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ISOMORPHISM BETWEEN THE ASSOCIATIVE AND
NON-ASSOCIATIVE L,-SPACES OF TYPE II,
HYPERFINITE FACTORS

SH. A. AYUPOV, S. V. FERLEGER and F. A. SUKOCHEV*

Abstract.

We prove that for each pe[1, 0] the non-associative L,-space associated with any type II, hyper-
finite JW-factor is isomorphic to the non-commutative L,-space associated with the type II,
hyperfinite factor.

0. Introduction.

It is one of the interesting problems of the theory of non-commutative integra-
tion, and as well of non-associative integration, to study linear-topological
properties of different classes of Banach spaces, associated with von Neumann
and Jordan algebras. The L,-spaces associated with injective factors which are,
perhaps, the most important objects in the theory of these algebras, present
a special interest. The most well-known objects here are the L ,-spaces associated
with the type I, factor, which are nothing but the von Neumann-Schatten
p-classes C,, whose geometric structure has been studied very intensively during
the last thirty years. The structure of L,-spaces associated with non-atomic
(non-commutative) von Neumann algebras are less well-known. It appears that
the study of their isomorphic structure requires new techniques (see, for example
[SC], [FS 1-3], [Su].

Weakly closed Jordan algebras of self-adjoint operators, the (so-called)
JW-algebras, present a non-associative real counterpart to von Neumann alge-
bras (see for details [HS], [To1], [Ayu 1]). The corresponding non-associative
integration theory was developed in [Iol], [I02], [Ayu 1]. In particular, the
“non-associative” analogue of Yeadon’s description [Ye] of isometries between
two non-commutative L,-spaces, was established in [Ayu 2] and [AA] and it
follows that the only possibility for two non-associative L,-spaces (p # 2)
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to be isometrically isomorphic is to have Jordan isomorphic associated
JW-algebras. It follows, for example, that there exist two non-isometric
non-associative L,-spaces for type II, hyperfinite JW-factors (see details in Section
2 below).

In the present paper, we study the linear-topological structure of L,-spaces
associated with type I1; hyperfinite factors and show that, in this case, these two (a
priory different) classes of non-commutative and non-associative L,-spaces co-
incide as linear topological spaces. The main technical tool of the paper is a certain
total and minimal system (D-system or non-commutative Walsh system) in the
non-commutative L,-spaces which is a natural generalization of the classical
Walsh system in the usual function spaces L (0, 1). These systems were introduced
in [FS 1] as the eigenvectors of a representation of the dyadic group D and appear
to be useful in the study of geometry of L,-spaces associated with the type II,
hyperfinite factor R. For instance, taken in the so-called Walsh-Paley ordering, the
form (Schauder) bases in all L,(R) spaces for 1<p<oo [FS 1,2]
and this appears to be the first example of a basis in such spaces for p + 2.
Another application of these systems can be found in [FS 3], where it was proved
that the homotopic type of general linear groups of L,(R) is trivial for all
1 < p < . The non-commutative Walsh system used in the present text is
closely connected with the D-system from [FS 1], Corollary 8, however there is
some difference in the methods of their constructions. Namely, we prefer here to
define the non-commutative Walsh system via the corresponding non-com-
mutative Rademacher system (a set of its multiplicative generators) which forms
a spin system of R. We construct these systems and study their properties in
Section 1 and consider connections with non-associative L,-spaces of hyperfinite
Jordan factors of type II, in Section 2 below.

We use the terminology of the theory of von Neumann algebras and non-
commutative integration (respectively, JW-algebras and non-associative inte-
gratior) from [Sa], [Ta], [FK] (respectively from [Ayul]). The existence of
a linear-topological isomorphism between Banach spaces X and Y will be
denoted by X ~ Y.

1. Non-commutative Walsh system and auxiliaries.

Let M be the algebra of complex 2 x 2 matrices with normalized trace tr and the
identity 1);,and let R = @2, (M, tr) be the infinite tensor product (see [Sa]) with
the faithful normal finite trace = ®2, tr. It is well-known that R is the unique
hyperfinite type II, von Neumann factor. The finite dimensional von Neumann
factors @7, (M,tr) ® ®:2,,,(C-1,,tr), ne N, will be denoted by R,. The sym-
bol 1 henceforth means the identity of the algebra R.



ISOMORPHISM BETWEEN THE ASSOCIATIVE AND NON-ASSOCIATIVE L,-SPACES 273

Throughout the paper, let D be the dyadic group. i.e. the group [ |/~ , Z,. where
» = Z/2Z, and D denotes the dual group. Recall that each ;€ D can be identified
with an eventually zero sequence (;,), - 1. € Z; such that forevery t = (t,), -, €D
one has (1) =[]/~ 7u(t,). Put D} = f~eDl|y; =0 for every i > n} and A, =
‘neNjy, = 1].
Consider the system of generators of the complex Lie group SU(2), which are
known as Pauli matrices:

(10 _(01 (0 i
=0 1) 727 o) T\ o)

and define the “anticommutative Rademacher system™ in R as follows:
ro=Lr=0@®~ly r2=0,08®-,;1u,
(N and for n > 2

n 1

{®if1 0300, 0 ®/-nly
®:.10300,0 ®us1Im

P

The next lemma shows that the above system is really anticommutative and
forms a concrete spin system.

LEMMA 1. The system (r,),_, < R has the following properties:
() 1oty = —ruly if 0% m;and r} =1 for all n,meN;
(i) r¥ =r, forevery neN.

PROOF. (i) We can consider inly the case n > m that falls into two subcases:
a) misoddandn=m + 1;
b) n=2k+s,m=2+1,k>landstel,2]

In the case a) we have

Pyl = T+ Fym =

(®.:174103 ®I,@® mriy 1y)(®;2,0;00,® ®i’=¥ 1y) =

3

wialy) = — (®;2, 03®(0102) ® @fami21y) =

3

(®.2, 02 (0:01)® ®/-

i ly) (®;2, 0300, 0 ®/oupaly) =

3

—(®;2,0:®0,® ®/-

—Fyltmer = —Fyl'ys

and in the case b) we have
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Falm = (®F-1 0300, ®2442 1y) (®i=103®0,® @2 4, 1)) =
(®}-103® ®f1+10300,@ @242 1) (®1-103®0,0 ®2 42 1y) =
®:=1 a§®(0'30',)® ®‘i‘=1+2‘73 ®0,® ®Zyiz Iy =
—(®}-103®(0,03)® ®f-1+,03@0,@ @245 1y) =
- (®5=1 0300,® ®2,,, 1) (®% 1030 0,@ @242 1) = — Tl

This proves the first part of our claim. For the other part it is sufficient to note
that if n = 2k + s, where se {1, 2}, then

r=(®,0;00,@ @2 21n)’ = ®-10500 @O 1y =02, =1
Notice that we repeatedly used the properties 6,0, = —0;0;, 6} = 1, for all
i+ji,je{l,2,3}.
(i) Again for n = 2k + s, where se {1,2}, one has
= (®1-10:00,0 @2+, 1n)* =
®f-103®0F @@y s2ly=®F10300,® @213 1py =10
Now we have a Rademacher system in R and it is natural to define the Walsh

system in R, for which this Rademacher system is a system of multplicative
generators.

DEFINITION. The non-commutative Walsh system is an operator system {w,},.5
in R, such that

wo =1, wy=l—],,e,,7r,,, for 0 % yeD.

We collect simple but important properties of this system in the following
statement.

LEMMA 2. Let I(y,n) be the number of inversions in the sequence
nl)n29°' '>nk’m1 + %1 m2 + %,' -~,ml + %’

where A, = {n, <n, <...<m},and A, = {m; <m, <... <my}.
Then w,w, = (= 1)'0Pw,,
(i) T(wo) = 1, and t(w,) = 0 for each 0 % ye D;
(i) w, =w, ifand only if y = n;
(iv) the system {w,},cps_is the basis of the linear space R,;
(v) for every ye D, k = Card A,, one has w¥ = (— I)M%_ll w,;
(i) the system {w,},.p is a total and minimal system in every L,R),1 <p< 0.
PRrOOF. (i) First, observe that if Card 4, = Card 4, = 1, then our claim is

nothing but the statement (i) of Lemma 1. The general case can be easily deduced
from it — one should use the double induction: by Card 4, and by Card 4,,.
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(ii) The first part of the statement is trivial. Consider some 0 % ye D and let
A, = {n; <ny <...<m}. Recall that by Lemma 1 for every me N the operator
rm iS a unitary operator, therefore t(r¥w,r,) = ©1(r,w,r,) = ©(w,). Then, if kis an
even number we have

T(Wr) = r(rnlwyrnl) = T(_Wy) = _T(wy)’
because the number of inversions in the sequence ny, ny + 3,1, + %,...,m + 3is
0, and the number of inversions in the sequence n,,...,n,ny + 3 is k — 1.

Therefore the statement (i) of this lemma implies that r, w,r, = —w,. It follows
that t(w,) = 0 if k is even. Similarly, if k is odd then for some m > n, we obtain

T(Wy) = T(rmwyrm) = T(—W),) = —T(Wy),

i.e. 7(w,) = 0 in this case as well.
(iii) Let w, = w,. Then w,w, and by point (i) of this lemma it means that

(_ 1)I(v,y)wo = (__ 1)1(7"’)w},+,,.

Since the trace of the left side of the equality is non-zero, the trace of the right side
should be also non-zero. By point (ii) of this lemma it is possible if and only if
y + n = 0, therefore y = #.

(iv) Since the dimension of the linear space R, is 4" and Card {w,},p3, is also
4", it is sufficient to show that if ) ,.pt a,w, = 0 then a, = 0 for each element
yeD3,.

But

0= T«ZVGD;" a}'w)')wﬂ) = ‘C(ZysD;,. aywywr,) =
ZyeD;" T(ay( - l)I(y,n)Wy+") = ar,( - I)I(ﬂ’”)’

therefore a, = 0 for every ne D%,
(v) Let 4, = {n, <n, <...<mn}. By the statement (i) of the present lemma

we can write

wh=rkrk ot ==, =
O | G | e S Y A

(—)k- D= Drtdy = (— l)k_(&’_”l_’wy.

(vi) Itis easy to see that the set | )7 , R, is dense in the norm topology in every
space L,(R), 1 < p < oo. Now (iv) implies that the system {w,},ep is total in
the mentioned spaces. Suppose that {w,},.p is not minimal in some L,(R). Then
there exist neN, neD, and {a,},+, = C such that |w, — Y, +,a,w,llL &) < %
hence "W,,(W,, — Zy*"aywy)ul,p(x) =< 'i‘ or "1 - Zy:#obyw)."l,p(n) = % where b7 =
@y y(— @D+ for every y # 0. Consider the *-subalgebra Z = C1 of the
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factor R, and let EZ: L,(R)+— L,(R) be conditional expectation on the subalgebra
Z. Since the conditional expectation is a trace preserving operator and taking
into account the statement (ii) of this lemma we can conclude that Ew, = 0 for
every y % 0. Since EZ is a contractive projection we obtain

1= ”1”1,,,(11) = | E*(1 - zy¢o bywy)”Lp(R) s- Zy#obywy ”LP(R) <%
This contradiction implies that the system {w,},.5 is minimal.
Let A be a subset of D, and let x4 be the indicator of A. The bounded operator
T(A):L,(R)— L,(R),1 <p < o0, is called a projection along A if T(Aw, =
x4(7)w, for each y € D (note that in this case it is indeed a projection). By point (vi)

of Lemma 2 if such operator exists then it is determined uniquely. The following
properties of projections along sets are straightforward:

T(4))T(A) = T(A; N Az) = T(4,)T(4,),
0 T(D/A;) = 1d — T(4,),
T(4,0 A4;) = T(Ay) + T(4;) — T(4,) T(4,)
for every A;, A, = D.
In general, there are no reasons for the projection along an arbitrary set 4 to

exist. However, there are some important classes of subsets for which these
projections always exist.

LEMMA 3. Let G be a subgroup of D. Then the following projections exist and are
bounded in every space L,(R), 1 < p < co:

(i) the projection along G;

(ii) the projection along y + G for each ye D.

PROOF. (i) Let us consider the subsets
M, = {} e6npsa,W,la,eC}, neN,
of the factor R. By (i),(v) of Lemma 2, every M, is a *-subalgebra of R. Let T}:
L,(R) L,(R) be conditional expectation on M,. Fix some pe D. Since T,w,e

M,, we can put T,w, = ) ,cgnpsd,,W,. Properties of conditional expectations
imply that

T(w,w,) = t(w,Tow,) = T(vananD:apu o) =
T(ZpeGnD;apu(_ l)l(y’p)wy+p) = (_ l)l(y,y)aw.

for every ye G n D}. In particular, if u ¢ G n D* then w(w,w,) = 0,i.e. a,, = 0for
every y€G n Dy, so that T,w, = 0; and if ue G n D* then a,, =0foryspas
before and
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(- l)l(u.u) = T(Wuwu) =(— 1)’(“""(1,,,,,

ie a,, =1,sothat Tw,=w,.

Now consider the sequence { T} ,. Forevery x = Y, 5x,w,, where the sum is
finite, the sequence { T, x};°, is eventually equal to Y ,.5xe(y)x,w, therefore it is
a convergent sequence. By point (vi) of Lemma 2 the set of all above elements x is
dense in the space L,(R). So, taking into account that T, are contractive projec-
tive projections in L,(R) we obtain that there exists a strong limit, say 7, of the
operator sequence {T,},2; and, in addition, | T &)~L,& < 1. Now it is suffi-
cient to notice that T = T(G), because

TW}, = limn—*oo Tr‘lwy = limn—)ooXG('Y)wy = XG()’)WV'

(ii) It is a simple corollary from the preceding point. If ye G then T(y + G) =
T(G). In the other case consider the set I' = G U (y + G)e D which is evidently
a subgroup. Then the projection T(I') — T(G) is just T(y + G) by (2).

Given an increasing sequence (m);-; = N, consider the following group
homomorphisms ¢(n,): D+ D:

(p(nk)('))l”YZa' <o Vi ) = (0’ .. ’v1’09' .. 90:\‘))2’0,' . -09’)11(90’- . ')a

where y, is on the n,th place.
There are trivial but significant observation, namely

?3) Card 4, = Card Ay,),; 10 1) = (@(ne)y, @(m) ).
Next, let &(n,): ;2| R, (1 R,, where
¢("k)(zysu:, a,w,) = ZyeD’,‘. BWoiny:
By (3) we have
D(n)(xy) = )Y yeps XyWy " et VuWa) =
D) (Y yes 2 pent, Xy Vu (— DI "Hw, ) =
Y et D et Xy Vil — DI OP W =
ZveD: ZueD?. Xy u( - 1)1(¢(nk)7,w(nk)u) Wom(y+u) =
Y e} ouent X3V u Wty Wotmou =
Y 1eDs Xy Watny 2uuent VuWoumon =

(e )(x) D(mi)()s
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and putting J(y) = Card 4,, we obtain
P(m)(x*) = P(m)(Lyeny XyW,)*) = P eny X, WF) =

Y sens % @IWE = Yyeps %, P )(— 1 *F " w,) =

- S (pm)y) = 1)
Y yeps X(—1) R (n)w, =
Lo etn = 1)
ZyeD" xy( - l W¢(nk))‘ =

ZveD: X, = ZveDf. Xy Womgy =
ZyeD; iy(¢(nk)wy)* = (d)(nk)ZyeD" X wy)* (¢(nk)(x))

for every x = Y ,cpr x,w,€ 2 1 Ry, y = Y sepr yyw, €)% 1 R, Therefore &(n,)
isa well-defined *-homomorphism of R, into R, preserving the trace, so for every
er R, one has [[®(n)x|L & = [ xl|L,&» 1 £p < 0. Since the set UR,, is
norm-dense in the Banach space X = L,(R), this ®(n;) uniquely extends to an
isometry of whole L,(R). In the sequel we shall denote this isometry also by &(n,).
Similarly, we will use the symbol T(n,) having in mind the projection along the
subgroup A = ¢(n)D. It is straightforward that &(n,)X = T(n)X, X = L,(R).

We recall now, that the Pelczynski decomposition principle is the following
statement (see, for example [LT]):

Given a Banach space X, if X ~ [,(X),pe[1, ) and some Y is a complemented
subspace in X, and some Z is a complemented subspace in Y and besides Z ~ X, then
Y~ X.

Here

lp(X)= {(xn),?:xlanX, (6 g LX) = (Z ~1 I xall% )’ < 00}

The following lemma shows that the Pelczynski decomposition principle may
be applied to the Banach space X = L,(R) (see also [FS 3], Lemma 2.1).

LEMMA 4. For every pe[1, ) the spaces 1,(L,(R)) and L,(R) are isomorphic.

PROOF. Let {p,};> | be an arbitrary family of mutually orthogonal projections
from R, and let P:L,(R)+— L,(R) be the associated block projection operator
which was constructed in [CKS]. It follows from [CKS] that P is a bounded
projection and for every xe L,(R) we have Px = Y pixpy. It is clear that
Y = P(L,(R)) is a complemented subspace of L,(R). Since the von Neumann
algebras R and p,Rp, are *-isomorphic for every ke N (see [Ye]) there exists
a bijective isometry ji : L,(R)— L,(pyRp;). Consider the operator T L(L,(R)—
Y defined by T((x;)i% ) = Y &% 1 jiXx- Since
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||(xk)”f’p(L,,(M.r)) = 21?0:1 ||xk”i,,(M,t) = ”Z?ﬂkak L, .05

T is an isometric map. It is easily seen that the map

Y3y (i {pyp))i 1 € L(L,(R))

is the inverse of T. Therefore T isometrically maps the space [,(L,(R)) onto Y.
Now it is sufficient to use the Pelczynski decomposition principle for the space

[(Lyp(R))-

2. Non-associative L,-spaces associated with type II; hyperfinite Jordan factors.

The principal objective of this section is to show that for every pe[l, co] all
non-associative L,-spaces, associated with type II, hyperfinite JW-factors are
topologically isomorphic to L,(R). Complete classification of injective JW-fac-
tors was suggested in [Ayu 1]. In fact, there are only two non-isomorphic type II;
hyperfinite JW-factors. The first, say R;, is just the self-adjoint part of R. The
more complicated one, say R,, may be described as the set of all fixed points of Ry
under an involutive *-antiautomorphism (involution) of R with the induced
algebraic structure. Notice that in spite of R admits a lot of involutions, the
corresponding JW-factors R, are known to be Jordan isomorphic, because in the
injective factor R all involutions are conjugated (see [St], [Gil], [Gi2].

In order to choose a concrete involution a of R, let us consider the crossed
product (see [Ta, ch.V]) L*(D) ®, D where

(@) f)®) = f(t + v) for every ye D and f e L*(D),

and ¢ + yis the element (¢; + ;)2 , of D. By [Sa, 4.4.6] we have that L*(D) ®,, D is
a hyperfinite factor of type II; and there is a *-isomorphism ¥ : [*(D)®, D+ R
such that for each y = (y;,)2, €D

1 O Vi 0 1 Yi
(1) = ,f'il(O _1), (U,) = &(1 0>.

Here n(f(t)), and U, are standard generators of L*(D) ®,, D.

Let 8 be the canonical involution of [°(D) ®,, D (see [Ayu], Ch.2, 3, example 1).
Recall that if x is a finite sum Y n(f,)U,, f, € L (D), then by definition B(x) =
Y. U,n(f,). We put for every xeR:

a(x) = YY" Ix.
Clearly, « is an involution of R.

LEMMA 5. For every neN one has

LA ifn=12mod4,
) =1, ifn=03mod4.
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Proor. We shall consider only the case n = 0 mod 4, because the other cases
are quite similar. Let n = 4k, ke N. Then
=Q@*1'0;00,® @2 k41 I = ®E11(i010,)® 0,0 ®Z 41 Iy =

(@%7io) ® @2 4 1n) (®F%,02® 2 241 1n)s

and therefore

Yol =V @ 1io, @ @2 0 1) P H(®F 102 @2 pks1 In) =
iU,

wherey = (1,1,...,15,-4,0,0,...) (first 2k — 1 coordinates are 1, the rest are 0),
and u=(1,1,...,15,0,0,...) (first 2k coordinates equal to 1, others being 0).
It follows that

B(Y~'ry) = i Ba(y(1)U,) = i~ U,m(y(1)).
Finally,
ary) = PBY ', =i P (U,n(Q) =
PP H(®210:0 @221 1n) P TH®ET Mo, @ ®2 5 1y)) =
(®F%10:® ®2ss1 1n) (®FE7'io) © ®2 5 1y) =

®FE11(10201)®02® ®2 ps1 Iy = ®X T (—1010,)® 0, ® @2 ps 1 Iy =

(=D)* ' ®¥%1110102)®0, @ @411y = — T 030,08 B2 21y
= —r,

From now on, we set Ry = {xe R :a(x) = x}. We shall prove now the main
result of the paper.

THEOREM 1. For each pe[l,©] the spaces L,(R), L,(Ry) and L,(R;) are
isomorphic as real Banach spaces.

ProOF. First let p < oo. Below overlines denote the closure of a set in the
L,-norm topology. The main idea of the proofis to consider the following chain
of real Banach spaces

X=L[R>X,>2X,>X,>X,,

where

XO = {Z#Oa?wvlayec}’ Xl = {ZV#O ayW,|a7€R},
X, = {Zveh a,w,la,eR}, X;= {ZveAg a,w,la,eR},
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A, ={yeD|Card 4,=0,1mod 4}, A; = {y€A4,|ifne 4, thenn = 1,2,mod 4},

and repeated application of the decomposition principle to show that all these
spaces are isomorphic. On the other hand, it turns out that

X3 < Ly(Ro) = Ly(Ry) = L,(R);

using the decomposition principle once more, we will obtain our claim.
Foreach x =) ,.px,w,e| 2, R, put 6(x) = Y .5 x,w¥*. Since

00xy) = 00Xy Xy Wy " Yed VuWa) = O sed Jued X, Vil — 10w, 1)) =
Yoved 2ed Xy Yu( = D TPWEL = 05D e X, YW, W) =
D reh Doueh Xy YuWEWE = Y uch YuWE Y et X, W = 0(3)0(x),
0(x*) = 0((X e X,,)*) = O0),ep X, wF) =
Yoeb XoWy = (Xrep X, WH* = 00 1eh X, W,)* = 0(x)*,
and
2(009) = TO(Te5 %, 9,)) = 7(Tpe X, WH) = Xo = 2(Tpe X, W) = (),

0 is a trace preserving *-antiautomorphism of every algebra R,. Therefore

100,y = Il for every x e (U1 Ry, 50 0 can be uniquely extended to an

isometry of whale X = U:’: .\ R,. Define the map Px = 3(x + 6(x)*). It is

straightforward that P is a contractive projection and for each x = ) ,.5x,w, €
:0 =1 Rn:

Px = %(X + O(X)*) = %(Zyeﬁ XyW, + (Zyeﬁ XYW;E)*) = Zyeﬁ Re (xy)wy'

Now let us prove that the spaces X, i = 6:3, are complemented in X. By
definitions

X, = T(D/{0)X, X, =PT(DH/{0})X
= T(4,)PT(D/{0})X, X, = T(B)T(4,)PT(H/{0})X.

where B = {yeD|ifne A, thenn = 1,2mod 4} so that A; = B A,. Each of the
above operators is a projection (this follows from (2) and the simple fact that
P commutes with any projection along a set). Next, T(D/{0}) = Id — T({0}) and
since T({0}) is a bounded projection along the trivial subgroup {0}, by Lemma
3 the operator T(D/{0}) is also bounded. For every xe PX let Nx = 1x + x"‘)
Taking into account the assertion (v) of Lemma 2 one has for every yeD,
Card 4, =k:

Nw, = 3w, + w}) = 3(w, + (—l)k 2 w,) = xa4,(0w, = T(A;)w, e PX
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and we conclude that N is a contractive projection in PX. Moreover T(A,)|px =
N, i.e. the projection T(A4,)P is bounded. Finally, notice that B is a subgroup of
D so by Lemma 3 the projection T(B) is bounded. Bringing these facts together
we obtain that the spaces X;, i = 0, 3, are complemented in X.

Fix some 0 + ye@(2k — 1)D, let Z = {aw,|aeC} so that dimZ = 1, and
consider the space

Y = T({y} U 0(2k)D) Xy = P2K) X0 @ Z < X,.

The projection T({y} U @(2k)D) = T({y}) + T(2k) is bounded by Lemma 3,
hence Y is complemented in X,,. In addition, since @(2k) is an isometry, we have

Y=02k) X0 Z =~ Xo0 T{0}X = X,

and by the decomposition principle
4 Xo~ X.
We have Xy = PXoo(Id — P)X, =X, @iX, ~ X, ® X,.
Put Y = T(p(2k — 1)D U ¢(2k)D)X;.
By definition, Y is complemented in X;. On the other hand

Y=TQRkX, @ T2k - )X, = d2k)X; @ 2k — DX, ~ X, & X; ~ X,.
Using the decomposition principle we obtain that
®) Xo ® X;.

The case of X, is slightly more complicated. Evidently
(6) X1 = T(4)X, © T(D/A) X, = X, 0 Z,

where Z = T(D/A,)X,. Let 4: X X be the map Ax = r,r,x. Itis clear that 4 s
an isometry. Consider the spaces

Yi = 02k — 1)X,,Y, = dRk)AP(k + 2)Z.
If we put 6: DD, 6(y) = (1,1,0,0,...) + y and
L = ¢(2k)od° ok + 2)(D/4;) =
{(0,1,0,1,0,74,0,7,,0,...): Card {i|y; = 1} = 2,3mod 4},
then we can write that
Y, = ®Qk)Ad(k + ) T(D/A2)X, = ®RK) AT(p(k + 2)(D/A,) X, =
P2K) TS > @k + 2(D/A,) X, = T(p(2k) > @k + 2)(D/A,)X; = T(L)X,.
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Of course the last equality is possible only if the projection along L exists. But
L=A,n(u+ oQ(k + 2)D), where u = (0,1,0,1,0,0,0,...) hence by Lemma
3 (ii) and (2) T(L) is bounded. Now consider the space

Y = T(e(2k — 1)D U L)X,
which is obviously complemented in X,. On the other hand, since
¢(2k — 1)D n L = 2k — 1)D n (2k)D = {0},
we have
Y = T(p2k — 1)D U L)X, = (T(2k — 1) + T(L) — T({0})) X,.

Since T({0}) X, = T({0}) X, = T({0}) T(D/{0})X = {0}, and using the equal-
ity T(L)X, = T(L)X,, we obtain from (6) that

YxTCk-1)X, e T(L)X; =Y, 0Y, =
D2k — )X, @ PRk APk + 2)Z ~x X, 0 Z = X;.
The decomposition principle implies that
)] X, = X,.

The case of X5 now is quite clear. By definition, X3 = &(n;) X, where ny,-; =
4k — 3, ny, = 4k — 2 for every k €N, so that

®) X; %~ X,

The following equalities show that, in fact, the isomorphism L,(R;) & L,(R) is
obvious in view of (4) and (5):

Ly(R)) &~ T{O})Ly(Ry) ® T(D/{0}) L,(R,) ~
T({0}) L,(R,) ® PT(D/{0}) L,(R;) @ (Id — P) T(D/{0}) L,(R,) =
T{O})L,(Ry) & {x|x e X,,x* = x} ® {ix|xe X;,x* = —x} =
THON)L,(Ry) @ {x|xe Xy, x* = x} @ {x|xe X|,x* = —x} =
T{0})L,(R)e NX;@(Id — N)X; = T{OHL,(R)® X, ~
T({0})L,(Ry) ® Xo ~ Ly(R).

Now consider the map S:R— R, Sx = 3(x + a(x)). Since « is involutive we
have that §2 = S, i.e. S is a projection. Moreover, « is a trace-preserving *-anti-
automorphism and thus for every x € R one has [|o(x)| . (r) and S is contractive. It
follows that S uniquely extends to a contractive projective projection in L,(R)
and since SR, = R, we obtain SL,(R;) = L,(R,). Therefore L,(R,) is comple-
mented in L,(R;).
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Finally, let us prove that X3 = L,(R,). Recall that by definition of X3 and
L,(R,) it is sufficient to prove that if w,e X; then w, € R,. Since k = Card 4, =
0,1 mod 4 we have

k(k-1)
9) wk = -1 7 w,=w,
hence w, € R,. By definition, every w, € X; has the form

W, =TpTs,...Th,k=0,1mod4, n = 1,2mod4,i =1,k

Then by Lemma 5 and by (9) we see that

a(W,) = 0Ty, Ty V) =TTy yoe Tny = Wy =W,

Therefore if w, € X5 then w, € Rg, i.e. X3 = L,(Ro).

Now we are in a position to finish the proof. Since L,(R,) is complemented in
L,(R,) = L,(R) and X, is complemented in L,(R) (consequently, in L,(R,)) and
by (4),(5),(7),(8) X3 ~ L,(R), so using the Pelczynski decomposition principle we
can conclude that L,(R,) = L,(R).

Since L, (R;) = R; = L{(R))*, i = 0,1 (see [Ayul], Ch.4, Proposition 2.3), the
case p = oo obviously follows by duality.
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