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A NEW PROOF OF THE FUNDAMENTAL LEMMA
OF INTERPOLATION THEORY

S. KAIJSER

Introduction.

One of the basic results in the real method of interpolation is the equivalence of
the J-method and the K-method. The crucial step in the proof of this is the so
called fundamental lemma. This is usually proved by using the discrete versions
of the real methods. In this note we give a direct proof of the fundamental lemma
using only the continuous methods. Our method also gives an improved estimate
for the constant.

Results.

1. We shall in the following use the notations of [BL]. We shall prove the
following

THEOREM. Let X be a Banach couple and let ¢ > 0 and x € E(X) be given, such
that min(1,1/t)K(t,x) >0 when t—0,00. There exists then a measurable

A(X)-valued function u(t),0 < t < o0, such that for all t, J(t, u(t)) < -e—(l + ¢g)K(t, x)
and furthermore

© d
) j w2 = x

o t

In order to prove the theorem we shall need some notations.

Given x and X as in the theorem a pair k = x(f) = (ao(t), a,(¢)) of (measurable)
functions will be called a K-decomposition of x if for all t, 0 < t < o0, ao(t) € Xo,
a,(t)e X, and aq(t) + a,(t) = x. Given k we define

kit, x, k) = llaog@llo + t las@)ll;.
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We shall then say that k is C-bounded if supg <, < , k(t, x,)/K(t,x) < C and we
shall say that k is bounded if it is C-bounded for some C.
To prove out theorem we shall need two lemmas starting with

LEMMA 1. Let x and X be as in the theorem and let x be a bounded
K-decomposition of x. Let further u(t) = H(ao(et) — ao(t/e)). Then

Rt re dt Re dt
J ut)— = x — %(j ag(t)— + f al(t)—>.
r t rle 4 R/e t

PrOOF. Since ag(et) — ag(t/e) = ay(t/e) — a,(et) we have

Jq‘ u(t)%

1 R
([ wten = aotren 2 + [ @i - aten )

er e eR
%(_ f 2 + f (@) + as) & f al(t)%)
rle 1/e Rie

er dl eR dt
=x—% ao(t)_'l' al(t)_ =x—1,—IR.
rle t R/e t

While our first lemma was used to find a function having the correct integral
the purpose of our seond will be to show that if we start from a good
K-decomposition, then we get a good estimate for J(¢, u(t)).

LeMMA 2. Let x, X and ¢ be as in the theorem and let x be a (1 + ¢)-bounded
K-decomposition of x. Let further u(t) = 4(ao(et) — aol(t/e)) be as in lemma 1. Then

Tt ue) < (1 + 26) 2 K (5 %)
Proor. For the proof we shall use the fact that if we have x = x¢ + x;, where

x, € Xy then for all ¢, ||xolo + t |1 x1]l1 = K(t, x). We shall use the following linear
inequalities.

(M lao(t/e)llo + t/e llas(t/e)l = (1 + e)K(t/e, x)
@ lao(et)llo + et las(et)ll, = (1 + e)K(et, x)
©) lao(t/e)llo + tllas(t/e)lly 2 K(t, x)

Q) laoen)llo + t llas(er)lls = K(z, x)

We shall also need the following standard (and obvious) monotonicity and
concavity properties of the K-function.

(5) eK(t/e,x) + K(et,x) < (e + 1)K(t,x)
(6 K(t/e,x) < K(t,x)
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7 K(et, x) < eK(t, x)

Combining these inequalities we get from the expression e[1] + (e — 1)[2] —
[31 + (1 + ¢)[5] + (1 + ¢)[7] the inequality

) (e — Dllao(t/e)llo + lao(et)o + et llas(e)l|1)

<(e— l)e<l redt ﬁ)K(t,x)

and from e(e — 1)[1] +[2] —[4] + (1 + &)[5] + (1 + e)e(e — 2)[6] the in-
equality

© (e — (e llao(t/e)llo + t llas(t/e)ll 1 + tllas(er)] 1)

€

<(e— 1)6(1 + &+ m) K{(t, x).

Together [8] and [9] imply that J(z, u(t)) < % (1 e+ ;@—-‘g;-ﬁ) K(t, x)and this
proves the lemma.

To complete the proof of the theorem we finally observe that
Illo = (1 + e)K(er, x) and that similarly ||Ig]|; < (1 + &)(e/R)K(R/e, x), so that
(by the assumption on x) the integral (*) is convergent.

Lower bounds.

It seems that the best known lower bound for the fundamental lemma is 3. The
simplest instance of this is the case of a 1-dimensional Banach couple.

PROPOSITION 1. Let X be a 1-dimensional Banach couple and let x € Z(X), with
Ixllo = a, Ix|ly = b. Then
© dt
0 t

where J(t, u(t), X) = 1K(t, x, X).

ProoF. We define u(t) = (3K(t, x, X)/J(t, x, X)) - x. It is then clear that J(t, u(t))
is what it should so it remains to compute the integral. Towards this we observe
that J(¢, x) = max(a, bt) (for some a > 0,b > 0) while K(t, x) = min(a, bt). There-
fore u(t) = 3 min ((bt/a), (a/bt))- x, so that

® dt x (b (" a [®dt
t)— = —| — —_— —_— =1 =
L u(t) ; 2(aL dt + bLb t,) IxX(1+1)=x

and this proves the proposition.
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It should be observed that since X is 1-dimensional, there is no other freedom
in the choice of u(t) than how large it should be. It is therefore obvious from the
construction that 3 is the best possible constant for this example.

We shall in the following say that “FL (the Fundamental Lemma) holds with
constant C” for an element x € X(X) if there exists (for every & > 0) a representa-
tion

*) x=fwwﬂ5

0 t

with J(t, u(t)) < (C + ¢)K(t, x). We shall likewise say that FL holds with constant
C in the couple X = (X,, X,) if it holds for all xe X(X).

We shall conclude by giving a condition (satisfied by a large class of Banach
couples, including in particular the classical case of (L!, L*)) that guarantees that
FL holds with constant 3. Towards this we shall need the following

DEFINITION 1. (i) An element ae A(X) is called

a) a K-atom if K(t,a) = min (a, bt) (for some a > 0, b > 0).

b) an e-approximative K-atom if (1 — g)min (a, bt) < K(t,a) < min(a, bt) (for
all t and some a > 0, b > 0).

(ii) A Banach couple X is called approximately atomic if for every ¢ > 0 and
every x € 2(X) there exists a decomposition x = 2 | a, in such a way that each
u, is an g-approximative K-atom and such that furthermore K(t,x, X) <
(1 + &> K(t, w).

In terms of definition 1, we have now

ProposITION 2. If X is approximately atomic, then FL holds in X with constant
1
Proor. We first observe that if a is an e-approximative K-atom then

%J(memmw=u—m

0

(with 0 < y < ¢), so that FL holds with constant (1 — ¢)~!/2 for a. Let now ¢ > 0
and xeX(X) be given. We write x = ) a, where all g, are e-approximative
K-atoms. Defining now u(t) = Z u,(¢) it follows immediately that FL holds with
constant § + ¢ for x and since ¢ and x are arbitrary FL holds with constant 4 for

X.

REMARK. It is worth observing that in order to prove that FL holds with
constant C in a couple X it suffices to prove that it holds on a dense subspace.
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