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CONSISTENCY OF STATISTICAL MODELS
IN THE STATIONARY CASE

GORAN PESKIR

1. Stationary ergodic observations.

Let IT = (nq| 0 € @,) be a statistical model with a sample space (S, /), reference
measure u, and parameter set ©,. In other words (S, .7, u) is a measure space and
Ty is a probability measure on (S, &) satisfying my << p for all 6 € @,. Then the
likelihood function and the log-likelihood function for IT are defined as follows:

) f(5,6) =d77:f—(3) and h(s, ) = log f(s,6)

for all (s,0)e S x ©,. Suppose a random phenomenon is considered that has the
unknown distribution n belonging to II. Then there exists 0y € @, such that
T = 7y, and we may define the information function as follows:

) 1(0) = Lf (s, 60) h(s, 6) u(ds)

for all 0e @, for which the integral exists. Put f = supg.e,I(6) and denote
M = {0e®,|I1(0) = B}. If the following condition is satisfied:

©)] J f(s,00)|log f(s,00) | u(ds) < 0
N

then by the information inequality, see [7], we may conclude:
“4) M = {0e@y|ny = 7} and I(6) < I(6,) = B for mg + 7.

Hence we see that under condition (3) the problem of determing the unknown
distribution 7 is equivalent to the problem of determing the set M of all maximum
points of the information function I on @,,. It is easily verified that (3) is satisfied
as soon as we have:
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(5) f(,00)e E(p) 0 E(w)

for some 0 < p < 1 < g < oo. In order to approach the set M we may suppose
that the observations X,, X,,... of the random phenomenon under consider-
ation are available. In other words {X;|j = 1} is a sequence of identically
distributed random variables defined on a probability space (2, #, P) with values
in (S, &/) and the common distribution law . If X, X, . . . are independent, then
by the law of large numbers we have:

6) -’11— zl h(X;,0) - I(6) P-a.s.

as n — oo for all O € @, for which the integral in (2) exists. Thus it may occur that
under possibly additional hypotheses certain maximum points d, of the map on
the left side in (6) on @, approach the maximum points of the map on the right
side in (6) on @,, that is the set M. This principle is, more or less explicitly,
well-known and goes back to Fisher’s fundamental papers [3] and [4]. A large
number of studies have followed. We do not wish to review the history of this
development, but will point out classical works [1], [8],[9], [11], [13],[21] and
[22], as well as the surveys [15] and [16] where more detailed information with
additional references can be found. For some new developments see [6], [12],
[14],[18] and [20]. Let us however emphasize here that whenever (6) is valid, the
sense of this problem as well as the interpretation of its solution do not require
any additional assumption on the sequence {X;|j = 1}. Thus we may and do
assume that the likelihood function for general (possibly dependent) sequences
{X;1j = 1} is the same as in the independent case. In other words the function
h(s, 8) = log f(s, ) may be chosen as the criterion function. We think that this fact
is by itself of theoretical (and practical) interest.

In this paper we consider and investigate a new case of the same problem where
X1, X,,...arenolonger independent. However we shall assume that the probabil-
istic structure of the observations under consideration does not depend on the
moment when we begin with the observation. In other words we shall assume
that the sequence {X;|j = 1} is stationary, that is:

0 P{(X),X,,...)eB} = P{(X,, X, +1,...)€ B}

for all n 2 1 and all Be &™. In addition we shall assume that the sequence
{X;lj = 1} is ergodic. In other words whenever for some B e /" we have:

8) {(X1,X;,...)eB} = {(X,, X,+1,...)€B}
being valid for all n = 1, then we may conclude:

) P{(X;,X,...)eB}€{0,1}.
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Under these hypotheses we may conclude by using Birkhoff’s pointwise ergodic
theorem that (6) is valid with degenerated I(6) for all 6 € @, for which the integral
in (2) exists and is finite. It turns out that this fact is important for the proofs
presented below, and moreover the statistical nature lying behind justifies it well.
To conclude this introduction it is worthwhile to recall that every sequence of
independent and identically distributed random variables is stationary and
ergodic. Thus all of the derived results apply to this case as well. The next section
constitutes the main body of the paper, while the section following it contains the
main results. In the last section we present some typical examples, which moti-
vated the theory exposed below, as well as indicate its applications.

2. Foundation of the problem of consistency.

In this section we shall introduce and investigate the setting for the problem of
consistency of satistical models in the stationary case. For this we shall follow the
course developed for the case of independent and idetically distributed random
variables in the framework of the asymptotic likelihood theory [6]. However it
turns out that there exist some crucial differences that should be emphasized and
raised problems solved. It is instructive to observe that these problems are of the
same type as those that appeared in the general reversed submartingale case for
establishing consistency, see [ 18] with references. In spite of that we shall see that
the assumptions of stationarity and ergodicity in the present case can provide
close relatives of the facts deduced in [6] that are sufficient for establishing
consistency under slightly stronger hypotheses than those used in [6]. Some
more details in this direction will be presented later. Let us turn to the setting
itself.

We consider a stationary ergodic sequence of random variables {X;|j = 1}
defined on a probability space (2, #, P) with values in a measurable space (S, &)
and a common distribution law n. The measurable space (S, &) is called the
sample space, and the probability measure = is called the true distribution. In
addition we suppose that an analytic metric space @, is given and fixed, and by
By = B(O,) we denote the Borel o-algebra on ©,. The space @, is called the
parameter space. It may be embedded into a compact metric space (O, d) that will
be called the compactified parameter space. Any function f defined on O, with
values in R will by definition be extended on @ putting f(6) = —oo for all
fe ®\ @,. Moreover we suppose that an .o/ x %B,-measurable map h(s, 0) from
S x @, into R is given and fixed. It is called the criterion function. According to
the above rule we have h(s,0) = — oo for allse S and all 6 e @\ @,. Moreover we
shall assume that h(-, §) belongs to L(r) for all § € @, where L(n) denotes the set of
all functions from S into R for which the n-integral exists in R. Thus the
information function may be defined as follows:
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1(6) = j h(s, 0)m(ds)
s

forall @€ ©. Note that I(f) = — co for all e @\ O,. Let usintroduce the set of all
maximum points of I on @, that is:

M ={6€0|1(0) = p}

where we define f = supg.g,(f). The problem under our consideration may be
stated as follows: Given {X;|j = 1} with unknown  estimate M! The sense of this
problem as well as the interpretation of its solution rely upon the information
inequality that appears in the framework of the above setting where the criterion
function h(s, 0) equals the log-likelihood function log f(s, 6) for a statistical model
IT = (ng| 6 € Oy), see section 1. We shall refer the reader to [6] for more details
and information in this direction. Let us however emphasize once again that no
assuption on the sequence {X|j = 1} itself is used for this purpose. Thus we may
and do assume that the likelihood function for general (possibly dependent)
stationary sequences {X;|j = 1} is the same as in the independent case. In order
to perform the estimation in our problem we shall follow [6] and define the
empirical information function as follows:

1 n
hy(@,6) = — 3 h(X;(w),6)
n ;s
for all (w,0)e 2 x @ and all n = 1 with the convention + 00 — 00 = — 0. By

using Birkoff’s pointwise ergodic theorem we obtain:

(1) I(0) = lim h,(-,0) P-a.s.

for all 6 € @, for which h(:, 6) belongs to L!(r). This fact is essential. It indicates
that maximum points §,(w) of h,(w,") on @, for weQ and n = 1 may under
certain additional hypotheses approach the set M of maximum points of I on @,,.
Our further work strongly relies upon this belief. In order to exploit the preceding
conclusions on (1) we shall proceed by introducing several auxiliary functions
associated to the empirical information function:

) ) h¥(w, B) = sup h,(w, §)

6eB

3) H§(w, B) = lim inf h¥(w, B), H*(w, B) = lim sup h*(w, B)

n— o n— o

) Hyw,B)= inf H¥w,G), Hw,B)= inf H*w,G)

Ge¥9(6),G>B Ge¥%(6),.G>B
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) Ho(w, 0) = inf HY(,b(6, 7)), H(w,0) = inf H*(w,b(6,7))
r>0 r>0
(6) n(6) = inf E*h,(6), n*(B) = inf E*h}(B)
nz1l nz1

whenever weQ, 6€ 0, B < @ and n 2 1. Here h,(w,") = lim, oh*(w, b(:, 7)) de-
notes the upper semicontinuous envelope of h,(w,") on @ for weQ and n = 1,
while E* denotes the upper P-integral. Also 4(@) denotes the family of all open
setsin @. According to [6] the functions Hy(w, B) and H(w, B) are called the outer
maximal functions, the functions Hy(w, 6) and H(w, 6) are called the upper informa-
tion functions, and the functions n(6) and #*(B) are called the mean value informa-
tion functions. In order to transfer the results of interest from section 2 in [18] to
the present case we shall put # = ({h,(®,0),S%|n = 1}|0€ O@,), where S% de-
notes the permutation invariant g-algebra of order n based on X = (X, X,,...),
see [7]. Then each h,(-,0) is Sy-measurable for n = 1, and moreover by our
hypotheses J# is measurable in the sense of [18], that is h,(w,6) is S% x %Bo-
measurable for n = 1. Let &/(0) denote the family of all analytic sets in @. If
B belongs to «Z(@), then by the projection theorem, see [6], the map w +— h¥(w, B)
is (S%)P-measurable. However under the present hypotheses on X;, X,, ... we can
not conclude that the g-algebra S§ = N, S is degenerated, that is P(F)e {0, 1}
for all FeSy, as it was possible by using the Hewitt-Savage 0-1 law in the case
where X, X,,... are independent and identically distributed (exchangeable).
Actually we have:

§y c TP < 8%

where Ty° denotes the well-known tail g-algebra based on X = (X, X,,...) and
S% denotes.the g-algebra of all shift invariant sets based on X = (X, X,,...), that
is FeS% if and only if F = (X,, X,+1,...)” '(B) for some fixed Be o™ and all
n = 1. Here t denotes the unilateral shift in SV, thatis t(sy, 55, 53,...) = (52,53,...)
forall (s, s,,...)e SN. Thus we could say that J# is degenerated relative to a given
family % of subsets of @, if we have:

@) H*(-, B) = const. and H¥(-, B) = const. P-a.s.

forall Be %. Thenitis easily verified that proposition 2.1, proposition 2.2, corollary
2.3 and proposition 2.4 in [ 18] are valid in the present case, provided that in their
hypotheses the words “of reversed submartingales” and “measurable” are re-
moved and that word “degenerated” is replaced by the words “degenerated
relative to” a decent family of subsets of @ in the sense explained above. For
instance, in order to formulate statement (6) in proposition 2.1, »# should be
degenerated relative to Ug.g, {b(6,7) |7 < re} withsome ry > 0. We shall leave the
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strict formulation of these statements and all of the remaining details to the
reader. It is instructive to notice that the submartingale property of 5# in [18] is
not used for this purpose. Moreover exactly in the same way proposition 2.5,
corollary 2.6 and remark 2.7 in [ 18 ] may be carried over to the present case. Most of
the details will be omitted. The final results that will be of use in the next
considerations may be stated as follows from (11) to (15) below. We consider the
following sequences of maximum functions:

(8) A sequence of functions {f, |n = 1} from Q into O is called a sequence of
empirical maximums, if there exist a function q:Q — N and a P-null set

N e Z satisfying:
@) 0, (w)e Oy, ¥n = g(w), YweQ\N
(ii) ho(@, 0,(w)) = h¥w, @), Vn = q(w), Vo e Q\N

(9) A sequence of functions {f,|n = 1} from Q into O is called a sequence of
asymptotic maximums, if there exist a function ¢:Q — N and a P-null set

N e # satisfying:
(i) f.(w)€Bq, Vn 2 q(w), Yo e Q\N
(i) lim inf hy(w, 6,(w)) = H(w, @), Yo e Q\N

(10) A sequence of functions {f,|n = 1} from Q into @ is called a sequence of
approximating maximums, if there exist a function g : 2 — N and a P-null set
N e % satisfying:

(i) b, (w)e®,, Vn= q(w), Voe Q\N
(ii) liminf h,(w, §,(®)) = B, Yoe Q\N

where we recall that B = sup,.e,1(6).

It is easily verified that every sequence of empirical maximums is a sequence of
asymptotic maximums and that every sequence of asymptotic maximums is
asequence of approximating maximums. Moreover sequences of approximating
and asymptotic maximums always exist. For more details see [6] and [18]. In
addition we shall introduce the following sets:

M = {06o| H(,6) 2 B P-as.)
L={0e6,|Hy(w,0) = B P-as.}
M* = {0e,|H(w,0) 2 H*(w,0) P-as.}
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M§ ={0€6,|H(®,0) 2 H}(w,6) P-as.}
L ={0€0,|H(w,0) 2 H}(»,0) P-as.}.
Then we have:

(11) M is exactly the set of all possible accumulation points of all possible
sequence of approximating maximums

(12) L is exactly the set of all possible limit points of all possible sequences of
approximating maximums

(13) M3 is exactly the set of all possible accumulation points of all possible
sequences of asymptotic maximums

(14) L is exactly the set of all possible limit points of all possible sequences of
asymptotic maximums

(15) If {f,|n =1} is a sequence of empirical maximums, then there exists
a P-nul set Ne# such that ¢{0,(w)} = M%, €{0,(®)} " M* + ¢ and
Z{b,(w)} < I* for all e Q\N.

Clarify that € {0,(w)} and £ {0,(w)} denote the sets of all acumulation and all
limit points of the sequence {f,(w)|n = 1} in O for we Q respectively. Let us
emphasize that statements (11)-(14) rely upon the existence of measurable ap-
proximating maximums theorem, see [17]. Moreover the proof of (11) in the
present case contains a small detail that deserves to be mentioned. Namely in
order to show that for any point @ e M there exists a sequence of approximating
maximums {f,|n = 1} satisfying 0 € €{0,(w)} for all w e Q outside some P-null
set N € # we may strictly follow the proof of (1) in corollary 4.2 in [17] with f(w)
replaced by . However in order to deduce the first inequality in this proof we
may proceed as follows. First assume that § < oo, then there exists a sequence
{6,,|m = 1} in @, such that I(6,,) = f — 2~ ™ for all m = 1. Moreover for each
m = 1 there exists a P-null set N,, € # such that h,(w, 6,,) — 1(6,,) for all w ¢ N,, as
n — oo. Putting N = uy_ N,, we find:

Hy(w, B,) = liminf h*(w, @y) = liminf h*{w, {6 |k 2 1}) 2 1(0,) = B — 27"

n—w nh— oo

for all w¢ N and all m = 1. Letting m — co we get:
ﬁo(w, (:)o) 2B

for all w¢ N. The case f = oo may be handled in the same way. The rest of the
proof of (1) in corollary 4.2 in [17] is the very same in the present case, and we
shall omit the details. Concerning this remark it is instructive to notice that the
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constant f appears simultaneously in the definition of a sequence of approximat-
ing maximums as well as in the definition of M, see (11).

These facts finish the establishment of the setting. Summarizing, we may
conclude that (7) remains the central preliminary question that should be
answered. Having this answer, all of the preceding results involving non-degen-
erated functions H¥(w, B), H*(w, B), Hy(w, 0), H(w, ), Hy(w, B) and H(w, B) may
be formulated in the degenerated form under the additional hypothesis, that will
be established in the next lemma. We shall leave the details in this direction to the
reader. Moreover we shall see in the next section that the validity of (7) can be
completely avoided in establishing consistency under slightly stronger hypothe-
ses than those used in [6] and [18]. This approach differs from that one
demonstrated in [6] and [18] where (7) is automatically satisfied for all analytic
sets by the Hewitt-Savage 0-1 law. However in order to follow [6] in the present
case, we shall turn out an answer to (7) in the next lemma. This process requires
the following definitions.

Let {&;|j = 1} be a stationary sequence of random variables defined on
aprobability space (22, #, P) with values in a measurable space (S, «¢), let (SN, o)
denote the countable product of (S, =), and let P; denote the distribution law of
& =(&,¢&,,...)as amap from Qinto &V, Let 7 denote the unilateral shift in &N,
thatis t(sy, 53,83, ..) = (52,583,...) for all (s;,5,,...) € #N. Let k = 1 be given and
fixed, then {¢;]j = 1} is said to be k-ergodic, if 7* is ergodic in (SN, 2", P,), that is
P;(A)€{0,1} whenever Ae /N and 17%(4) = A. Moreover {¢;|j = 1} is said to
be completely ergodic, if it is k-ergodic for each k = 1. Note that {&;|j = 1} is
ergodic, if and only if it is 1-ergodic. Moreover if {¢;|j = 1} is k- l-ergodic for
some k,I = 1, then it is obviously k-ergodic. For some information in this
direction we shall refer the reader to [19] (p. 3-7). Now the lemma may be stated
as follows.

LEMMA 1. Under the hypotheses of the above setting let us suppose that for given
Be o (O) there exists k = 1 such that:

(1) sup|h(-,0)| < oo P-as.
6eB
(2 {X;lj 2 1} is k-ergodic.

Then there exist numbers H*(B) and H§(B) in R satisfying:

3) lim sup h¥(-, B) = H*(B) P-as.
4) liminf h¥(-, B) = H%¥(B) P-a.s.

n— oo
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PrOOF. Let us consider the map g,:S" x @ — R defined by:

g,,(s, 0) =

S|

Z h(sja 0)
j=1
for s = (s1,55,...)e SN, e @ and n = 1. Let us denote:

g3(s, B) = sup g,(s,0)
0eB

for all seS™ with the given analytic set Be.o/(0). Let (SM, ") denote the
countable product of (S,.7), and let Py denote the distribution law of
X = (X}, X,,...) as amap from Q into SV. Then by our hypotheses we see that
each g,(s, 0) is /N x %-measurable and thus by the projection theorem, see [6],
we may conclude that the map s+ g¥(s, B) is Py-measurable for n > 1. Let
7 denote the unilateral shift in SV, then by our hypotheses we have that 7* is
ergodicin (SN, &V, Py). Therefore in order to establish that a Py-measurable map
f from SV into R is equal to a constant Py-a.s., it is enough to show that this map is
h-invariant mod Py, thatis f o t* = f Py-a.s.,see [10] (p. 5). Hence we may easily
conclude that (3) will be established as soon as we have:

(%) lim sup g*(z*(), B) = lim sup g*(-, B) Px-a.s.
In order to deduce (5) let us note that we have:

n+k 1 "tk 1 &
: 0 —— Y ks, 0
n+ k jgl h(s]’ 9) n j§=:1 (sj )

GT($,0) = = 3 h(s;rr, 0) =
n <

forall s = (sy,s,,...)e SN, all0e @ and all n = 1. Taking supremum over all 0 B
and using (1) one can easily verify the validity of (5). This fact completes the proof
of (3). Statement (4) may be proved in exactly the same way, and the proof is
complete.

Let us in addition remind that certain maximal inequalities were important to
be established in the case of independent and identically distributed random
variables in [6], as well as in the reversed submartingale case in [18]. We shall
proceed and conclude this section by investigating these inequalities in the
present case. It turns out that their close relatives may be established in the
stationary case under our consideration. Moreover we shall see in the next
section that these facts are sufficiently good for most of our purposes. Let us
clarify that E* denotes the P-upper integral. In particular if X:Q—R is
P-measurable, then we have E*X = EX for X € L(P)and E*X = + oo otherwise.
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LEMMA 2. Under the hypotheses of the above setting let us suppose that
Be o(O) is given and ﬁxed. Then for any given and fixed d Z 1 we have:

Sup{d Z h(Xi4G-1)qa(@), 0)}

0',,] 1 6eB

1)) h¥(w,B) <

+—1— Y. suph(X(w),0)

ond<j<n 6eB

@ E*h*(B) < % nd In " E*h¥(B) + ——n—iE*h:(B)

being valid for all w € Q and all n 2 1, where 6, = [n/d] denotes the integer part of
n/d. In particular we may conclude:

3) lim sup Eh}(B) = inf Eh}¥(B) < c©

n—ow n=1
whenever Eh}(B) < oo, as well as:
@) E*hy4(B) < E*h}(B)

for all n 2 1. Moreover we have:

1 n
(%) h¥. (o, B) £ -':-k sup {‘;{ ; h(X; 4 (@), 6) 0}

6eB

+ i ksup{ Z h(X; (w),B)}

0eB

n
* % <
(6) E*hy,(B) < >

being valid for all we Q and all n,k > 1.

k
E*h* *
$B) + — L E*hE(B)

ProoOF. Since B is analytic, then by the projection theorem, see [6], the map
> Supgephy(w, 0) is P-measurable. Therefore E*h*(B) = Eh¥(B) if h¥(-,B)e
L(P) and E*h}(B) = + oo otherwise. In order to establish (1) one may notice that
we have:

n ond
M) ho,0) = 3 WX@,0 =+ 5 HX L0+ T hXw),0

ji=1 j=l ond<jsn

1 on d 1
=L X hXirg-1a@)0) +— 3 h(Xw),0)
j=1i=1 ond<jsn
opd 1 2 (18 1
= - =Y MXirg-1a@) 0 +— Y h(Xjw),0)
n On j=1 d i=1 ond<jsn
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being valid for all (w, 0)e Q2 x © and alln = 1. Hence (1) follows straightforward
by taking supremum over all 8¢ B. Statements (2) and (4) follow by (1) and
stationarity. Moreover statement (5) is obvious and statement (6) follows
straightforward by (5) and stationarity in the same manner. Finally if
Eh¥(B) < oo, then letting n — oo in (2) we may conclude:

lim sup Eh¥(B) < Eh}(B)
since (g, d)/n — 1asn — oo. Takinginfimum over alld = 1 we get (3). These facts
complete the proof.

3. Consistency of statistical models in the stationary case.

In this section we shall introduce and investigate the concept of consistency of
statistical models in the stationary case. Throughout the whole section we work
within the setting that is introduced in the preceding section. We begin by
introducing the definition of consistency. The criterion function h(s, ) is said to
be n-consistent on a given subset I' of @, if for every sequence of approximating
maximums {#,|n = 1} there exists a P-null set Ne % such that ¢{f,(»)} N
I' = M, for all w e Q\ N. The criterion function h(s, 0) is said to be n-consistent, if
it is m-consistent on @. Thus h(s, ) is n-consistent on I" if and only if every
accumulation point of any sequence of approximating maximums that belongs to
I is a maximum point of the information function I on @,. By (2.11) we see that the
following statements are equivalent:

(1)  h(s, 0) is n-consistent on I’
(2)  h(s,0)is n-consistent on I ~ (M \ M)
B3 I'"McM

4 H(w,0) < B for all we 2 that belong to some Fye ¥ satisfying P(Fg) > 0
whenever fe '\ M.

Moreover if {§,|n = 1} is a I'-tight sequence of approximating maximums, that
is ¢{0,(w)} < T for all weQ outside some P-null set Ne#, and h(s,0) is
n-consistent on I', then we have:

6) €)M

(6) lim d(f,(w), M) =0
for all weQ outside some P-null set N € #. Thus in this case any sequence of
approximating (empirical or asymptotic) maximums converges to the set of all

1
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maximum points of the information function I on @,,. It is instructive to observe
that we alwayshave M = L. M. Thereforeif M nI"' = M,thenM nT' = LN T.
In other words if h is n-consistent on I', then every point §e M n I may be
reached as the limit point of a sequence of approximating maximums. Our next
aim is to obtain conditions for n-consistency of the criterion function. Let us for
this introduce the set of all I-dominated points of h(s, 6) as follows:

0, = {He @|3r > 0 such that f sup h(s, &) n(ds) < oo}.
S &eb(0,r)
Note that @, is an open subset of @. Furthermore let us introduce the set of all
upper semicontinuity points of h(s, 0) as follows:

e,= {He © |3k = 1 such that h,(w, ) is P-a.s.
upper semicontinuous at 0 for all n > k}.

Note if the map h(s, ) is n-a.s. upper semicontinuous at a given point 8 € @, then
O belongs to O,. Also note that the present definitions slightly differ from those given
in [6]. Finally, let us introduce the set of all non-trivial points of h(s, 0) as follows:

O, = {He@l sup I(¢) > —oo forallr > O}.
Eeb(8,r)

Note that © ; = ©,. The next theorem offers conditions for n-consistency of the

criterion function.

THEOREM 1 (Consistency in the stationary case). Under the hypotheses of the
setting of section 2 suppose that I is a subset of @. Then we have:

(1) If B = — o0, then h(s, 6) is n-consistent on I" if and only if T = @y U (O\ By)

(2) If B > — oo, then h(s, 0) is n-consistent on I if and only if T = M L (@ \ M) U
©.NnO,NnO))

(3) If h(s,0) is m-consistent on T and I' " M = {6}, then 8, — 0, P-as. as
n— oo for every I'-tight sequence of approximating maximums.

PRrOOF. Inthe case of (1) wehave M = ®,and M = &,,. Thus (1) follows by (3)
above. Statement (3)is a straightforward consequence of the definition of consist-
ency. In order to complete the proof it remains to establish (2). For this first
suppose that h(s, 0) is n-consistent on I'. Then by (3) above we see that ' = M U
(©\ M) and the first part of (2) is complete. Conversely suppose that ' =« M u
(O\M)u(©,n 0,1 O;). Then "M cMuU(O,nO0,n0,) and therefore
CrAM\McO®,n0,n0 . Hence by (3) above we see that the proof of (2) will
be completed as soon as we have:
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@) (rA"M)\M)n(©0,n0,n0,) =0.
We shall establish this fact by showing that:
5) H(-,0) = 1) P-as.

forall ,n©;n O;. So let 0e @, N O, O be a given point, then obviously
H(-,6) = I(6) P-a.s. In order to prove the converse inequality we may proceed as
follows. Since 6 belongs to @,, then there exists r > 0 such that:

6) j sup h(s, &) n(ds) < co.
S

&eb(8,r)

Hence by (4) in lemma 2.2 we easily find by using the monotone convergence
theorem and the fact that 6 belongs to @, that we have:

0 n(6) = inf Eh(6) = inf ER(60) = 1(6)

nz1 nzk

being valid for all k = 1. Let us in addition choose ky = 1 large enough to satisfy
27% <r and let k>k, be given and fixed. Put B, = b(6,27% and
h*(s, By) = supecp, h(s, &) for all se S. Then by (6) and the fact that 6 € ©, we may
conclude:

8) —00 < J h*(s, By)n(ds) < + 0.
s
Let d = 1 be given and fixed, and let us define:
1 d
Y*(w) = sup (E Z (X 4+ G- 1)-a(®), 5))

&eBy i=1

for all we Q and all j = 1. Then by the projection theorem, see [6], each Y;* is
P-measurable for j = 1. Moreover by (2.3) and (2:4) in [19] we may easily
conclude that the sequence {Y;*|j = 1} is stationary and ergodic. By (1)in lemma
2.2 we have:

o, d

n

O  eBysZl ¥y T KB
nj=1

ond<j=n

forall we Qand all n = 1, where o, = [n/d] denotes the integer part of n/d. By (8)
we easily find that Yj*eI}(P), and therefore by Birkhoff’s pointwise ergodic
theorem we may conclude:

% Y Y* - EY* = ER}(By) P-as.
ji=1

(10)

[

asn — co. By the same argument and thefact that (g, - d)/n - 1asn — oo we have:
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(1) L Y h*X;,B) =

ond<jsn
li wd
n

as n — co. Now by (9), (10) and (11) we may deduce:

X;,By) >0 P-as.

(12 lim sup h*(-, B,) < Eh¥(B,) P-as.

n—ao

for all d = 1. Taking infimum over all d = 1 we get:

limsup h*(-, B;) £ inf Eh}¥(B,) P-as.

n— oo dz1

Letting k — oo and using the monotone convergence theorem we may conclude:

(13) H(-,0) < inf inf Eh}(B,) = inf inf Eh}(B))

k21d21 d21 k21

= inf ERy(6) = n(6) = 1(9) P-a.s.

dz1
Thus (5) is proved and the proof is complete.

REMARK 2. In exactly the same way as for (12) in the preceding proof we may
conclude:

1) H*(, B) £ inf Eh*(B) P-as.

nz1
whenever Be o/(0) with supg.s h(-, £) € ! (), Moreover if sups.g | h(-, &)| € L (n),
then by (3) in lemma 2.1, Fatou’s lemma, and (3) in lemma 2.2 we easily get:

2 sup I(0) < H*(B) = inf Eh}(B) = lim sup Eh}(B).
6eB nz1 n—wo

These facts and the method presented in the proof of theorem 1 may be used in an
attempt to obtain under additional hypotheses the results in the present case that
correspond to those established in proposition 3.1 and proposition 3.2 in [18]
with the origin in [16]. However they are irrelevant for our further purposes and
we shall resist of doing it here. We shall turn to the question when the first
inequality in (2) becomes an equality.

The main applicability of theorem 1 may be in essence presented as follows.
Suppose that under the hypotheses of the setting of section 2 we have a subset I of
O satisfying:
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W sup I(§) > —ooforallr >0andall 0el’

&eb(0,r)

8) I sup h(s, &)n(ds) < oo for all feI” with some ry > 0

S &eb(@.ry)

(9)  h(s,) is upper semicontinuous at @ for all se S outside some n-null set
Nye o, being valid for all e TI.

Then every accumulation point of any sequence of approximating (empirical or
asymptotic) maximums that belongs to I is a maximum point of I on @,. This
fact completes our main purpose. Conditions (7)-(9) are in most cases easily
verified.

A close look at the proof of theorem 1 enables one to verify that under (7)—(9)
we have I(0) = n(8) = H(6)for all e I', see (13) in this proof. Hence we easily find
that I(f) = I(0) for all 9e I, where I denotes the upper semicontinuous envelope
of I. In other words I is upper semicontinuous on I'. Thus in order to find some
new conditions implying consistency it is not very restrictive to assume that I is
upper semicontinuous on a candidate subset of @. Having this fact in mind we
shall now present another way toward consistency that relies upon the uniform
law of large numbers recently established in the stationary case in [19]. This
approach is already applied in the reversed submartingale case, see [18]. In the
present case we may proceed as follows. By (2.11) we know that the set of all
accumulation points of all possible sequences of approximating maximums
equals M = {#e @ | H(-,0) = B P-a.s.}. Moreover we have:

H(w, 0) = inf lim sup h*(w, b(6,r))
r>0 n—ow
for all we Q2 and all 6 e @. Hence we see that conditions implying:
lim sup h}¥(-, b(6,r,) = sup I() P-as.
n— o &eb(0,rm)

for some sequence {r,,|m = 1} satisfying r,, | 0 as m — co will have for a conse-
quence:

H©O) = 1(9)
where 0 e @ is a given point. Since the set:
M ={0€6,)|1(6) 2 B}

is closed and contains M, then we have M = M. Conversely if 8 € M, then there
exists a sequence {0,|n = 1} in O satisfying:
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d(0,,6)< 27" and 10,)2 2"

for all n = 1. Thus if 8, — 0 with I(8,) — B implies I(6) = f for every O e M, then
we have M = M = M. This will be for instance true if I has the closed graph
gr(l) = {(6,1(0))| 0 € Oy}, orif I is upper semicontinuous on M. It is instructive to
notice that I is always upper semicontinuous on M, as well as that forevery 0 e M
we actually have I(6) = B. The next result relies upon this idea and the uniform
law numbers in the stationary case [19]. It requires the following definitions. Let
T be a subset of @, then I'(T) denotes the family of all finite covers of T. Recall
that a finite cover of T is any family of non-empty subsets A4,,...,4, of
T satisfying Uj_, 4; = T. We shall in what follows say that a finite cover
y = {Ay,...,A,} of Tis analytic, if every A;is analyticin @ forj = 1,...,n. Note
that in this case T must be also analytic in @. The criterion function h(s, 6) will be
called eventually total bounded in n-mean on T, if the following condition is
satisfied:

(10) For each ¢ > 0 there exists an analytic cover y,e I'(T) such that:

inf J sup |hu(w,0) — h,(w,0")| P(dw) < ¢

n21JR2 6,0cA
for all Aey,.

Note that the present definition of eventual total boundedness in the mean
slightly differs from the one used in [ 19] since we require that the elements of y, in
(10) are analytic sets. This is done in order to avoid some technical difficulties that
may appear if the integrand in (10) is not measurable, see theorem 3.1, proposi-
tion 3.2 and remark 3.3 in [19]. Note that this can not happen under our present
hypothesis on y, in (10) since by the projection theorem, see [6], we may easily
conclude that the integrand in (10) is P-measurable. Another possibility to avoid
those difficulties is to assume that the map X = (X, X,,. . .)is Px-perfect as a map
from Qinto S, see [19]. This is for instance true for the canonical representation
of X, see section 1 in [19]. We shall leave the formulation and verification of the
next results under this hypothesis instead of the requirement that 7, in (10) is
analytic to the reader. Also we shall refer the reader to theorem 3.7, theorem 3.9
and theorem 3.10 in [19] for equivalent formulations of (10) and more informa-
tion in this direction. However let us emphasize here that condition (10) is-inall
decent cases equivalent to the uniform law of large numbers being valid on T, see
corollary 3.5 and corollary 3.8 in [19]. We turn to the next result itself.

THEOREM 3. Under the hypotheses of the setting of section 2 suppose that I’ is
a subset of © such that for each @€ I’ ~\ M there exists ro > 0 satisfying:
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1) j sup | h(s, &) | n(ds) < oo
S

Eeb(8,ry)
(2)  his eventually total bounded in n-mean on b(0, ry).

Then we have:

3) sup |h,(-,&) — I(¢)] = 0 P-a.s. and in L'(P) as n — oo, for all e I' n M

Zeb(8.r,)
@4 HO =10 forallcI n M
(5) I'mM={0el|I(6) = B).
If, in addition, the function I satisfies any of the following two equivalent conditions:
(6) I is upper semicontinuous on I' n M

(M) cl(gr)n (I M) x {B}) = gr(l), or equivalently if 6, — 6 and 1(6,) — B
with8e T’ N M, then I(6) = B

then h(s, 0) is n-consistent on I".

PROOF. Letfe ' n M be given and fixed and let r, > 0 be chosen insuch a way
that (1) and (2) are satisfied. The (3) follows straightforward by theorem 3.1,
proposition 3.2 and remark 3.3 in [19]. In particular we get:

(8) sup h,,(,&)—’ sup 1(6) P-as.
&eb(0,r) Eeb(0,r)

asn — oo for all 0 < r < r,. In other words we have:

) H*(b(6,7)) = sup I({)
Leb(d,r)

for all 0 < r < ry. Thus taking infimum over all 0 < r < r, we get (4). Statement
(5)is an easy consequence of (4). Moreover since 6 belongs to M, then there exists
a sequence {6,|n = 1} in @ such that d(6,,0) <2 "and I(#,) = f — 2" for all
n 2 1. Hence we see that 8, — 6 and 1(0,) — . Thus if (7) is satisfied, then we get
1(6) = B. In this way we may conclude that ' M = M and thus h(s, 6) is
n-consistent on I' by (3) above. Moreover it is easily verified that in the presence
of (4) statement (6) is equivalent to statement (7). These facts complete the proof.

The preceding result is in a way a straightforward consequence of the uniform
law of large numbers in the stationary case. However let us notice that in this way
we have obtained even more than it is needed. Namely we have established (8) in
the proof of theorem 3 by using the validity of (3) in the same theorem. Our next
aim is to show that applying the methods used in the proof of the uniform law of
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large numbers [ 5] and [19], a more direct approach to (8) could be done. For that
reason we shall relax the condition of eventual total boundeness in the mean as
follows. The criterion function h(s, 8) will be called eventually total bounded in
n-mean from above on a given subset T of O, if the following condition is satisfied:

(11) For each & > 0 there exist an analytic cover y, = {A,..., Ay} €I'(T)and
points 6, € Ay, ...,0,, € A, such that:

@) inf '[ sup (h,(w, 0) — h,(w,0,))* Pdw) < ¢
nz1J2 feAy
(ii sup(I(0) — I&)* <o
Gedj

forallj=1,...,m,

It is easily verified that (10) implies (11). Moreover it turns out that condition (1)
in theorem 3 may be slightly weakened to the form that already appeared in
theorem 1.

THEOREM 4. Under the hypotheses of the setting of section 2 suppose that I’ is
a subset of © such that for each 6 I' " M there exists ry > 0 satisfying:

(1) J sup h(s, &) n(ds) < oo
s

&eb(0,rg)

(2)  his eventually total bounded in n-mean from above on b(0,r,).

Then we have:

3) sup (h,(,&) — I(&)* -0 P-a.s. and in I}(P) asn — oo, for all eI " M
Zeb(0,ry)

4 H@O) =10 forall@eI' "M

(5) I'mM={0el|I(6) = B}.

If, in addition, the function I satisfies any of the following two equivalent conditions:
(6)  Iis upper semicontinuous on I' N M

(7 clgr(D) n (I n M) x {B}) = gr(l), or equivalently if 6, — 6 and 1(6,) — B
with eI’ ~ M, then I(6) = B

then h(s, 0) is n-consistent on I

PROOF. Letfe ' n M be given and fixed and let r, > 0 be choseninsuch a way
that (1) and (2) are satisfied.
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(3): Let usdenote B = b(, ry) and let ¢ > 0 be given. Then by (2) there exist an
analytic cover y, = {Ay,..., A, }€I'(B) and points 0, € Ay,...,0,, € A,, such
that:

8) inf f sup (h,(w,6) — h,(w,6;)* Pdw) < ¢
nz1JR2 feA;
9 sup(I(0;) — I(¢)" <&
SeAd;

forallj=1,...,m,. Moreover we have:

sup (hy(, &) — 1(§))" = max sup (h,(w, &) — I(9)*

eB 15jSme &ed;

£ max sup(h,(@, &) — h(0,0;)" + max (h,(w,6;) — 1(6;))*

1=jsm. Led; 1=5jsme

max sup(1(0)) — I(¢)*

1SjSm. ted;

for all w e Q. By Birkhoff’s pointwise ergodic theorem and (9) we easily get:

(10) lim sup sup (h,(w, &) — 1(§)" <

n— oo &eB

< max limsup sup (hy(w, &) — h(w,0;)" + ¢ P-as.
15jsm; n-o Ced;
Replacing h(s, &) by g(s, &) = h(s, &) — h(s,0;) for Ee A; withj = 1,...,m, we get
anew criterion function satisfying (1) with h replaced by g. Thus by (8) and (10) we
may easily conclude that the proof of (3) will be completed as soon as we show
that:

(11) lim sup sup (h,(-, &))" < inf f sup (h(w, &))" P(dw) P-a.s.
n— oo EeA n21J9R2 &A
for any analytic set 4 in @ satisfying:
(12) f sup h(s, &) n(ds) < oo.
S ged

Letd > 1 be given and fixed. Then by (7) in the proof of lemma 2.2 we may easily
conclude:

(13 swp@e)* <L % @+ T suplhix@) e

&eAd ond<jsn &ed
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being valid for all n = d and all w e Q with 6, = [n/d], and where:

Y¥(w) = sup(d Z h(Xi+ - 1ya(@), f))

&ed

forweQ, e Aandj = 1. In the same way as for (10) in the proof of theorem 1 we
find:

(14) —'1: ‘; Y*-EY} = L sup (ha(w, &))" P-ass.

Sed

as well as for (11) in the proof of theorem 1 by using (12) that we have:

(15) 1 Yy, sup(h(X; &)t -0 P-as.

ond<jsSn &eA

as n — oo. Thus letting n — oo in (13) and using (14) and (15) we get:

lim sup sup (h,(-, &))" < J sup (hy(, &))* P(dw) P-a.s.

n— oo EeAd 2 feA

being valid for all d = 1. Hence (11) follows straightforward by taking infimum
overalld = 1.
(4): Since we obviously have:

sup (hy(@,&) — I(§)* 2 sup hy(w, &) — sup 1(§)
Zeb(6,r) &eb(0,r) &eb(6,r)

forall weQ, alln = 1 and all 0 < r < ry, from (3) we may conclude:

limsup sup h,(w,&) < sup I(¢) P-a.s.

n—wo &eb(d,r) &eb(0,r)

for all 0 < r < ry. Letting r | 0 we get:
(16) H(-,0) £ I(0) P-as.

Moreover since § belongs to M, then H(:,8) > 8 P-a.s. However by definition of
I we may easily conclude that I(f) < B for all § € @. Thus (4) follows straightfor-
ward by (16). The rest of the proofiis exactly the same as the corresponding last of
the proof of theorem 3. These facts complete the proof.

4. Examples of application and concluding remarks.

There are many examples of statistical models covered by the preceding results.
We do not wish to review them all here, but will point out examples in [6] (p. 34,
62,70) and [7] (chapters 12 and 13 with exercises) which can be easily modified to
treat the stationary (ergodic) case under our consideration. Other important
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examples may be found in the references. In all of these examples we consider the
setting introduced in section 1 (the criterion function h(s, 6) is the log-likelihood
function) and apply results of theorem 1, theorem 3, and theorem 4 in section 3. In
particular we remind on conditions (7)-(9) in section 3 which are in most of the
cases easily verified. We may observe that condition (10) in section 3 (which is at
the basis of theorems 3 and 4) involves Blum-DeHardt’s condition (metric
entropy with bracketing) as a particular case (by removing the infimum and
putting n = 1), see [2] (p. 39-44). Blum-DeHardt’s condition is, so far, the best
known sufficient condition for the uniform law of large numbers. Condition (11)
in section 3 might be viewed as its (asymptotic) refinement towards consistency.
The task of verification of the underlying conditions in the examples stated above
is easy, and we shall leave the remaining details to the reader. Of course there are
examples which are not covered by these conditions, but they require individual
treatments and will be not considered here. Our main purpose was to unify as
many examples as possible, but under the common and simple conditions. We
clarify that the main novelty in the applications just described is the fact that we
only assume stationarity (and ergodicity) of the underlying sequence of obser-
vations. In this way we generalize and extend the previous results that rely upon
independence. We are unaware of a similar result and think that this extensions is
by itself of theoretical and practical interest.

In order to illustrate the facts just described, we present two typical (statistical)
examples which in essence motivated the theory exposed above and indicate its
application. It should be noted in the first example that the criterion function
h(s, 0) is not necessarily the log-likelihood function for the underlying statistical
model. This fact indicates a broader scope of application of our approach and
results, and this will be additionally explained in the last part of this section
(following the second example below).

ExampLE 1 (Consistency of medians in the stationary case). Let h(s,0) =
—|t(s) — 6| for (s,0)e R2, where te}(n). Thus S = @, = R, and we shall set
© = R(with the usual topology). Let {X;|j = 1} be a stationary ergodic sequence
of real valued random variables which are defined on (2, #, P) and have the
common distribution law n. Then I(6) = — E|t(X,) — 6|, and thus M = {#€R |0
is a median of t(X,)}:

6 M= P{t(X,) < 6} <} = P{t(X,) < 6}.

Since h,(w,0) = — 1>1_, |t(X;) — 0], we see that 0,(w) maximizes h,(w,") on @,

nlij=1

if and only if §,(w) is a sample median of t(X,(®)),. . ., t(X,(w)):
alcard {1 < j < n|t(X;(w) < O,()}) < 3 < Lcard {1 £ S n| (X)) < 0,(w)})

for w e Q2. In order to apply our results above, we shall verify the three conditions ,
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(7)-(9) following remark 2 in section 3 with I' = @ = R. First, since — oo < I(6)
for all f#eR, the condition (7) is evident. Second, since h(s,8) <0 for all
(s,0)e S x O, the condition (8) is obviously satisfied. Finally, since 8+ h(s, 0) is
continuous on @,, and moreover lim,,_, 4 ,, h(s, 8,) = h(s, + 0©0) = — o0 whenever
0, — + oo with se S, we see that the condition (9) is fulfilled as well. Thus by
theorem 1 in section 3 we may conclude that h is n-consistent (on @). In other
words, every accumulation point of any sequence of approximating maximums
{0,|n = 1} (for instance, of any one which satisfies:

hn(w’ 911(&))) _2.. sup hn(w9 0) - 8,,((1))
069

for some ¢,(w) — 0 with we Q) belongs to the set M. As a particular case we
obtain that every accumulation point of any sample median of the sequence
{(t(Xy),...,8X,))|n = 1} belongs to the set of all medians of t(X,). In particular, if
t(X,) has a unique median m(t(X,)), then:

6,(w) = m(t(X,)) for P-a.s. weQ

whenever {,|n 2 1} is a sequence of sample medians of {(¢(X y),.. ., t(X,))|n = 1}.
These facts are known to be valid if the sequence X,, X,,... is assumed to be
independent and identically distributed, see [6] p. 34-35, but they are not
accessible by those methods and results without assumption of independence.
Thus, the results above generalize this and extend to the stationary case, in
a rather straightforward way, by applying our main results in section 3 above.

ExaMpLE 2 (Consistency of the generalized inverse Gaussian distribution in the
case of stationary observations). The generalized inverse Gaussian distribution is
the distribution on S = ]0, co[ having density:

) £(s,6) = Sc(;,) exp(~ %(% + n/m))

for s€]0, o[ and 0 = (4, 3, ¥)€ O, where O, = @, U @, U @, with:
0, = {4V 1eR, x>0,y > 0}
0, ={4LLWIA>0,x=0,y >0}
O3 ={(Lx¥)IA<0,x>0,y =0}

and the map 0+ c(6) is defined by:
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A/2
©) (1, ¥) = 2(%) K/ 1), (. 9)e0,

2AX~AF(}~) B (;L’X"l’)EQZ
271X1F(_A) s ()“9)(1‘/’)6@3

where K is the modified Bessel function (of the third kind) with index A:

3) K,l(x)=J‘®t_’1”‘exp(——l—x(t+—1—>>dt
0 2 t

for AeR and x > 0. Special cases of (1) are the gamma distribution (A > 0, y = 0),
the distribution of a reciprocal gamma variate (A < 0,y = 0), the inverse Gaussian
distribution (1 = —3), and the distribution of a reciprocal inverse Gaussian variate
(A4 = $). Other important cases are A = 0 (the hyperbola distribution) and 4 = 1.
To the best of our knowledge the consistency of the generalized inverse Gaussian
distribution in the case of independent observations has been firstly recorded in
[6] (see p. 111-112). This has been obtained as a consequence of a general result
on the consistency of the exponential statistical models. The result and method
appear to be rather involved. Here we shall generalize this and extend to the case
of stationary observations, thus going beyond the scope of the result and method
in [6]. Moreover, the proof of consistency indicated below seems to be more
direct and transparent, even in the case of independent observations, thus serving
nicely as an application of the theory presented above.

Suppose we are given a stationary ergodic sequence {X;|j = 1} of random
variables defined on (2, #, P) with values in ]0, co[ and common distribution law
n which has the density of the form (1). Then the log-likelihood function is given
by:

h(s, 0) = (A — 1)log s —2—"s - % — log c(6)

forseSand 6 = (4, x, ¥) € ©,. In order to prove that h(s, 6) is n-consistent on @,
we shall verify the three conditions (7)-(9) following remark 2 in section 3. First,
note that evidently 6+ h(s, 6) is continuous on @, for s € S. Moreover, it is rather
straightforward by using definition (2) and expression (3) to check that 6+ h(s, 6)
is continuous on @, U @;. Thus (9) above is fulfilled with I' = @,. Second,
a similar elementary verification shows that (8) above is fulfilled with I' = @,.
Finally, condition (7) is evident (since by the essence of this condition one has
a freedom of taking the supremum over the whole ball around the points in
I' = @, to be examined). Thus, by the result of theorem 1 in section 3, we may
conclude that h(s, 0) is n-consistent on @,. In other words, every accumulation
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point of any sequence of approximating maximums {#,|n = 1} (for instance, of
any one which satisfies:

L Y. log f(Xj(), §,(w)) Z sup (l 2. log f(X;(w), 9)) — &)

n ;= 060 \ 1 j=1
for some ¢,(w) — 0 with w € Q) converges P-a.s. to the true parameter value (the
point 6, € @ for which © ~ f(-, 8,)). In this context (3) and (4) from section 1 are
to be recalled.

Thus, apart from the fact that we have extended the result of [6] to the
stationary case, where the method in [6] (relying upon independence) is not
directly applicable, we have obtained a more transparent proof of this result as
well. (In this context, and in general as well, it is instructive to observe that in
essence the only extra-condition, which distinguishes the stationary case from the
independent case, is the condition (7) above.)

In the remainder we explain the role of the preceding results in the area of
stochastic processes and applictions. Let us for this consider a sequence of
stochastic processes {{Z,(t)).r|n = 1} defined on the probability space (2, #, P)
and having the common time set T. Let £,(«) be a maximum point of Z,(w,")on T,
that is:

Q) Z,(@, t(®)) = sup Z,(, 1)

teT
for weQ and n = 1. Then the preceding result amounts to the study of the
asymptotic behavior of the maximum points f,(w) of Z (e, ) for n — co. We think
that this problem appears worthy of consideration. Under the hypotheses in this
paper we have:

(5) Z,(,t)—> L(t) P-a.s.

asn — co. We consider the set M < T of all maximum points of the degenerated
limiting process L on T, and ask when does f,(w) approach M for n — oo and
we Q. It may happen that the supremum in (4) is not attained, and thus we relax
condition (4) by requiring:

(6) Z,,(C(), En(w)) g (Sup Z,,((D, t) - 8,,(60)) AR
teT
for weQ and n = 1 with g,(w) > 0 as n —» co. From (5) and (6) we could get:
) lim inf Z,(w, t,(@)) = sup L(t) P-a.s.
n—oo teT

In this way a sequence of approximating maximums {f,,},,g 1 is obtained (recall
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(8)-(10) in section 2 and the sentence following it). In this paper we consider the
process:

® nZ,(w,t) = ‘Zl P(Xj(w), 1)
=

where {X;|j = 1} is a stationary ergodic sequence of random variables, and y(x, t)
is a real valued function. We recall that the case in [18] has been studied where
{Z,(t)}n> 1 is assumed to be a reversed submartingale for each fixed te T. In the
present case theorem 1, theorem 3, and theorem 4 in section 3 offer solutions for
the problem just described. In order to indicate possible applications of these
results, we give three examples which follow the same pattern and can easily be
modified to treat the new cases. The problem which motivates such consider-
ations is a problem of maximization (with arandom noise ), but of sums with a large
number of summands (corresponding to the large n below), so that the exact
computations fail. The results above indicate how to overcome such a difficulty
and find an approximative solution (which eventually reaches the exact one).
(The “good” rate of convergence, in the form of an asymptotic normality, is
conjured to hold in these and similar cases as well, but this will be not considered
here.) We are in general unaware of similar results. Throughout {X;|j = 1}
denotes a stationary ergodic sequence of random variables.

ExamMpLE3. Let X; ~ N(0, 1) befrom the standard Gaussian distribution with
density function f(x) = exp(——x2/2)/\/2—7r for xeR. Let C denote the unique
number from ]0, n/2[ that satisfies tan(C) = C 1, and let T be a compact set in
R containing C. If {,(w) maximizes the process:

nZ,(w,t) = (sint) Y. cos(tX;(w))
j=1
over te T (in the sense of (6) of (7) above), then , — C P-a.s. as n — oo. This fact
readily follows from.theorem 1 in section 3 by putting h(x, t) = (sin t)cos(tx) and
using that [©_ exp(—x?%/2)cos (tx)dx = /2nexp(—t?/2) for teR. It should be
noted that the given C is a unique maximum point of (sin t) exp (—t%/2) for t e R.

ExampLE 4. Let X; ~ Exp(1) be from the exponential distribution with den-
sity function f(x) = exp(—x)for xe R... Let T'be acompact setin R, containing
1. If £,(w) maximizes the process:

nZ,(w,t) =Y sin(tX;w))
i=1
over teT (in the sense of (6) or (7) above), then £, — 1 P-a.s. as n — co. This fact
readily follows from theorem 1 in section 3 by putting h(x, t) = sin (¢x) and using
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that (& exp(—x)sin(tx)dx = t/(1 + t*) for teR,. It should be noted that 1 is
a unique maximum point of t/(1 + t*) for teR.

ExAMPLE 5. Let X; ~ C(1,0) be from the Cauchy distribution with density
function f(x) = 1/n(1 + x?) for xeR. Let T be a compact set in R,. If f,(w)
maximizes the process:

nZ, (o, =Y Xjw)sin(tX;(w))
j=1
over t e T (in the sense of (6) or (7) above), then £, — min (T) P-a.s. as n — co. This
fact readily follows from theorem 1 in section 3 by putting h(x, t) = x sin (¢x) and
using that [§ xsin (tx)/(1 + x?)dx = (n/2)exp (—t) for te R.. It should be noted
that min (7)) is a unique maximum point of exp(—t¢) for te T.
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