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REMARKS ON THE EXISTENCE OF NONTRIVIAL
SOLUTIONS FOR A CLASS OF VOLTERRA EQUATIONS
WITH SMOOTH KERNELS

WOICIECH MYDLARCZYK

Abstract.

The paper is devoted to the study of the equation u = k * g(u) with a smooth k and a monotonuous g.
Some necessary and sufficient condition for the existence of nontrivial continuous solutions u of this
equation is given.

1. Introduction.

In this paper we study the following equation

(L.1) u(x) = f Kx — gu(s)ds (0 x),
0

where k = Ois locally integrable and g is continuous, nondecrasing with g(0) = 0.
We are interested in the problem of the existence of nontrivial nonnegative
continuous on [0, + o0) solutions to (1.1).

Our considerations concern a class of smooth ke C*® [0, c0) such that

k) =k0)=...=k"0)=...=0 forn=12,...

One of the typical examples of such k is the function k(x) = exp(—x"#), § > 0. In
this case it has been shown (see [1], Example 3.1) that under some additional
assumptions on g the equation (1.1) has a nontrivial solution u if and only if the
following condition is satisfied

s 1
— < 0
J‘o s At+p

B
s<—ln;(;)—)

We are going to give similar sufficient and necessary conditions for the existence
of nontrivial solutions for some k(x) = exp(—x?h(x)), B > 0. The presented
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results generalize those in [1] obtained by more restrictive assumptions on g.
. . x . . .
First of all we remove here the assumption that —(—; is nondecreasing, which has
g(x

been essential for the considerations in [1]. Recently similar problems, in the case
of other classes of smooth kernels k, were considered in [3], [5].

2. Statement the results.
Throughout this paper we assume

(2.1) g:[0, ) — [0, ) is a continuous nondecreasing function such that
g(0) = 0 and g(x)/x — 00, as x - 0 +;

(2.2)  h:(0,0) — [0, 0) is a continuous monotonuous function such that

h(%)/h(x)—»l,asx——»O-i—;

(23) —x"fh(x) (B > 0)is concave on (0,1).

Since the question of uniqueness or nonuniqueness of the trivial solution
depends only on the behaviour of k and g in a neighbourhood of zero, the
assumptions above could be reformulated to take this fact into account.

In this paper ¢,6 > 0 always denote sufficiently small constants. We permit
them to change their values from paragraph to paragraph.

Typical examples of considered kernels in this paper are the functions
Bx P lexp(—x~#), exp(—x #(—Inx)"), where —o0 <y < o0, f>0 and
0<x<d.

Set K(x) = j k(s)ds and denote by K ! its inverse. The main result of our
(4]

paper is stated, as follows

THEOREM 2.1. Let (2.1)~(2.3) be satisfied and k(x) = exp(—x ~Ph(x)) for x = 0.
Then the equation (1.1) has a unique continuous solution u such that u(x) > 0 for
x > 0 if and only if

2.4) F—I—(K")’ (—-s—>ds < .
' o 9(s) g(s)

The proof of this theorem is based on an application of the following facts
concerning the existence of nontrivial solutions of (1.1) (see [2], [4]).

THEOREM 2.2. Let Ink be concave on (0,6) and (2.1) be satisfied. Then the
condition (2.4) is necessary for the existence of a nontrivial continuous solution of

(1.1).
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THEOREM 2.3. Let k = 0 be locally integrable and let (2.1) be satisfied. If there
exists a continuous nonnegative function F % 0 on [0, 8) such that

Fix) < j kx — 9gFS)ds (0= x <),
1]

then the equation (1.1) has a unique continuous solution u such that u(x) > 0 for
0 < x < 8. Moreover, u is a nondecreasing function.

3. Auxiliary lemmas and notations.

For any continuous w: [0,d) — [0, c0) we define
T(w)(x) = j k(x — s)g(w(s)) ds, 0<x<$é
0

and denote y(x) = x " #h(x) for 0 < x.
For the reader convenience we recall some properties of considered kernels k in
the following lemma (see [1]).

LemMMA 3.1. Let (2.2), (2.3) be satisfied. Then

(i) for any a, a > 0 h(ax)/h(x) = 1 and x ~*h(x) — 0, as x = 0+;

(i1) x(x)is nonincreasing and absolutely continuous on (5,, 8) for every sufficient-
ly small 6,,6 > 0.

(iii)foranyn,s>0K( lx )_S_K"(x)§K< 1x ),O<x<6s.
ne + ¢ ng —¢

In the sequel, we will need some other facts collected in the following three
lemmas.

LEMMA 3.2, Let(2.2),(2.3) be satisfied. Then there exist constants c,,c, > 0such
that

xy(x) _
Ax) =

ProoF. First we note that in view of Lemma 3.1, (i) there exist ¢,, &, > 0 such

x
x<3> — x(x)
that ¢, éTé ¢, for xe(0,0). Then we apply the inequality
x

X X J
- Ex'(x) Sz (7) —xx) S - %x’ (—) a.e. obtained by mean value theorem

IA

Cy - Cy for XE(O, 6).

2
to derive the required assertion.

LEMMA 3.3. Let (2.2), (2.3) be satisfied. Then
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(i) there exist constants cy,c, > 0 such that

X exp(—x(x))  for xe(0,d);

—_exp(—x(x)) < K(x) < ¢

) 2()
o m

(i) there exists a constant ¢ > 0 such that z(K ')(z) £ czXK ™ Y)(z?) for
z€(0,0);
xx'(x)
xx)

Proor. To prove (i) we first notice that (—X—();—)exp(—x(x))) = -

< (1)>exp( x(x)) +——(}—)exp( %(x)). Since in view of Lemma 3.1, (i)

1
ﬁ — 0, as x —» 0+, our assertion follows from Lemma 3.2.
To consider (ii) and (iii) it is convenient to take z = K(y) and K?(y) = K(9). It

follows from Lemma 3.1, (iii) that —;)— —278,asy—>0+.

o ’WZ@ y
Now, to prove (ii), it suffices to note that ——; @ ;
K
To prove (iii), we first note that z(K " !)(z) = 7c—((yy_)) (K™Y (zY) = ((y))
Therefore, in view of just proved estimates in (i), it suffices to consider yxzy; B

using Lemma 3.1, (i) we obtain

lim 20 _ o438
y=0+ JA0)

)

which gives the required assertion.

LeEMMA 3.4. Let (2.1)2.3) be satisfied. Then
TS gy 5 )49 J"l ( )
Jo o " )(g(s)) 0 =Joao™ \90
for any x€(0, d).
ProOF. Let ¥(s) = K™* (&%) for s€(0,8). Then ¥ is locally of bounded

- - k- ~
variation on (0,8) and ¥(0) = 0. Moreover d¥(s) = 40 (K 1)( (s))ds



290 WOJCIECH MYDLARCZYK

—L(K")’ (L) dg(s) for s > 0. Since ¥(x) — Y(6,) = J d¥(s), we get our
g(s) g9(s)) 4(s)
assertion, when 6; —» 0+.

L

4. Proof of the main result.

Since In k is concave the necessity part of Theorem 2.1 follows from Theorem 2.2
immediately.

To prove the sufficiency part we construct some function F, so that Theorem
2.3 could be applied.

This construction we begin with the following observation. Let y(y) = /yg(»)
for y=0and ¢ =y ~!. Then we have

LEMMA 4.1. Let (2.1)H2.3) be satisfied. Then

(1) dx)<x for0<x<d;
(ii) if (2.4) is satisfied, then
| s
4.1 ~ty .
“b J o g &) (g(qb(s»)ds <@

Proor. The inequality (i) is an immediate consequence of the relation
x2 = g(¢(x))p(x) and the inequality x < g(x) valid for 0 < x < & obtained from
(2.1).

To prove (ii) we substitute s = (y) in the integral in (4. 1) and note that in view
of Lemma 3.3, (iii) it holds

42 ;(ly_)(K—l)l(l/;gD =¢ «lf(ly) g(yy) &= <$)
i:rv:e(o, ¢) and some ¢ > 0. Since 2dy/(y) = %(()%dy + Tll%dg(y) for y > 0, we
0y 2oLy (g—(yﬁ) W) =~ (K (;{y;) dy +

for y > 0. Finally, from (4.2) and (4.3) by using Lemma 3.4 we get

o™ )<< g ()
L a0 & T Gem)* <), 39 K ew)*
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where ¢ > 0 is a constant and 0 < x < §, which ends the proof.
Thus, we can define

P
o J aoo X N ) 0<y=e

We are going to find ¢ > 0 such that the inverse function F. to cF ! satisfies
Theorem 2.3. Since integrating by parts and then taking s = F,” (1) we get

Fe(x)
TF)(x) = L K(x — F (1) dg(x),

it remains to show only the following:

LEMMA 4.2. There exists a constant ¢ > 0 such that
y< J CK(ET0) -~ E M) for ye(0.9),
ProOF. Since ¢(y) < y, we have
j CKIoF ™) = P04 2 j :‘” K[e(F~ () — F~s))] dg(s) 2

K[e(F'(y) = F~H(¢())]g(¢())-

for y€(0, 8). From the concavity of K ™! it follows that the function z(K ~')(z) is
nondecreasing. Therefore, we obtain

-1 -1 = ’ 1 K~y
F7(y) = F7H(0) = Lm PO )( (¢(s»>

R Sy VO 2 Y ¢(y)>
Lm a0y & )<g(¢(y»> =X <g(¢(y»> K <g<¢(y» :

Noting that p (diy)) = / g(q:fg» and using Lemma 3.3, (ii) we get

F7l(y) — F7 () ;EK“<

)
g )’

. 1 .
where ¢ > 0is some constant and y € (0, §). Now it suffices to take ¢ = 7 to obtain

our assertion.
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