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ON BASES FOR ¢-FINITE GROUPS

Y. O. HAMIDOUNE and 0. J. RODSETH

Abstract.

Let A be a subset of a g-finite group G, such that A contains the identity element. Let d and  denote
the lower density of A and the upper asymptotic density of A, respectively. Let K be the subgroup
generated by A. We show that 4 is a o-basis for K of exact order at most max {2,2/d — 1},and that A is
a basis for K of exact order at most max {2,2/6 — 1}. Also some sharper results are obtained under
more restrictive conditions.

1. Introduction.

Let G be a multiplicative group with identity element 1. Let A and B be nonempty
subsets of G. We denote the cardinality of 4 by | 4|, and the subgroup generated
by A is denoted by <A). The product 4B is the set of all element of the form ab,
where ae A and b e B. The product of more than two sets is defined similarly. In
particular, for a positive integer r, we write A" for the set of all products of
r elements of 4. For a positive integer h the set A is a basis of order h for G, if
A" = G. The least h possessing this property is the exact order of A.

Let G, < G, < ... be an increasing sequence of finite subgroups of G. Then
G is o-finite with respect to the sequence {G;} if G = | )2, G,. Clearly, if G is
o-finite, then G is a countable torsion group.

We further put 4; = A n G;fori = 1,2,... Suppose that there is an k (indepen-
dent of i) such that A; is a basis of order hfor G;fori = 1,2,... Then A is a o-basis
of order hfor G with respect to the sequence {G;}. Again, the least h possessing this
property is the exact order of A. Clearly, every g-basis for G of order h is a basis for
G of order h. The converse is not true; see Exercise 4 in Nathanson [12, Section
4.6].

For G o-finite with respect to the sequence {G;}, we define the lower density
d(A) of the set A with respect to {G;} by

o |4l
d(A) = inf —,
“) i1 IGil
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and the upper asymptotic density 6(A) of the set A with respect to {G,} by

. |4l
) =lmseig

The additive group of polynomials over the finite field F, is o-finite with respect
to {G;}, if G; is the additive group of polynomials over F, of degree less than i.
Denoting the set of all sums of two irreducible polynomials in F,[x] by 2P, it was
shown by Cherly [1] that 2P generates F,[x] and d(2P) > 0. Motivated by these
facts, Cherly [2] and later Cherly and Deshouillers [3] considered the case of
a generating subset A of F [x] satisfying d(4) > 0. In [3] it was shown that such
an A is a basis for F,[x] of exact order at most 4/d(A).

The result of Cherly and Deshouillers was strengthened by Jia and Nathanson
[6], who showed that if 4 is a subset of a o-finite abelian group G such that 1€ 4
and 6(A4) > 0, then A is a basis for K = (A4) of exact order at most 4/5(A).

In this paper we improve the bound of Jia and Nathanson to
max {2,2/8(A4) — 1} without assuming G to be abelian. We also show that A is
ag-basis for K of exact order at most max {2, 2/d(A) — 1} with respect to a certain
increasing sequence of finite subgroups of K. Both these results are deduced from
the result that if K is finite, then A is a basis for K of exact order at most
max {2,2|K|/|A| — 1}, and this result is in turn deduced from a theorem of Olson
[13]. In Section 4 some sharper results are obtained under more restrictive
conditions.

2. Preliminaries.

Let A, B be finite nonempty subsets of G. We write B~ ! for the set of elements b~ !,
be B, and xB for {x}B,xe G. Also, put |[AB| = |A| + |B| — k.

It is known that every element c € AB has at least k representations as a product
¢ = ab with ae A, be B. This result goes back to L. Moser and P. Scherk in the
case of abelian G, and was proved for nonabelian groups by J. H. B. Kemperman
and (independently) D. F. Wehn. A proof can be found in Kemperman’s paper
[7]. Based on this result Olson [13] gave a simple proof of the theorem below.
Olson [14] later gave a more general result, but the result cited below is all we
shall need in this paper.

OLSON’Ss THEOREM. If 1€ A and r is a positive integer, then A" = (A) or

iz o~ [ 4]
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We shall on some occasions need the following fact:
1) G = AB or |G| Z |A4] + |B].

This is easy to see. For if xe G\ AB, then AnxB~! =@. Hence |G| =
|Al + |xB~1| = |A| + |B|.

Olson’s theorem now gives us Lemma 1 below; cf. Theorem 7.2 in Hamidoune
[5] and the proposition in Rédseth [15].

LEMMA 1. Let G be a finite group, and let A be a subset of G. Subset that 1€ A
and that A generates G. Then A is a basis for G of exact order at most

max {2,2% — 1}.
PROOF. Suppose that 4 hasexactorderh = 3. Then G + AA" 2 sothat by (1),
IG1 2 [4] + 14",
By Olson’s theorem,

A
A2 2 141+ (- 3 2L,
and Lemma 1 follows.

3. Bases for o-finite groups.

Let G be o-finite with respect to the sequence {G;}. Let 4 be subset of G, and put
K = (4).

As in Section 1, we put 4;, = AN G;,i=1,2,... Then 4; € A, < --- Putting
K; = (A4;>, we have that K, < K, <.... is an increasing sequence of subgroups
of K. Each K is finite since K; S G;, and it is easily seen that 4;, = AN K,
i=1,2,... We also have

s

@ K=K,

1

so that K is o-finite with respect to the sequence {K;}.

To see that (2) holds, it is sufficient to show that K is contained in the right hand
side. First, suppose that ae A. Then a€ G, so that there is an i such that aeG,.
Hence aec A n G; = A;. Now let ke K. Since K = {4), we then have

ol ot1
k=aj"-a;’,a;€A;

Putting j = max, <;<mji;, Wwe have a; e Ajfori = 1,...,m. Hence ke {4;) = K},
which completes the proof of (2).
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We also put

|4l
3 =
3 Ok(A) = '".‘1 Sfp K

Since |G;| = |K;| for all i, we then have
“ Ok(A) 2 6(A).

THEOREM 1. Let G be a group which is o-finite with respect to the sequence of
subgroups {G;}. Let A be a subset of G such that 1 € A and d(A) > 0, where d(A) is
the lower density of A with respect to {G;}. Then K = {A) is a-finite, and A is

2
a g-basis for K of exact order at most max {2, m - l}.
Proor. Since 1€ A; and A; generates the finite group K;, Lemma 1 gives us

that A, is a basis for K; of exact order at most max {2,2(K;|/|4;| — 1}. Hence A4 is
a g-basis for K of exact order at most

Kl } { Gl } { 2 }
max<2,2sup——-— 1 < max42,2su — 1 =max<2,——— 1,
{ VY ey 14 d(A)
which completes the proof of Theorem 1.

THEOREM 2. Let G be a group which is o-finite with respect to the sequence of
subgroups {G;}. Let A be a subset of G such that 1€ A and 6(A) > 0, where 5(A) is
the upper asymptotic density of A with respect to {G;}. Then A is a basis for

2
K = (A) of exact order at most max{ 6(A) -1 }

Proor. By (4) and the condition 8(4) > 0, we have dx(4) > 0. Given an
arbitrary ¢ in the interval 0 < ¢ < 8x(A4). Let ke K = {A4). Then there exists an
i such that ke K; and

14l

K, = ord) —e

By Lemma 1, there exists a positive integer h such that ke Al and

Kl }
h £ max 22——-1
{ (A

so that

2
(5) h < max {2, m - l}.
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We thus have that for an arbitrary ¢ in the interval 0 < ¢ < §x(A), there is an
h satisfying (5) such that 4" = K. Hence,

2 2
h < max {z,m — 1} < max{Z,B—(A—) — 1},

where we also used (4).

ExAMPLE 1. For aninteger n = 3,let G be the additive group Z,[ X], and let G;
be the subgroup consisting of all polynomials of degree strictly less than i. Let
A be the set of polynomials with constant term O or 1. Then A is a basis for G of
exact order n — 1. We also have d(4) = §(4) = 2/n, and we see that both The-
orem 1 and Theorem 2 are “sharp”.

4. Further results.

It is possible to improve upon the bound given in Lemma 1 by imposing
additional restrictions upon the set 4. Improvements of the bound in Lemma
1 give similar improvements of the bounds in Theorem 1 and Theorem 2.

Here we shall improve upon Theorem 2 in the two cases A N A™! = {1} and
A= A"' For the sake of simplicity we shall deduce our results from
a well-known theorem of Kneser [9], [10], [11]. Kneser’s theorem holds, how-
ever, only for an abelian G. In this section we therefore assume G to be abelian.
For the nonabelian case we refer the reader to the paper [5].

KNESER’S THEOREM. Let A, B be nonempty finite subsets of an abelian group G.
Let H be the largest subgroup of G satisfying ABH = AB. Then

|AB| =z |AH| + |BH| — |H|.

A nice proof of Kneser’s theorem can be found in [8]. That proof is also
presented in both [12] and [16].

LeEMMA 2. For a positive integer r, let H be the largest subgroup of G satisfying
A"H = A". Then
|A"| 2 rlAH| — (r — 1)|H].
Proor. Putting H = H,, notice that H; < H, < --- Now, use Kneser’s the-

orem and induction or r to prove that |A"| = r|A| — (r — 1)|H,|. Then apply this
result with A4 replaced by AH,.

Now, suppose that 1 € 4 and that 4 generates G. Let h be the exact order of A.
Also, assume that h > 3. Let H be the largest subgroup of G satisfying
A" 2H = A"~ 2, Then (AH)A"~? 4 G, and (1) gives
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|Gl 2 |AH| +|4"7?|.
By Lemma 2, we get
(6) |G| 2 (h — 1)|AH|— (h — 3)|H| for h 2 3.

We have that AH is a disjoint union of s 2 1 H-cosets. Since 1 € A4, one of these
cosets is H itself. If s = 1, then A < H, so that G = {(4) < H. This implies
A""2 = G, a contradiction. Hence s = 2.

By (6), we also have

(7 IGl 2 ((h — 1)s — (h — 3)|H]|.
Further we have |A| < |4AH| = s|H|, so that by (7),
h—
® 61z (h-1- 22
Since s 2 2, this inequality gives us immediately Lemma 1 for the special case of

G being abelian.
Here we use this method to prove Lemma 3 and Lemma 4 below.

LEMMA 3. Let A be a subset of the finite abelian group G. Suppose that 1€ A,
A= A"! and that A generates G. Then A is a basis for G of exact order h, where

ProOOF. Suppose that h = 3. For the number s defined above, suppose that
s =2. Then AH = H u aH for some a¢ H. Since A = A~ !, we have

Hua 'H=(AH)"! = AH = HuaH,
sothat aea™! H. Hence a® € H, and it follows that (4H)> = AH. Since A4 gener-

ates G, we thus have AH = G, so that 4"~ 2 = 4"~ 2H = G, a contradiction. Thus
s = 3, and Lemma 3 follows immediately from (8).

THEOREM 3. Let G be an abelian o-finite group. Let A be a subset of G such that
led, A= A", and 5(A) > 0. Then Ais abasisfor K = {A) of exact order at most

3
max {2, —2—6_(7)_}

Proor. Clearly, 1 € 4;and 4; = 4;'. Hence, by Lemma 3, 4; is a basis for K
of exact order at most max {2, %:—I/—i—‘:—} Now, Theorem 3 follows in the same way

as we deduced Theorem 2 from Lemma 1.
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EXAMPLE 2. Let n, G, G; be as in Example 1. This time, let 4 be the set of
polynomials with constant term — 1,0, or 1. Then A satisfies the conditions of
Theorem 3. We have that A is a basis for G of exact order |n/2], and that
(A) = 3/n. This shows that Theorem 3 is sharp.

LEMMA 4. Let A be a subset of the finite abelian group G. Suppose that
AN A" = {1} and that A generates G. Then A is a basis for G of exact order h,
where

|G| 3 gl }
9 h < max +1,— —1,.
© h {IAI—% 2 |4-3

PrOOF. Since AN A~* = {1}, we have 2|4| — 1 £ |G|. Therefore (9) holds if
h<2

Suppose that h 2 3. Since A " 4~ = {1}, at most one of the statements x € 4,
x~1e A holds for 1 + xe H. Hence,

H| -1
siH| = |AH| 2 |4 UH| = |A| + l_lz__
and by (7),
h-5 1
> - - — —
Gl = (h 1 25 — l)('AI 2),
so that
Gl .
h< +1ifh<5,
T lAl-3%
and, since s 2 2,
3. _lal .
=5 -1 ifh25s.
hsy -y~ k23

This completes the proof of Lemma 4.

THEOREM 4. Let G be a group which is abelian, infinite, and o-finite. Let A be
a subset of G such that An A" = {1} and 5(A) > 0. Then A is a basis for
K = {A) of exact order h, where

1 3
h §max{—6—(—;ﬁ+ I’Z—(S(A_)— l}

Proor. The conditions G infinite and 6(4) > 0 imply that |4;| - oo as i — oo.
Hence |K;| = oo as i — 0, so that for dx(A4) given by (3), we also have
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|4il — 3

ok(A) = lim sup——TK—I——

Further we have 4; 1 A7 ' = {1}, and Theorem 4 now follows from Lemma 4 in
the same way as Theorem 2 followed from Lemma 1.

ExAMPLE 3. Supposethatn > 3isodd, and let G, G; be as in Example 1. Let the
set B consist of 0 and all polynomials with constant term 0 and leading coefficient
congruent mod n to some integer in the interval 1 < ¢ £ (n — 1)/2. Let A4 be the
union of B and the set of all polynomials with constant term 1. Then the
conditions of Theorem 4 are satisfied. We see that A is a basis for G of exact order
n — 1,and that |[4;] = 3n'~! + 1)/2, so that 6(4) = 3/2n. This shows that Theo-
rem 4 is sharp.

5. Postscript.

Professor Melvyn B. Nathanson has kindly drawn our attention to the fact that
for abelian G, the bound given in Theorem 2 can be found in a handwritten
manuscript by Deshouillers and Wirsing [4]. In that manuscript this result is
deduced from a more complicated and general theorem on sumsets in g-finite
abelian groups.

Most of the results in this paper were independently obtained by each of the
two present authors, after we read a presentation of the paper [6] in a preliminary
version of Nathanson’s book [12]. On the suggestion of Professor Nathanson we
merged our results into the present joint paper.
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