPK (k) of order d the operator
norms in (4.12) and (4.13) satisfy the inequality

(4.18)  |K|L(B, B}, “P)II + IK|L(F},,, Fp, ,,‘“')Il < cllk1S4d il
for some (s, p, q)-dependent ¢ < oo and je€ N (when the F-term is omitted for p = 00).

ProOOF. When s < 0t is clear from (4.14) and (4. 15) that |K|| £ ¢(s,p,q) || Pl
holds for the operator norms. Here || P|| < ¢” || p|S$7o'.j'Il when ' is large enough
(depending on s), see the formulation of (1.10) in [Yam86]. Since p is a Seeley
extension of k, | pISiLJ N £l EIS A(Z(R,)),jl. Finally, when s = 0 one has
for K’ in the proofabove that || k(&> ™S4 Ljll < () | K1S474 jll. so it can be
used that K acts as K'Z'™.

4.2. Truncated pseudo-differential operators, P... The results for the P, oper-
ators are obtained for spaces with p < 1 by a combined application of interpola-
tion and para-multiplication due to Franke.

Recall the extended definition of e* in Section 2.7. Since a truncated
pseudo-differential operator is defined as P, = r*Pe™ it is clear that P, is

defined for certain singular distributions <m spaces with — — 1 <s < O>.
p

THEOREM 4.5. Let p(x,£)€S] ¢ uu(R" X R") for some deR, and let p and

1
q€]0, 0]. If s > max <—I; — 1,; - n> the operator P, = r* OP(p)e* is bounded

(4.19) 5.a(R%) = B A(RY),
(4.20) P, F; (R%) - F524R"),

where in addition p < oo is assumed in (4.20).
Proor. The case 1 £ p < oo are covered first. When 1 —1<s< i, (4.19)
p 14

and (4.20) follow from (1.10) and (2.52). For s > % the induction argument as

presented in [Gru90] can be used to cover the Besov as well as the
. . . . 1

Triebel-Lizorkin cases with s — —p-¢ N, when one uses Proposition 4.1 2°. Here

the equivalent norms for these spaces given in [Tri83, 3.3.5] are needed; the
unnecessary restriction in [Tri83, 3.3.5/2] is removable by [Fra86b, Thm. 4.1.1].
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1
The cases s — ; € N, are then covered by use of real interpolation, cf. Theorem

2.4.2 and Proposition 2.4.1 in [Tri83].

It remains to consider the case 0 < p < 1, where it by real interpolation suffices
to prove (4.20). Let ue F, ,(R") be given and take ve F; ,(R") such that r*v = u.
Then v is an L' function (for some ¢t > 1) and e*u = yv as seen above (2.55).

The product yv = n(y, v) may be analysed by means of the para-multiplication
operators m;(-,-) with j = 1, 2 and 3 (in the sense of [Yam86]), provided these
make sense on y and v. In fact it is obtained then, cf. [Joh95a, (3.6)], that

4.21) r Py, v) = r* Pry(x,v) + r* Pry(x, v) + r* Prs(x, v).
From (1.10) and the results for the 7(+,-) it follows that the operators
4.22) r*Pujy, ) F; (R" - F; 4R%), with j=1,23,

are bounded when se R, s > max (O,% - n) and s < 0, respectively: for j = 1

[Joh95a, (5.1)] applies, since y€ L; for j = 2 and q = p formula (5.10) there is
easily modified to give a version for B, , @ F,, ., and generally the proof of (2.55)
in [Fra86b, Thm. 3.4.2] show the property; for j = 3 a variant of [Joh95a, (5.9)]
may be used.

By Proposition 2.11 it would be enough to show that r* Pr;(y, -) is bounded
between the spaces in (4.22) for, say, s =2 0 and p = q = 2. Indeed, in this case it
would follow by + —-interpolation that r* Prs(y,*) is bounded between the
spaces in (4.22) for any s, p and ¢, and then, by (4.21), boundedness would hold for

r* Pn(y,v) for p < 1 when s > % — n. Clearly (4.20) follows from this by taking
the infimum over v.
1
Therefore we shall derive the continuity of r* Pr5(y, ) in (4.22) for s > ; -1

and 1 £ p < oo from the fact that (4.20) holds for 1 < p < co. First note that
(4.20) implies that the operator r * Pr(y, ) is bounded between the spaces in (4.22)

when s > 1 — 1forsome 1 £ p < oo. From (4.21) and (4.22) it then follows that
r* Pns(x, ") has the desired property.

The theorem above contains an improvement over [Fra86a], in thatforp = oo
it is not assumed that the operators are properly supported.
From Theorem 4.5 it follows that P, (¥(R")) = C*(R"), and we even have

PROPOSITION 4.6. Let P be a pseudo-differential operator with symbol p(x, £) in
S9.0.uur- Then P,: #(R") —» #(R%) is continuous.
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PrOOF. Recall the commutator identities [D%, P] = OP(D%p) and [x*, P] =
OP(Djp) valid on &"(R") and [D%e*Ju= —[a, = 1]iyou(x’) ® do(x,) valid for
ue #(R")when |¢) = 1. By use of these it is seen that x*D?P ,u is a sum of terms
either of the form Q ,x’D®u, with Q in OP(S4 ¢ u)» ¥ < @ and w < B, or of the
form Kyo(¢” D u), where K e OPK (S$'7(#(R%))), v £ « and o' < f". Hence
x*DPP,ue C(R") with | x*D?P u|L| £ C | ul¥(R%),N| for appropriate con-
stants C and N.

4.3. Trace operators. A trace operator of class re Z and order de R is of the
form
(4.23) Tu(x)= Y Spyu)+ Toux), for ue #(R"),

0gj<r+

where each S; = OP'(s;) is a pseudo-differential operator on R"~ ! with symbol
s(x', &) in S17{(R"™* x R"™!), and the sum is void when r < 1. T, = OPT(f,)
given as in (3.3) is the part of class < 0 with {,e S o(#(R+)).

Tisof class r < 0 when (the sum is void and) one of the equivalent conditions in
Proposition 4.7 3° below is satisfied. To prepare for these, let

(4.24) InRe)={feSR)|yof="""=pn-1f =0},

where the index me N counts the number of traces required to vanish. (This
should not be confounded with &o(R") that consists of functions on R” sup-
ported by R"..) The conditions in 3° below for negative class have been introduc-
ed by Franke and Grubb, cf. [Fra85, Fra86a], [Gru91] and [GK93].

The analysis of the trace operators departs from a description of the standard
traces y; that enter in (4.23) above. See Section 2.6 for a definitions and the basic
results.

Recall in particular the D,-notation, cf. Figure 2. It is chosen as a reminder of
the fact that D, is a domain consisting of numbers (rather than of vectors).
Observe that Theorem 4.5 states that P, satisfies (4.19) and (4.20) when
(Sy D, q) € DO'

The aim in the following is to show that when, say, a trace operator T is of class
reZ then it is bounded from spaces with parameters (s, p, q) in D,.

Recall also that the dual of #(R%) is Fo(R"), with {u,¢) = {u, > when
¢ =r*y for Y e #(R") and ue F4(R"). Similarly #'(R") = Fo(R").

Among the statements in Proposition 4.7 below fairly elementary proofs of 1°
and 2° are given (until now simple explanations are available in the x'-indepen-
dent case).

Observe that in 1° below, r* #. L, q(x',&) = r"#; L, q(x, &), . _, belongs
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»
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Fig. 2. The definition of D, (for n = 5).

to #(R ) as a function of y,, because the transmission condition is two-sided, i.e.,
in (3.5) the supremum is also taken over z,€ R"..

PROPOSITION 4.7. 1° Every g(x', )€ 8% o we(R" x R") satisfies the relation, for
ue #(R%),
(4.25) Y90OP(g),u= Y OP'(s)yu+ OPT(r*F;1, qu,

0<j=d

when the symbols s)(x', &) e S J(R"~! x R"~') are determined from q by Proposi-
tion 3.4. Hence y, OP(q) .+ is a trace operator of class < (d + 1),.

2° For each symbol-kernel t€ S o(#(R,)) there exists a p(x',£)€ S, o, yur and
a Poisson operator K such that

(4.26) Tu = OPT(Hu = K*e*u =y, OP(p),u holds for ue L(R").

Here K = OPK(e®~'* P and r* F L, p(x', &) = 0(x', ya, &). Moreover, the con-
tinuous operator K*: #(R") — &' (R" ') is uniquely determined by (4.26).

3° Let S = OP'(iD* f(x,0,¢&) for keNo, whenever T is a class 0 trace
operator with symbol-kernel f(x, y,, &) €S o(#(R+)). Then, for each meN, the
following conditions are equivalent:

() ix',-,&)e L, (R ) for each x’' and &'
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(ii) ox', &, &)= 9_'}"_,5" ey AX', y,, &VEH -, _,, as a function of &,, for each
', ¢&).

(iii) SP = =8PV =0.

(iv) TD* is a trace operator of class O for each |o| < m.
In the affirmative case, T is said to be of class —m, and when this holds for every
me N, the class of T is said to be — c0.

PROOF. 1° According to Proposition 3.4 there is a decomposition

(4.27) qx.8) = ¥ s+ hoy g, q(x, ).
0<jsd
Here y, OP (3 s;&)) cu equals Y, OP'(s;)y;u, because s;(x’, £')& is a polynomial in
¢ (so OP(s;&!) acts on &'(R") as a differential operator).
Thus ¢ = h_,q can be assumed. Any neC>®(R) with n(t) =0 for ¢t <} and
n = 1fort > 1 can now be used to approximate e * u in &'(R") by n(kx,)u € #(R")
for ke N, so

(4.28)  (OP(ge*u,y> = lim ”ei"“fq(x', OF (n(k )" u)(OW(x) d&dx,

k-
when i € #(R"). By Fubini’s theorem the ¢, variable can be integrated first, and
since

ixnén

(4.29) <e2n ), fwgn(n(kyn)e+u(y"))> = (F 510 = xa) ke ()

for each x" and £’ when <-,-) denotes the duality between #'(R) and S(R), it is
found that

(4.30) COP(g)e*u,y> = lim f j f e F oL, DK, Yn— X0, 0)
k
x n(kya)e* (&', ya(x) dy,d&'dx
= <ﬂe""‘*'<9" o DX, Yn — Xy Ve U(E, y) dyaBE, ./,> :

Indeed, the limit is calculated by a majorisation using that

(4.31) I 50l (¢, 20, &) S CCEHYH < C(Ey2a+ 1,

1K€ Cynd 2l ya)l < Supﬁ(l = 4N+ YAy, ) dy'

< Cllul#(Ry), 1) j(y?‘z" dy'.
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when | = 2(n + |d + 1)). This procedure shows, in fact, that
(4.32)  Lo(R" 3 Jjei""c'(ﬁ‘:;:iynq)(X', Yn = X, €)e UL, ya) dy,dC),

which justifies the last relation in (4.30). Hence this function equals OP(g)e *u.

However, by application of (4.31) it is seen that r* OP(g)e * u is continuous in
xeR" (since the integrand in (4.32) converges a.e. when x belongs to a conver-
gent sequence). Thus r* OP(g)e* u may be restricted to a hyperplane {x, = a},
a > 0, and the limit for x, — 0 of this continuous function of x’ is calculated for
@ e CX(R" ') by majorised convergence (using (4.31)):

(4.33) COP(g)e™u(*,x,), 0> = J Je"""f(f X Yn = X3, &)

x e (&, y)o(x) dy,d'dx’
—=5 COPT(r* #; L, q(x', Ou, 0.

It follows that y, OP(q)+u = OPT(r* %%, qu.

2° The symbol p(x’, &) can be taken as '/'ozyﬁ & D(x', Y, &'), where p denotes
a Seeley extension to y, <0 of f(x, y,,¢), cf. Proposition 4.1 3° or [Gru90].
Observe that the smoothness of j in y, implies that h_, . p = p, so that
70 OP(p) .u = OPT (fu by (4.25).

Let K denote the Poisson operator with the symbol-kernel k = £* as in the
proposition. For ue #(R".) and y € #(R"~!) we have

(4.34) (T, = <Jw0P'(f(',ym'))li(',yn) dym!ﬁ>
0

since the majorisation

(4.35)  |RX', yuo EWIE, yu)l S 21180, 201 <€D ya> =2 1B, )
<2)1718%.0: 21 L" (1 — A,y 1+ Hu(y) dy- <& ™2 pn) ™2
+
allows a change in the order of integration in the definition of Tu. Then
(@.36) (Tufy = f: COP R Yo - 0>

for (OP'((-, y,, (- , ya))(x)W(x") has by (4.35) a majorant that is integrable with
respect to (X', y,). However, with (-,+) = <+,7) it is found from (4.36) that
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(4.37) (Tw,§> = fw(“(',yn),OP’(eiD"'D¢'f(',yn, W) dy,
0

- j u(x)Ky(x)dx = (e*u, Ky,
",

and this shows that Tu = K*e*u for ue #(R"%).

Moreover, since e ¥ CX(R", ) is dense in #(R",. ) it follows from this relation that
the continuous operator K*: #o(R"%) —» &/(R"™!) is uniquely determined.

3° That (i) <> (ii) is clear from the #-theory, for #:e*#(R,)— #_, is
a bijection with the property thats_, _, of #e*uequals —y,u, when ue #(R ).

(i) = (iii) is trivial, and when S§ = 0 one has iD¥ f(x’,0,¢’) = 0, since in the
uniform calculus there is a bijective correspondence between operators and
symbols, cf. [Hor85, 18.1]. Hence (iii) = (i). (iii) <> (iv) since [Gru91, Prop. 2.6] is
valid also in the uniform case.

The restriction to x,-independent symbols g(x’, £) in 1° above was made partly
because this generality is sufficient for the application in the proof of 2°; and
partly because it requires extra techniques to handle symbols g(x,¢&), since
a decomposition like that in (4.27) holds only for x, = 0, then. :

Itis an important result in Proposition 4.7 2° that for each trace operator T of
class 0

(4.38) Tu = K*e*u, for ue%(R").

DerFINITION 4.8. Let u belong to B}, ,(R") or to F5 (R",) for some (s, p,q) in D,
(with p < oo in the Triebel-Lizorkin case), and let the trace operator T have class
0 and symbol-kernel fe S ,(#(R.)).

Then the action of T on u is defined as Tu= K*e*u, where
K = OPK (#*) = OPK (¢'P~"P¢f),

The justification is, of course, that the action of K* is determined by 7. The
definition is natural when compared to a pseudo-differential operator
P: #(R") = £(R") that is extended to &'(R") as P = OP(e'P="P:p)*, cf. (3.14).

In the following we shall for (s, p, q) in D, derive the continuity in (4.45) and
(4.46) below for r = 0.

The idea is to show that K*e™ for d < —1 acts as y,P., when P = OP(p) is
chosen according to 2° in Proposition 4.7. This is useful because Lemma 2.7 and
Theorem 4.5 give the boundedness of

(4.39) B} ((R") —2 By d(RY) 1 B4~ 5(R™ 1)

for every (s, p, )€ Do, and similarly for the F} , spaces.
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For (s1,p1,q1) € Do there is always an embedding BS! , + F*

S
P1:91 P1,91 —’Bp,q where

1 1
p and ge€]l,00] and ;—1<s<;‘ Thus it suffices to check that

K*e*u = yoP,uforue B;, (R".)when (s, p, q) satisfies these requirements. More-
over, since e*: B} ,(R".) > B} ,.o(R".) is bounded then, it will be enough to check
that K* = yor* P holds on B;, . o(R",) for the specified (s, p, q).

To carry out this programme one can show that for (s, p, q) e D, with p and
ge]l, o] there is a commutative diagram

B, 40(RY) —— Z(RY)
(4.40) e [x
B;qu—%(Rn+ 1) 1 yI(Rn—l)

However, when e* CX(R") = B;, ,.o(R"%) is not dense, this is not trivial.

Note that P* given in (x', y,)-form has the symbol
(4.41) 4(X', yuy &) = €7 PePeneDxDif(x’, £) = P"Pe j(x, &),

which is y,-independent. Hence the Poisson operator r* p*(- ® &) has the sym-
bol-kernel.

(442) r+'g'—§:-l+an(x,, 6) - eli,~D5,r+g,=§:ixnp(x/, 5) — eli,-D¢/f= i;.

_ 1 1 1 1
One has that B}, ,.4(R%) = (B, *,(R%)), for P =1 and 7 + 7 =1, s0
(4.40) is obtained from the commutative diagram

B,5(R%Y) 1  F(R%)
(4.43) r+P<~®ao)T Tx
Bp—"sq-\"-d+%(Rn-—l) 1 y(Rn_l)

1
by taking adjoints. Indeed, for ve B . o(R"%) and we B, 54 *5(R" 1)
(4.44) {rtPHw @ 8o), 0 = W ® b, Pv) = {w, o Pv);

here the last relation is obtained by closure from the case with we CP(R"~ ') and
veC*(R%}) N B, 205 for g < oo suffices and j, makes sense on P(B;, ,.o) when
(s — d,p,q) e D,. By definition yor * P = §,P.

For d £ —1 this shows (4.45) and (4.46). When d > —1 note that
T = 5@+ DK*e* with K,:= OPK((&) k) = K&V, simply because
Kt = 274" DK* Since K*e* acts as a trace operator of order — 1, it follows

that the formulae hold also in this case (but still for r = 0).
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We shall now lift these considerations to a much stronger result, that in special
cases can be found in [Gru90]. By and large we modify the proofs there.

THEOREM 4.9. A trace operator T of order de R and class r e Z is continuous

(4.45) T: B;, (R"%) - Bf,fqd_%(R"_l)a for (s,p,q)eD,,
(4.46) TF; (R~ F - 5R" Y, for (sp.q)€D,
when in (4.46) also p < oo holds.
Moreover, if T is continuous from either B, (R") or F5 (R") to 2'(R"™") for

some (s, p,q) & D,, then the class of Tiis < r — 1.
T is continuous from &' (R".) to #'(R"~ ') if and only if T has class — oo.

ProOF. Forr = 0the proof of the first part has been conducted above, and for
r > O one can treat the sum in (4.23) by use of Lemma 2.7 and (1.10). Operators of

negative class r = —m, where me N, can be handled with Proposition 4.7 3° (iv)
as the point of departure: for uin BS!, , (R".) respectively F5!  (R%)and (sy,py,41)

arbitrary there is a decomposition,

(447) u= Y D%,, whereeach v,eB}""(R") resp. F5*™R"),

pP1,41
lal<m

in such a way that each operator u+— v, is bounded from B} , to B;: " and from
F;!

o a to F3i%M (As usual this can be seen by expansion of the identity
L=+ &+ + EY"(E~2™) Since (s + m, p,q)e Dy and TD? is of class 0, it
follows that u— Y, <, TD%, has the boundedness properties in (4.45) and
(4.46). For (s1,p1,q:)€ Dy this operator equals T on B;: , and F;! , that are
dense in B, , and F; , when g < co. Hence this extension is unique.
On the other hand, let T be continuous on B}, (R") for some (s, p,q)€ D, \D,
such that (s, p,q) ¢ D,, . , (the argument is the same in the Triebel-Lizorkin case).
If r>r, =20 the operator T has the form in (4.23), so S,_(y,-1 =

T - 20§j<,_ 1 Sj7; — To. Since the case p < 1 is a novelty we begin with this.

Obviously T Bg‘—z"“ - 2'(R"1) is continuous, hence S,_,7y,_, has the same
property and we shall deduce from this fact that S, _; = 0. According to Lemma
2.8 there exists for each z’eR"~! a sequence v, e #(R") such that v, — 0 in

Bz ,"""(R") while y, _ v, — 8, in #/(R"~1). Because of the continuity of S,_ 7,
and of §, _, this implies S,_,d, = 0. Since z’e R"~! is arbitrary, the identity

448)  0=(5,_,0,,Y> =<0, 57 ¥), where yYyeF(R"),

givesthatboth S¥_, and S, _, areequal to0. Inthecase 1 < p < oo one concludes

Lir—1- . .
that the operator S,_,y,_,: B, L - 2'(R" ') is continuous for some & > 0,

and then it is inferred from Lemma 2.8 that S, _, is 0.
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This procedure can be repeated until all the terms in (4.23) with j = r, are
shown to be 0; then Tis of class r;. If ry = —m < 0, 0 < |¢| £ m, the operators
TD* are trace operators, cf. [Gru91], that are continuous TD* B;fq"‘(ﬁ';) -

Bj,;," ‘%(R"‘l), and since (s + m, p,q)e Dy, each TD* is of class zero according to
the preceding argument. By use of Proposition 4.7 3° (iv) this implies that T is of
class —m =r,.

If T = K*e* hasclass — oo, the symbol-kernel of K vanishes of infinite order at
x, = 0, implying that e K is bounded #(R" ") = %, (R".). For ue C*(R".) and
ve #(R"™") we see that {u,e” Kv) = [uKv = (e*u,Kv ) = (Tu,5p. Because
C*(R") is dense in B N(R"%) for any N >0 and in &'(R") it follows that
T < (e* K)*: #(R") —» &'(R"~ ') with uniqueness of the extension. Conversely, if
T is continuous from #'(R%), it is so from F; 3, hence of class — N, for any N.

The statement above is somewhat more general than the corresponding one in
[Fra86a]. First of all because Definition 4.8 allowed the inclusion of the case
p = oo without assuming that the operator is properly supported. Secondly the
result for operators of class — oo seems to be new. Moreover, there are the
limitations on the (s, p, q) parameters in terms of T’s class (that except for the
sharpness generalise the corresponding ones in [Gru90]).

Like for the Poisson operators the operator norms are estimated.

COROLLARY 4.10. For each trace operator T = OPT(f) of class 0 and order
d the operator norms in (4.45) and (4.46) satisfy the inequality
1 s ps—da-L .
(449) | TILB; .. Byl »)l + I TIL(F; o F3 0t 7P < c I E1SY, 00

Jfor some (s, p, q)-dependent ¢ < oo and je N (when the F-term is omitted for p = o).

PRroOOF. By means of the closed graph theorem, which is applicable by Remark

2.2, it is easy to show that, say, S% o(#(R.))— L (B, B: 2 ) given by
fr— OPT(f) is continuous. Indeed, when £, —» f and OPT(f,) =: T, » T we let
k, = e®~"P¢F and K, = OPK(k,); k and K are defined similarly. Then k, — kin
84 o(#(R ) by (3.19). For ue B ,(R".) and y € #(R" ") one has

(4.50) (Tu, ) =lime*u, K, W) = COPT(f)u, ¥,

when the limit is calculated using (3.9). This shows that T = OPT ().

REMARK. 4.11. It should be emphasised that K* in the formula (4.38) is the
adjoint of K:¥(R" ')—>F(R%), and as such it is continuous
K*: #4(R") - &'(R*™1). However, it is a result in the calculus that the trace
operators of order d and class 0 constitute precisely the adjoints of the Poisson
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operators of order d + 1. Seemingly this contradicts the fact that K* acts on
&(R"%) whereas T acts on spaces over R",.

But it is understood in the cited result that K: F§ 5*(R" ') > L,(R") is the
operator that has a trace operator T:L,(R%)— F; 4 *R"™') as adjoint cf.

[Gru86, (1.2.34)].
More generally, one can restrict the distributional adjoint K* to a bounded

1 - = .
operator from F5 . o(R%) to F; ' »(R"™!) when (s,p,q)€Do\D; with 1 <p,
q < 0. Then e” is a bijection F} (R%) = F; ,.,(R"), and by Definition 4.8 the

composite K*e* is a bounded trace operator T' F5 ,(R",) — F;,_I,"_%(R" ~1). Ident-
ifying F5 ,.o(R%) with F; (R") corresponds to omitting e* (as above where
L,(R") = L,(R%)), that is, to identify K* with T.

With this explanation the formula Tu = K*e*u will be used throughout since
the e* there is a reminder of the fact that T need not be defined for every
ue L' (R).

REMARK 4.12. Contrary to the treatment of the subscales B}, , and F; , with
. 1
1 < p < o in [Gru90], the borderline cases s = r + max (—I; - 1,% — n> for

a trace operator of class r are left open here.
It is quite tempting, though, to treat these cases beginning with the analysis of

Y0 in Remark 2.9. However, since yo(Bé,q) =L, when 1 < p < 0, it is not even
sufficient to use the scales B}, , and F, , simultaneously (which is required since
F),=L,for 1 <p < oo); for p =1 it is necessary to go outside of these scales
since yo: B] {(R"%) — L,(R"™') is surjective.

Besides this, an investigation of the borderline cases for truncated
pseudo-differential operators P, would also have to be carried out. Altogether
the exposition would be heavily burdened by consideration of these borderline
cases, so this topic is left for the future.

4.4. Singular Green operators. A singular Green operator — abbreviated as
a s.g.o. in the sequel — of class re Z and order deR is of the form
(4.51) Gu(x)= ) Kpux)+ Goux'), for ueL(R"),

osj<rs

where each K is a Poisson operator of order d — j. Here G, = OPG(g,) is the
part of class < 0 with go e S{ (¥ (R2 ,)), given as in (3.4).

Gisofclassr < 0 when (the sum is void and) one of the equivalent conditions in
Proposition 4.13 3° below is satisfied.

Below some known basic results on s.g.o.s, including a certain Laguerre
expansion, shall be modified. Concerning the conditions for negative class the
reader is referred to the same sources as in Subsection 4.3.
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ProOPOSITION 4.13. 1° If K, and T, have symbol-kernels in S 5*(#(R)) re-
spectively S%2,(¥(R.)) that for each N € N, satisfy

(4.52) lkyo £, S5 MR DI = O™ for v— oo,

then the series y o k, o, is rapidly convergent in 8954~ (%(R2 ,)) to a limit
g(x” xn’ yn’ 6,)7 i'e"

(4.53)

1
R Ry B
v=0

for each j and N in Ny

2° For §(x',Xp Y, E)ESI A (RE L)) there exist sequences (k,(x',x,, &) in
STHA (R L)) and (Fx', yn, &) in ST H(L(R 1)) such that (4.52) and (4.53) hold.

Moreover, for such sequences (k,) and (f,) one has, when G = OPG(j),
K, = OPK (k) and T, = OPT(f,) = L*e* (cf. (4.38)), that

(4.54) Gu= Y K,Tu= Y K,[*e¢*u, for ue¥(R"),
v=0 v=0

with convergence of the series in ¥ (R",).

Furthermore, ) % K ,L* converges weakly on So(R%) to r*G¥: ¥,(R%) -
F'(R"), where the s.g.o. G, has symbol-kernel §, = e®* " P¢G(x’, y,, Xn, &).

3° Let K& = OPK(iD% §(x', x,,0,&) for ke Ny, whenever G is a class 0 s.g.o.
with symbol-kernel §(x', Xy, yu, ') € S1 0 (L (R ). Then, for each me Ny, the fol-
lowing conditions are equivalent:

(1) G(x', xn, ", EVe L m(Ry) for each x', x, and &' A

(i) G0, &, L) = Fypona Froenr? G X Y E)EHX T R A, as
a function of (&,,1,), for each (x',&).

(iii) K =--- = Kin~"V =0,

(iv) GD* is as.g.o0. of class O for each |¢| < m.

In the affirmative case, G is said to be of class —m, and when this holds for every
me N, the class of G is said to be — 0.

Proor. 1° Each composite K, T, maps &#(R") into itself by Proposition 3.2,
and K, T,u equals

“ f R 8) J f J & O,y Y, y,) dyaitn'dy'aE,
for each ue #(R",). First it is inferred that, with k, - £, given as in (3.18),
29 Ko = J f € ER, 0 £,(X', Xy, Yoo EWHE, o) Ayl

The idea is to let the y,-integration be the last one in (4.55), and then apply the

1
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result for composition of two pseudo-differential operators on R"~*; in this case
for each parameter value x, and y,. Then (4.56) is obtained, for there one can
integrate in any order.

In (4.55) a change of integration order needs a justification, that can be
obtained by inserting x! in front of &, for | = d, + 2 and a convergence factor
x(ey), with yeCg, x(0)=1, in front of f,: evidently K,T,u = x,'lim,_q
x K (x(e*)T,u) in #(R"). For each x, and y, the method used in the proof of
[Hor85, Thm. 18.1.8] gives that

(4.57) 1im OP'(ky(, X,*) o £y . (s Vs W5 Ya) = OP'(Ky(s X ") © £y Yoo D> Y
e=0

when £, , = x(ey')f,. Since <y,,)2|OP’(I€vofv,e)u(x’, yu)l < C for some constant

C independent of (x, y,) and of ¢ for 0 < ¢ < 1, we infer that

(4.58) K,T,u = lim J OP(ky( Xns ") o By o Yo WUC> V) s

e=0J0

= J‘O OPI(IZV(.’ xm ') ° fv(” y"’ .))u(.5 yn) dyil)
from where (4.56) is obtained by application of Fubini’s theorem.

From (4.52) it is seen that (Zlv=o kyof, )y is a Cauchy-sequence in the Fréchet
space S9! 427 1(&(R2 ,)). Hence the series converges to a limit § as claimed, even
rapidly since (4.52) gives that ||}, k,ot,|jll is ©1~) for any N and j.

2° To define k, and £, one can use that L,(R+) has an orthonormal basis
consisting of (certain unconventional) Laguerre functions (27)~'¢,(y,, o) for
ve Ny, cf. [Gru9l, (1.27) ff.]. Using this with the parameter ¢ = {£’) one has

(4.59) gOxX's Xns Yns €') = ZO by(X', X, )0y, <ED)

for each x’, x, and & when

(4.60) by(x', x,, &) = (2m)~! f GO, Xns Yus €)1 Ys <E'D) .

It remains to be verified that one can let k, = b, and f, = ¢, (-, D).
To see that k, and 7, satisfy (4.52) we use the inequality (3.21). Concerning £, an
application of [Gru86,(2.2.20)] for «' = 0 leads to

(4.61) X D% @u(Xn, <ED) Lo, | £ C(1  w)H ¥y Imm,

when ¢ > 0. (Here and in the following the equivalent seminorms based on the L,
norm on &(R ) are used.) For «’ # 0 the identity

(4.62) Dyp, = (vo,—1 — (v + Dy )(2{ED) ' DKED
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can be used successively, and when combined with (4.61) it is seen that the worst
resulting term contains (v + 1)...(v + |o|), 4 1 (2CED) 71! I_[(Dj(cf'>)'°‘;“.
However, this is estimated by /¥ * (1 +ai=mgrs =la'l+l=m 444 the other terms, of
which there is a fixed «'-dependent number, have similar estimates. Hence
15, 1STALR LI = O™

To treat the k, the proofin [Gru86, p. 169] is modified. Using [Gru86,(2.2.15)]
it is found that

(4.63) I{by(X', X, EV}y0 1€ 2w

= by, X ENL + VN1 122

I 1 SR N
- 2N <é,> y,.yn Vn + <é >yn + g(x,x,,, aé)
SCy ) <O sup (14 <€Dy, yuy, Yyid]

j+ksN Xns Vo X’

S CREn

LZ,yn

In a similar manner one finds for the “coefficient sequence” xj'D’ D%.b, that its
¢, y-norm is (&Y *#+1=™); DT can be applied to the defnition of b, and using
Leibniz’ formula and (4.62) one reduces to the case where o' = 0. This implies that
I &, 1S1E(L(R L)) = O(v ) for any N, so altogether (4.55) is verified.

After the completion of this construction (4.54) is proved by application of
Proposition 3.2 and 1°.

With G, given as in the proposition we shall now prove that G < r*G*¥e*. By
use of Fubini’s theorem

(4.64) (e"Gu,v) = < J wOP’(é(', Xns Vs (> Yn) Yy E>
0
= j_z (u('a yn)’ OP/(gl('a Xns Vns '))U(', X,,)) dyndxn
Ry 4

= (e*u, Gv) = (G*e*u,v)

for each u and v in #(R"). The inclusion of G into r*G¥e* follows from this.
Each composite K,L* has the adjoint L,K¥e™, where L, = OPK(f}¥) and
K*e* = OPT(k*). Moreover, from Lemma 3.3 one finds that

(4.65) || e k¥ |SI PR I < el BISTHL RN I K ISTHL RS,

so the asymptotic properties of k, and £, shown above imply that (4.52) is satisfied
by #* and k*. Then (3.11)leads to convergence of G, = Y, L,K*e* on #(R" ), and
S0
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4.66) lim (Y- K, L2u, 6y = (u,Gor vy = (Glu,r7v) = {r* G3u,v)
=

foreachve #o(R")and ue ¥(R"). Hence ), K, L* converges weakly to r * G% as
operators &,(R".) = & (R"); foruee* C3(R" ) it is seen that r * G¥u = r* Guin
F'(R%).

3° is shown by a modification of the corresponding part of Proposition 4.7.
Observe that when a Poisson operator K = OPK (k) = 0, then Ky = 0 for
Yve#(R"Y) in particular. Therefore the pseudo-differential operator
OP'(k(:, x,,")) equals 0 on #(R"~!) for each x,, > 0, that is to say, k(x', X, &) =
for each x,. Hence k = 0.

Since the action of G¥ is determined by § we can use 2° in Proposition 4.13 to
extend the definition of s.g.0.s of class 0 to the spaces where e* is defined.

DEFINITION 4.14. When u belongs to B;, (R%)or F; (R, )for some(s, p,q)€ Do
(with p < oo in the F-case) then the action ofas. g.0. G of class 0 on u is defined as
Gu = r*G*e*u, where G, = OPG (e P¢§(xX’, Y, Xu, &)

Having made this definition, 2° in Proposition 4.13 may be applied to the
sequences (K, 0,...)and (T,0,...) whereby the usual composition rule is obtained.
More precisely, the identity Gu:= OPG(k~ ofju = KTu, valid for ue #(R") by
(4.54), extends to the situation where e*u makes sense, for K Tu may be written
KL*e*u then, and here KL* = r*G¥ according to 2°.

Generally the s.g.o.s have the following continuity properties:

THEOREM 4.15. A s.g.0. G of order deR and class r e Z is continuous
(4.67) G:B; ,(R%) - B, R%), for (s,p,q)eD,,
(4.68) G:F; (R%) - F5 %R%), for (s,p,q)eD,, 0€]0, 0],

when in (4.68) also p < o holds.

Moreover, if G is continuous from either B, ((R",) or F5 (R".) to 2'(R".) for some
(s,p,q)&D,, then the class of G is <r — 1.

G is continuous from &'(R",) to &' (R",) if and only if G has class —

PrOOF. Suppose first that r = 0. For each of the terms K jy;in (4.51) it is clear
from Lemma 2.7 and Theorem 4.3 that it is continuous as in (4.67) and (4.68).
When G, in (4.51)is written G, = K, T, as in Proposition 4.13 2° it is also clear
that each K, T, has the stated continuity properties.

For a given (s,p,q)e D, and ue Bf,.q(R'L) there is for j large an estimate

w 1 w 1
(4.69) (2_;0 I KvTvuw;jqdn') gc( );0 (AN fvlsg%,jll’> Il ulB}, |
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when r = min(l, p,q), according to the Corollaries 4.4 and 4.10. From the
estimates of Ev and £, in the proof of 2° in Proposition 4.13 above it follows that
the sum on the right hand side is finite. Hence ) K, T, converges strongly to an
operator in L(B;, ,, B} "%); this operator is G, since Y. K, T,u converges in 2'(R",)

p,q> "~ p,q
to Gou. For similar reasons G is also in L(F; ,, F5 9.
When r = —m < 0 and in any case when (s,p,q)e D, \D, is given one can

simply carry over the proof of Theorem 4.9. E.g., in (4.48) one can replace y by
etpeetC(R%)and S,_, by K, _,; then the denseness of e* CF(R") = #,(R".)
shows that K} ;| = 0.

In the case G has class — oo, one can let P = 0 in Section 4.5 below.

The proof above of the properties of G in the B, ; and F, , scales was inspired
by the one in [Gru90]. There it was shown that B; ,U F; , is mapped into
B, nF5 7 (when 1 < p < o0) by a s.g.0.; this also follows from (4.68) and the
fact that B}, , = F, ,, but the property does not hold for the full scales here. For
the trace and Poisson operators similar remarks can be made.

Concerning the adjoints of s.g.o.s of class 0 the situation is analogous to the

one for trace operators, cf. Remark 4.11.

REMARK 4.16. The extension of class — oo operators T and G to &(R") is
a natural consequence of the formulae T = K*e* and G = r* G¥e*, cf. Defini-
tions 4.8 and 4.14. Moreover, it was shown in [GK93, Cor. 4.3] that the
restrictions of operators T and G (of any class) to r*.%4(R") have continuous
extensions to the spaces Bj ,.o(R%) and F; . o(R%) for any seR (when
q=pell, o[ resp. ¢ = 2and 1 < p < o). Consistent with the present level of
pedantry, the restrictions to r*.%(R".) extend (factor) through e* to bounded
operators, that evidently are equal to K* and r* G¥, respectively, for formally

T and G cannot act on (subspaces of) &, (R%).

4.5. Operators P, + G of negative class. Because of the properties (4.19) and
(4.20) a truncated ps.d.o. P, is in general of class 0, but if it is differential the class
is said to be — oo since it has the mentioned properties for any s.

However, a sum P, + G may be continuous also for (s,p,q)¢ Do, simply
because two (or more) contributions cancel each other. A non-trivial example is
given in [Gru90, Ex. 3.15]. Results on these phenomena are included here — the
underlying analysis is that of [Gru90], where such operators P, + G, that are
said to be of negative class, were studied first.

A criterion for P, + G to be of class —m, for me N, is that (P, + G)Din =
(PDL ), + GY holds for some s.g.o. GY of class 0 for each je{l,...,m}. (See
[Gru90] for the general formula for (P, + G)DJ .) This is equivalent to the
fulfilment of KY¥ + K@ = Oforje{l,...,m}, when K{ refer to Proposition 4.13
and
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(4.70) K¥v = r*iPDk (v ® 8p) for veF(R"™)

the reader can refer to [Gru91, (3.43) f.] for this. In addition P, + Gissaid to be
of class re N, when G is so, and to have class — oo when it is of class r for each

rel.

THEOREM 4.17. Let P, be a truncated pseudo-differential operator and
G a s.g.o., both of order de R, and suppose that P, + G is of class re Z. Then

4.71) P, + G By, q(R':,) - Bj,_“q“(ﬁ",,) for (s,p,q)eD,
“.72) P, + G:F, (R%) - F,JR%)  for (s,p,q)€D,

are continuous operators (when p < oo in (4.72)).

Moreover, if P, + G is continuous from either B}, ,(R",) or F, q(ﬁ';) to 2'(R%)
for some (s, p,q)¢D,, then P, + G is of class < r — 1; and P, + G is continuous
F'(R%) = S (R") if and only if it has class — co.

PrOOF. The continuity follows from Theorems 4.5 and 4.15; for r < 0 as in
(4.47) fI. In case (s,p,q)¢ D, the techniques used for trace and s.g.o.s can be
adapted, cf. [Gru91]. When P, + G has class — oo, it is used that

4.73) {Py + Gu,etw)y = J u-(r*Pietw+ Gyw)
o,

when ue C®(R%), We N> oL m(R") while P; = OP(e’Px'P:p) and G = r* G*e*.
Given that P,, + G;: #(R%)—- £(R") maps N, into itself, then
e*(r*Py + Gyr*)iscontinuous & o(R% ) = Fo(R%), since ¢ = ¢+ (NF,,), hence
P, + G is contained in (e*(r* P, + G,r*))*: #/(R") — #(R") by (4.73).

Thus it remains to see that y,(P; + + G;)w = Oforeach we n&,(R%). By (3.4),
yoD% G w equals OPT (DX g,(x',0, y,, &)w, that is iK¥*e*w, and

{0, 7Py +w) = {PDi(v ® o), e w) = (v, iK{*e*w)

for ve #'(R"™'), by (4.70). Therefore, y,(P;+ + G,) = i(K® + K&)*e* =0 on
N (R") when P, + G has class — co.

S. Green operators.

In full generality the results for elliptic operators on manifolds shall now be
presented. The main goal is to obtain Theorem 5.2 below, that is a generalisation
of [Gru90, Corollary 5.5]. Since there are not any substantial changes from the
usual texts on the calculus, a brief explanation will suffice.

To begin with it should be made clear that only bounded, open C® smooth sets
Q < R" will be considered in this section. And for operators of class ke Z only



ELLIPTIC BOUNDARY PROBLEMS AND THE BOUTET DE MONVEL ... 75

spaces B}, ,and F, satisfying (s, p, g) € D, are treated, cf. Section 2.6 and Figure 2.
The difficulties connected to the unbounded manifolds and to the borderline

/

1
cases s = k + max (; - 1,% - n) mentioned in Remark 4.12 are thus left open
here, with the convenience of doing so illuminated by

ReMARK 5.1. In this paper, none of the spaces are larger than those considered
in [Gru90]: Even for (s, p,q)e D, with p £ 1 or p = oo there is an embedding
B, = B, » With(s',p’,p)eD,and 1 < p' < oo, for a simple embedding can be
combined with a Sobolev embedding or an embedding as in (2.23). (These facts
do not hold for the borderline cases, and (2.23) cannot be extended to the case of
unbounded manifolds.) See Figure 3, which for k = 0 also illustrates that one can
even embed into spaces in D,\D 1.

S

/

Y

S

Fig. 3. Embedding into classical spaces in D,\D,.

For convenience the spaces with 1 < p,q < oo are referred to as classical
spaces. In other words, only some norms and quasi-norms not included in
[Gru90] are introduced, the spaces being subspaces of the classical spaces in
focus there.

In addition it is remarked that, when Q is bounded, the uniformly estimated
operators considered here coincide with the locally estimated operators in, e.g.,
[Gru90].

First the operators are generalised to act on sections of vector bundles E over
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smooth open bounded subsets Q = R”, respectively on vector bundles F over
I' = Q2 (all C* and hermitian). See for example [GK93] where it is shown that
one can do so invariantly. In particular the uniform two-sided transmission
condition and the class concept is invariantly defined on (such) manifolds.
However, to make sense of the transmission condition the pseudo-differential
operator P should be given on an extending bundle E, that is, a bundle with
a boundaryless base manifold 2, > Q for which E,|, = E. This will be a tacit
assumption on P in the following. For further explanations of the vector bundle
set-up, see [Gru90] or [Gru86, App. A. 5]. The space of C* sections of say, the
bundle E is written C*(E). (Since Q is an intrinsic part of E, C*(E) instead of the
more tedious C*(£, E) should not course confusion.)

Then, when P, and G send sections of the same bundle, E, into sections of

T S
C*(E)® C*(F) into C*(E") @ C*(F'). In general the fibre dimensions of E and
F are denoted by N > 0 and M = 0, and similarly for the primed bundles. Then
(1.2) is a case with trivial bundles.

The spaces of sections B;, ,(E),..., F, (F’) are defined in the standard way by
use of local trivialisations, and it is verified that Theorems 4.3, 4.5,4.9and 4.15 as
well as Theorem 4.17 remain valid if R", is replaced by bundles E and E’ over
Q whereas R" ™! is replaced by bundles F and F’ over I'.

Consequently Theorem 1.1 is extended thus: for each (s, p,q)eD,, there is
boundedness of

Po+G K
another bundle E’ etc., the Green operator &/ =< ant > sends

B, ((E) B, J(E)
(5.1) . &) - s
s—L s—d—-l-
Bp_qP(F) BM P(F")
F;.o(B) Fy ()
(5.2) oA ® - ® , ifp<oo,
Y —a-1
F, ?(F) F,o(F)

when each entry in &/ has order d € R and class re Z. In addition, &/ cannot be
continuous from any of the spaces on the left hand side in (5.1) and (5.2) to
2'(E') x 9'(F') when (s, p, ) ¢ D, without the class of each entry being <r — 1.
, Pho+G K

Secondly, when &' = ( o s
C*(E") @ C*(F’), so that /"o makes sense on C*(E) @ C*(F), then the compo-
sition rules simply express that this composite o/’.o/ is equal to yet another Green
operator &”, cf. [GK93, Cor. 5.5]. The identity &/” = &/’ holds also when

) is a Green operator defined on
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/' s/ is considered on (the larger) Besov and Triebel-Lizorkin spaces of sections.
Indeed, by Remark 5.1 the composition rules shown for the B;, , spaces with
1 < p < oo also hold in the spaces treated here.

A main case of interest is the one in which there exists a parametrix, .7, of <7,
that is, another Green operator such that the operator identities

(5.3) AdAd =1—R
(5.4) AAd =1—-R

hold on the spaces on the left and right hand sides of (5.1) and (5.2), respectively,
for negligible operators # and #'. This means that they have order — co, so
necessarily # has range in C*(E) @ C*(F) and #’ in C*(E") @ C*(F).

When the order of &7 is an integer d € Z and each entry in .o is polyhomogeneous
(explained in [Gru86, Sect. 1.2], e.g.), there is a well-known ellipticity condition
assuring the existence of .<7. If the principal symbols are denoted by p°(x, &),
g°(x, 14, &) etc., ellipticity means that the following two conditions (which are
expressed in local coordinates) are fulfilled:

(I) The principal symbol of P is for each |£] = 1 a bijection

(5.5 po(x, &): C¥ » CV.,
(II) The principal boundary symbol operator

po(x,’ 0’ 6/’ DVI)+ + go(’xl9 65 D’I) ko(‘x” é/’ D"))

(5.6) aO(x’, &,D,) = < t°(x’ 2.D,) S, &)

is a bijection
(5.7) PR x CM L2, p(R )V x CM

for each x'eI" and each |¢'| = 1.
It was shown in [Gru90, Thm. 5.4] that if o/ is elliptic, then there exists
a parametrix o/ of order —d and class r — d. In this case (5.3) becomes an

1 1
operator identity valid on the spa(:ees1 B (E)® B, P(F)and F}, ql(E) @F, (F),
and (5.4) holds on B (E)® B}, (F') and F5 E)®F, ,' *(F') - in both
cases for each (s, p, g) € D,. Observe that £ is then necessarily of class r while the
class of #’' must be r — d.

Injective and surjective ellipticity of &/ means that (I) and (II) above hold only
with “bijection” replaced by, respectively, “injection” and “surjection”. In the
affirmative case there exists an .« satisfying (5.3) and (5.4), respectively, and it is
termed a left respectively a right parametrix.

5.1. Fredholm properties. Already when & is either injectively or surjectively
elliptic one can deduce various properties for its kernel and range. Instead of
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generalising the Fredholm theory to the category of quasi-Banach spaces, one
can proceed as in [Gru90]. Basically this is possible because, as seen in Remark
5.1, the spaces considered here are contained in the Banach spaces treated there.

This will be explained in the following, where a version of Theorem 1.3 for
vector bundles will be proved. First it will be convenient to introduce the vector
bundles ¥V = E® Fand V' = E' @ F’ and use them to borrow the spaces B}, X(V)
and B: (V") respectively F3 (V) and F; "(V'), from (5.18) fI. below, where they
are introduced systematically. The vectors a and b indicate that there is a space
for each column and row in &; in the present case they are equal to zero.

The injectively elliptic case is quite simple: for each (s, p, g) € D, it is seen from
the embedding relations and (5.3) that

(5.8) (ue BSIAV) | ofu = 0} = {ue C=(V)| Lu = 0}.

A similar argument works in the Triebel-Lizorkin case, and thus, since
F5 , = BS ,, the kernel of &/, written ker .«/, is independent of (s, p, q) € D, as well
as of whether we consider (5.1) or (5.2). Hence ker &/ equals the space in (5.8)
- and it has finite dimension by [Gru90]. Moreover, the image (B}’ (V) is
closed in B;~®(V’) and similarly for the operator in (5.2). The latter fact was
proved in [Gru90] for the spaces in consideration there, and if &/u,, — v in
B3 2~"(V') we determine (s, p’, p') as in Remark 5.1 and conclude from [Gru90]
that v = o/w for some we BS,*XV); here w = o/v + #w according to (5.3), so
we B3 X(V). In a similar way the analogous statement for the Triebel-Lizorkin
spaces carry over from [Gru90]. Hereby 1° of Theorem 1.3 is proved.

As a preparation for the surjectively elliptic case we shall first treat the case
where .« is elliptic; evidently the arguments above for the injectively elliptic case
apply to o/ then. Concerning the range of &/ we use an embedding of B}, , into
aclassical space B, - For the classical spaces it was shown in [Gru90] that there
exists a finite dimensional subspace A" = C*®(V’) which is a complement of im .<7,
that is,

(5.9) By V) = N @ A(ByAV))

pp

for every (s',p’, p)€ D, with 1 < p’ < co. This implies that
(5.10) By V) = & @ S(BSXV))

for when (5.9) is applied to an element of the subspace B;,“q"“’(V’) it follows from
(5.3) that the component in the range of .o/ belongs to /(B;" (V). That the sum is
direct is seen already from (5.9). From (5.10) we conclude that 4" is a complement
ofim & also in the non-classical cases, and by the construction it is independent
of (s, p, g) and of finite dimension. The F case is covered by a similar argument.

When « is surjectively elliptic the study of ranges of o that is found in [Gru90,
(5.21) ff.] is easily modified, and we sketch this in the B case whend = r = 0; the
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F case is completely analogous. The tools in [Gru90] consist of some remarks on
the Banach space cases with (s, p,q) in Do\D,, and these need not be changed at
all. So recall from [Gru90] that

(5.11) LB, ={feB, 2V){f,g)=0 for gekero/*}

when (s, p, ¢) is a parameter in Dy\D, with 1 < p’, ¢ < 0. In addition there is
an argument which by Remark 5.1 easily gives that py, £ (s, p, q) < p, for any
(s, p»q) € Do; here po = dimker o/*, p; = codim o o/ *(B;" % and v(s, p, q) denotes
the codimension of (B3 * in B} (V). In virtue of the injectively and two-sided
ellitic cases treated above the numbers po and p; are (s,p, q)-independent.
Consequently the conclusion from [Gru90] that p, = p, yields the independence
of v from (s, p, 9).

Now we take gy, ...,g,in C*(V’)as a basis for ker &/*, and we may assume that
9, ==kl From (5.11) it is seen that o/(B;"*) and ker .o/* are linearly
independent, and for this reason g¢4,...,g, are linearly independent in the quo-
tient BS P/o/(B5'7). Hence (gy,...,9,) is a basis for the quotient, so
ker o/* + (B3 7 is equal to Bj">. Altogether this shows that

(5.12) B V') = ker #* @ (B},

that is, «/(B;"?) has the finite dimensional (s, p, g)-independent complement
ker o/*. When <u,, - vin By, b we write v = #w + 4,9, + ** + 4,9, by use of
(5.12). Then(5.11) gives that 0 = <{v,g;> = 4;,so that v = .o/w. Hence the range of
& is closed.

More generally one can reduce to the case where d = r = 0, see [Gru90]. This
reduction uses order-reducing operators, written as A” p for meZ, that are
chosen so that they for all admissible parameters (s, p, q) have the following group
and continuity properties:

(5.13) A pAm = AR A0 g =1,
(5.14) A™ g B (E) 3 By ME), A" g F5 (E)> F3 7 (E).

Such operators were constructed in [Gru90, Thm. 5.1 3°] (but called Z™  there,
see also [Gru91, Ex. 2.10] for a brief review) and in [Fra86a]. Their continuity
properties are a consequence of Section 4, since they in general are of the form
PY + G'™, and the group property, valid by the earlier remark on composition
rules, implies the bijectivity.

One should observe that in the reduction procedure (5.12) easily carries over to
a similar statement for the more general surjectively elliptic Green operators,
except that ker.o/* is replaced by another fixed finite dimensional space of
smooth sections. Altogether this proves 2° of Theorem 1.3.
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To show 3° there, suppose that (the vector bundle version of) (1.6) holds for
some (s;,p1,41)€ D, for a subspace A" < C®(V’). By 2° there is a parameter
independent range complement .# = C*(V’). If (g4, ...,4x) is a linearly indepen-
dent tupel in ., its image is so in B} 4"°(V')//(B;.'2) by (1.6). Hence
dim 4" £ dim .#. In addition the quotient is isomorphic as a vector space to
both 4" and .#, so there is equality.

For an arbitrary (s, p, g) € D, the identity (1.6) now holds if and only if a basis
(@15---»gx) for A still gives a basis in B ~"(V')/o/(B}*?). Because k = dim .#
was seen above, it suffices to see that (Qg;,..., Qg,) is linearly independent, when
Q denotes the quotient operator. Let 0 = 4,0g, + ... 4,Qg,. Then

(515) llgl+ "'+/1kgk=du
for a unique «u in B 7~ *(V’). But
(516) llgl+"'+ikgk=W+ﬂU

for uniquely determined we .# and «/ve B} 2~ "(V’). It suffices now to verify
that w = 0, for then (5.16) implies that

(5.17) 0=410191+ ... 4Q1gx in B;‘,,‘qiwb(V')/ﬂ(Bf;l:q:)s

when Q, denotes the quotient operator for (s, py,q,). That w = 0is evident when
B A7 =, B} 27", for then (5.16) is also a decomposition in B . Similarly
w = 0 holds when the reverse embedding does so. Hereby (1.6) has been estab-
lished for (s; + 1, oo, 1), so by repeating the argument any (s, p, q¢) € D, with s < s,
is covered, and then in a last application any (s, p, q) € D, is so. Thus 3° is proved.

In Corollary 1.4 any (f,¢) in B}, 2~(V') or F5!_?~"(V’) gives a functional

{fi> + {@,") on A one can take a larger classical space B/ ®(V’) with
1 1
,p,q)eD\D, ., cf. Remark 5.1; with s= —s +d, > + I =1 and

% + El'— = 1, this space is dual to B;, ,.o(E)® B! "%(F ) and eqg € B}, ;. o(E), for
by construction (s, p,q)e D,_,\D,_, ,  so it suffices with y;g = Oforj < d — ras
assumed. Moreover, any ¢ € 9'(F’) gives a functional on C®(F’).

Using this it is elementary to verify that validity of (1.8) or (1.9) at (s;,p,q,)
implies (1.6) and (1.7), respectively. For every (s, p, q) in D,, 3° then gives that A" is
a range complement, and the inclusions into .#"* in (1.8) and (1.9) are clear since
H#(C*(V)) = A+ is seen by consideration of (s, p;,q;). The other inclusions
follow from the ones proved, for when an element in, say, B (V') n A" is
decomposed as in 2°, then the 4" component is trivial.

5.2. Multi-order operators. Using order-reducing operators one can also re-
duce multi-order Green operators to the case of order and class 0 and carry
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through the preceding considerations, cf. [Gru90]. Instead of going into details
this section is concluded with a precise summary, which contains the previous
results as well as those in Section 1 on single order operators as special cases.

In the following, Q = R" is a smooth open bounded set with Q2 = I', and

Po+G K

T S)’ where
P =(Py) and G = (G;j), K = (K;;), T =(T;;) and S = (S;;). Here 1 £i <i; and
iy <i =< iy, respectively, in the two rows of the block matrix o/, and 1 £j £ j,
respectively j; <j < j, holds in the two columns of .o7; that is, .o/ is an i, X j,
matrix operator.

Each P;, G;;, K;;, T;; respectively S;; belongs to the poly-homogeneous calcu-
lus, i.e., they are a pseudo-differential operator satisfying the uniform two-sided
transmission condition (at I'), a singular Green, a Poisson and a trace operator,
resp. a pseudo-differential operator on I'. The orders of the operators are taken
to be d + b; + a;, where deZ, a = (a;)€Z’> and b = (b;)€Z", and the class of

P; o + G;; and of T;; is supposed to be r + a; for some reZ ().

The operators are supposed to act on sections of vector bundles E; over

Q and F; over I, with values in other bundles E; and F;. Letting

= (E, €r>-~eaE,~l)u(Fh+1 @ @F,), while V=(E®& @E,)u
( i +1 @ @ F,), the Green operator &/ sends C*(V) to C*(V"). Here one can
either regard C °°(V) as an abbreviation for C*(E) @ -+ - @ C*™(F},), or verify that
V is a vector bundle with base manifold Q U I', cf. the definition in [Lan72].
Observe that hereby the dimension of the base manifold as well as of the fibres
over its points x depend on whether x € Q or x e I'. Similar remarks apply to V.

To have a convenient notation we shall now introduce spaces that are adapted
to the order and class of each entry in .o/, namely (with p < oo in the
Triebel-Lizorkin spaces)

o/ denotes a multiorder Green operator, i.e., o =<

(5.18) BSIAV) = (g}; BS'M(E)) @( m ‘*“f“(F,))
(5.19) Bj,fq"(V’)=(§? B ))@(W y “‘(F)>,
(5.20) F3IyV) = (,@? F3 ' oHE ))@<J,<1 F’*‘”“(F)>
(5.21) Fs ) = <€<B F3, "(E')@(m F; bf”F(F’),

(*) For short .« is then said to have order d and class r.
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(As usual F; ,(F;) = B;, ,(F) etc.) It is convenient to take the quasi-norms to be

i l s+a
lo]B5 —(II vy IB”‘"(E WO+ + vy, |BL v( J9a, and [o]F, 2 =
oy IF 2 EDNP + -+ + (v, | ;}“IZ’E(FjZ)II")p, with similar conventions for
By > and F; "

The ellipticity concept for multi-order Green operators is like the one for
single-order operators, except that p°(x,¢) is a matrix with pg equal to the
principal symbol of P; relative to the order d + b; + a; of P;;; and similarly for
a®(x', &, D,).

THEOREM 5.2. Let o/ denote a multi-order Green operator going from V to V' as
described above. Then </ is continuous

(5.22) A BSAV) - BTNV, Al FSLAV) - Fy V),

for each (s, p,q)€ D,, when p < oo in the Triebel-Lizorkin spaces.

If o is injectively elliptic, surjectively elliptic, respectively elliptic, then </ has
a left, right respectively two-sided parametrix <7 in the calculus; it can be taken of
order —d and class r — d, and then <7 is continuous in the opposite direction in
(5.22) for all the parameters (s, p, q) mentioned above.

When o is continuous B3:(V) — 2'(V') or o is so from By 7(V') to 2'(V) for
some (s, p,q)¢D,, then the class of o is <r—1and o has class <r — 1 —d,
respectively. A similar conclusion holds for F5* V) and F5_~*(V").

Furthermore, when &/ is injectively elliptic, the inverse regularity properties in
Corollary 1.2 carry over to the operators in (5.22). Moreover, 1° of Theorem 1.3 is
valid mutatis mutandem for s/, and the ranges are closed.

When < is surjectively elliptic, analogues of 2° and 3° of Theorem 1.3 as well as of
Corollary 1.4 hold for of (when y;g; =0forj<d+ b, —r).

In the elliptic case, all these properties hold for </, and the parametrices are
two-sided.

On the basis of the single-order case described above, Theorem 5.2 is obtained
by a straightforward extension of the proof of [Gru90, Cor. 5.5].

It should be observed explicitly, that the (s, p, g)-independence of ker .o/ implies
that it is the same space regardless of whether o is considered on B} (V) or on

F;"X(V); this follows since B*} = F5*. A similar argument shows that one can

take a space 4" that is a complement of (B2 in By V') as well as of

(Fs+u) in Fs d- b(V)

Alsoit should be observed that the inverse regularity properties as in Corollary
1.2 follow by application of (5.3) to (1.5) (or its analogue).

The theorem above is a generalisation of [Gru90, Cor. 5.5] to the scales of
B, ,and F,  spaces withQ < p,g < oo (With p < oo for the F spaces) with a rather
more detailed Fredholm theory characterising the ranges of &/. Moreover, the
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Holder-Zygmund spaces C° = B, ., s > 0, are included, and unlike [RS82] it is
unnecessary to assume that s — d > 0 when applying operators of order d to C*
the space B ¢ can receive in any case. For further historical remarks see the
beginning and end of [Gru90].

6. Applications.

As a first example it is clear that Theorem 5.2 above applies to such boundary
problems as those in (1.1) above,

Secondly the various orthogonal decompositions into divergence-free and
gradient subspaces in [Gru90, Ex. 3.14] are generalised by Theorem 5.2 to the
spaces B;, ()" and F; (Q)" for (s, p,g) € Dy.

Thirdly the inverse regularity properties in Corollary 1.2 carry over to
semilinear perturbations of .o, as long as the non-linear term is “better behaved”
than .«/.This is proved for the stationary Navier-Stokes equations (considered
with boundary conditions of class 1 and 2)in [Joh93, Thm. 5.5.3]. A paper on this
application to more general semi-linear problems is being worked out; results
and methods are sketched in [Joh95b].

For the stationary Navier-Stokes equations the mentioned inverse regularity
results have led to an extension of the weak L, solvability theory for the Dirichlét
problem, cf. [Tem84], to existence of solutions in the B}, , and F; , spaces, in

rough terms when s > max (1,ﬁ - -Z— + 1). See [Joh93, Thm. 5.5.5] for details.
p
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