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INTERPOLATION OF OPERATORS ON
DECREASING FUNCTIONS

JOAN CERDA and JOAQUIM MARTIN!

Abstract.

Although there is no general way to identify the interpolated class of the pair of cones of decreasing
functions of Banach function lattices, it is shown that in many examples, which include all rearrange-
ment invariant spaces and a number of weighted function lattices, real interpolation for decreasing
functions is well behaved.

1. Introduction.

Throughout this paper L, will be the vector space of all (equivalence classes of)
Lebesgue measurable real functions on R* = [0, 00), and we shall say that X is
a (quasi-) Banach function lattice if it is a (quasi-) Banach space and a linear
subspace of L, such that, if |f| <|gl, geX and feL,, then feX and
Ifllx < llgllx-

A decreasing function will be a nonincreasing and non-negative function on
R*,and X? = X n L% will denote the cone of all decreasing functions of X.

Recently the boundedness of operators between Banach function lattices, like
L,-spaces with weights or Lorentz spaces on R, restricted to decreasing func-
tions has been widely considered in several contexts (cf. [AM], [An], [CS], [Ga],
[Sw], etc.) and a natural question is whether there are interpolation theorems for
operators which are bounded for decreasing functions.

Y. Sagher, in [Sg], and more recently S. Lai, in [La], have observed that the
proof of Marcinkiewicz’s interpolation theorem is easily adapted to prove that if
a quasilinear operator T: L, + L,, = Lo is of weak type (po, po) and (py, py) on
decreasing functions, then it is of type (p, p) for any p € (po, py). This fact has been
used by K. Andersen in [An] for the study of some integral operators of the type
Tf(x) = [ a(r) f(xt) dt acting on spaces L,(w)’, with 0 < p < co.

A. Garcia del Amo [Ga] extends some results of C. J. Neugebauer about the

1 This work has been partially supported by DGICYT, Grant PB94-0879.
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1 x
boundedness of the operator Tf(x) = F_[ f(x — t)d(t?) when acting on in-
0

creasing functions using a version of Riesz’s Convexity Theorem.

When extending these examples to the setting of the real K-method, there is no
general way to identify the interpolated class for a pair of cones (X8, X9) of
decreasing functions of a couple X = (X,, X;) of Banach function lattices, even if
we know the interpolation space X; , of this pair of spaces.

Nevertheless, we show that for all pairs of symmetric spaces and a number of
couples of weighted function lattices the K-method of interpolation for decreas-
ing functions is well-behaved.

In these cases the K-functional K(f; t; X), restricted to decreasing functions, is
equivalent to the K-functional K(f; t; X“) associated to the corresponding pair of
cones of decreasing functions. I.e., these cones are Marcinkiewicz cones in the
sense of Y. Sagher [Sg], who applied interpolation properties of operators
between cones of Banach lattices to the study of the Fourier coefficients for some
classes of functions.

We wish to thank Professors M. J. Carro and J. Soria for several fruitful
discussions during the preparation of this paper.

2. The K-method for decreasing functions.

Let X = (X, X;) be a pair of quasi-Banach function lattices and X¢ = (Xg, X?)
the corresponding pair of cones of decreasing functions.

If we denote Z(X?) = X2 + X4, for every f e 2(X¢) we can consider the usual
K-functional

K(,0) = K(f6X) =inf{| follo + t I fill s/ =So + f1. [ X;}
and the K%functional,
KUf,0) = K(f,t X = inf{|| follo + t Il fil s £ = fo + fu. fi€ X2}

Letnow 0 < 8 < 1and 0 < g £ + o0. As for the usual K-method we define

@© 1/q
(X%, = {f eZXN 1 f s, g0 = ( J-O [t °K%(f, t)]q%) < oo}.

The following Decomposition Lemma will be very useful to prove the basic
properties of these classes (X%)y ,. It allows to show that X(X?) and (X, , are
quasi-Banach lattices (stretching the definition to cover cones rather than
spaces), since, if g < f are decreasing functions and f e X(X*), then g€ (X9 and
K%g,1) < K%£;1). Also g €(X%s., and llglls,q.a < Il fls.q,0 i £ €(Xs.4

LeEMMA 1. Let f, g, h€ L, be three right continuous decreasing functions such that
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J = g + h. Then there exists a decomposition f = f, + f; with fie L} (j = 0,1),
JoSgand fi <h

PrOOF. By considering g’ = min(f,g) and h’ = min(f,h) we can suppose
g.h < f.

We begin with the case of simple funtions. Obviously we can assume that f,
g and h are constant and non zero on the same intervals [x;, x;+ ) (0 £ i < n)and
we will use the notation f = Z;;oa,-x[xnxm, = (ap,ay,...,a,) (@;+1 £ ;).

Then we have g = (co,¢y,...,¢,) and h = (dg, d,...,d,) with a; £ ¢; + d;. We
canfind 0 < ¢ < 1(0 £i £ n) such that

(i) &a; £ c;and (1 — g)a; < d;, and

(i) €00 2 £,ay Z ... 2 &y, (1 —&0)a0 2 (9 —&)a; 2 ... Z (1 — &,)ay.
We can take ¢,e[1 — d,/a,,c,/a,] and

d; iy a; — Qi + & 4104 ¢
. 1%i+1

ge|lmax(1 ——, ¢, — , min| ——— S
a; a; a; a;

for0<i<n-—1. Then

Jo=(eobo,-..,€,a,) and f; =((1 — &o)ao,...,(1 — &,)a,)

satisfy the conditions of the lemma.

For the general case let supp f = [0, + o). We wil consider D = | )% D,,
with D, = {k +j27% 0 < k £ n, 1 £j £ 2"}, and on this set of diadic points we
write p < g when n, < n,, or n, = n, and p < g, where n, = min{n; pe D, }. Let
D = {p;}{2, with p, <p, <...and

(n+1)27 (n+1)2n (n+1)2n

o= Y SO0 9n = 9IPNigp b= 2 HP)Xia,pp-
i=1 =1

i=1

i

We have seen that there exist 0 < ¢,(p;) < 1 (1 £ i < (n + 1)2") such that

(n+1)2n

f,.0= Z enP:) S (P)Xiq, p)

i=1
and

(n+1)2n

fnl = Z (1 — &) f (12

i=1
are simple decreasing functions, and
So= A L1 S G0 fif S e

If i > (n + 1)2" we define ¢,(p;) = 0, and by a compactness argument we find
a subsequence {e,, } of {e,} such that lim,_, , &, (p) for all pe D. Then we define
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So0) = &(p)f (), /1) = (1 — &) S (p)

over D and we extend them over [0, co) by right continuity,

fix) =lim f(p)  (=0,1)

plx

to obtain f, and f; with the announced properties.

Obviously
ty (XY < (XY
and
2 K(f;,t) < KYf,t) forall feX(X9.
Moreover

Xen X s (X5, = (X, = Z(X%) if g=r
From (2) we get (X%);,, = (X, )"
We say that T X¢ > Y is quasilinear if T: £(X%) - 2(Y), T(X}) < Y;(j = 0,1)

and |T(f + d)| £ k(| Tf]| + |Ty|). There is a similar definition for a quasilinear
mapping from X to Y9, or from X? to ¥

THEOREM 1. Let X, Y be two pairs of quasi-Banach function lattices.

(@ If T'X*>Y* is quasilinear and |Tf|; S M;lifll; (j=0,1), then
T: (X%, = (Y)s,aand || Tf lls,q.0 = kMg M3 || flls.q.a- _ _

(b) If T: X* — Y is quasilinear and | Tf ||; < M; || f ||, then T: (X% 4 — Y, , and
TS lls,q = k_Mé __SM'? I f1ls.q.a- ) )

(©) If T: X > Y?is quasilinear and | Tf |; £ M; || f|;, then T: Xy , = (Y%, and
TS Nls,q.a = kMg M7 || flls,q-

ProoF. If f =f, + fi with fieX], then Tf < k(Tf, + Tf;) and from the
Decomposition Lemma we obtain a decomposition Tf = g, + g; such that
g;€ Y/ and g; < kTf;. It follows that

KT 1) < ligollo + tllgslls < k(I Tfollo + t I Tf1ll1),

and KY(Tf,t) < kMo(|l follo + tM1/Mo || f1111). Then K4(Tf,t) < kMoK*(f, Myt/My)
and | Tf |ls,q.a < kMg ~*M3 || f|l,q.4- The other cases are similar.

Since the main problem is now to identify (X%, ,, at least when the usual
interpolated space X, , is known, it is useful to know if

(©)] Z(Xy' = Z(X%

and if there exists a constant C = 0 such that
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“ KU (f,1) < CK(f,1)

forany f € Z(X%and ¢ > 0. In this case we say that X is a Marcinkiewicz pair and
we have the equality (X%, , = (X, ,)? with equivalent “norms”. This definition is
related to the definition of “Marcinkiewicz quasi-cones” in [Sg], where the
equivalence of the K functionals for L, , spaces is done.

In the proof of the following theorem the key fact is the existence of a bounded
linear operator T on X such that T is decreasing if f = 0, and Tf > f for any
feZ(X).

THEOREM 2. If the Hardy operators

1 t 00
slf(t)=7f0f(s>ds and  S,f(0) = J oL

are bounded on X, and on X, then X is a Marcinkiewicz pair.

Proor. Define T = S,S5;. We observe that

Tf(t) = f J-f(’t)d1=—j f6s) dS+j f(T =8.f(1) + 82/(1)

and, if f is decreasing, Tf = S,f = f. Moreover, since S;f 2 0if f 20, Tf is
decreasing. Let now f = fy + fieZ(X)', with 0 < fjeX;. Then f<Tf =
Tfo + Tf, with Tf,eX" and from the Decomposition Lemma we know that
there exist g,eX" such that g;< Tf; and f =go+g,. It follows that
(X)) = X(X9).

Moreover K*(f,t) and K(f, t) are equivalent, since

KAL) s KY(Tf, £ inf (I Tfollo + tI TSl < max(Mo, My)K(f1)-
S=fo+ s
It is easy to obtain examples of weighted L,-spaces over R* without properties
(3) and (4):

ExaMpLE 1. If X = (L,(w,), Lyi(w,)) with

1
wo(%) = X(0,2)(X) + ~_2 X2, +o0)X)

and

1
@1(x) = X0, (%) + 1 +o)(X);

then Z(X%) + Z(X)’, since Z(X) = L, (min(wo, )}, (0, 3 € L1 (min(wo, ,))* and

%0,3 ¢ Li(@o)* + Ly(w,)".
Moreover (X%, 5.1 # X1/2.1 0 Z(X9) + (Xypa, )%, since
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KYf,)=inf (fzfo+tflf1>= inf 1(fo+tf1)+J2f
) 0 1

S=fot+[f1 f=fot+f1J0
2 1 2
2 K(fxo, 1y t; L1(0, 1%, Ly(0,1)%) + f f= min(l,t)J‘ [+ J f
1 0 1

and it follows that f = 0 on (1,2) for any f €(X%)y,5, 1, and (X951 = L,(0, 1)%,
but it is well known that (L,(wo), L1(®,))s,; = Ly(w ~*w?), and we have

@5 (X)1*(x) = K0, 11(%) + (x = D)7 x1, 55(%) + (x — )7 2x — 2) 72y, (%)
$0 thf_l_t X0.2€ X 12,1 0 Z(X%) b_Ut X(0,2)¢_(X_d)1/3, 1- Also, x0,3)€ (X(1/2,1)"

If X = (Ly, Li(e” %), then £(X%) = Z(X)! = Ly(e ™% but for f = 1, K(f,t) and
K*(f, t) are not equivalent. Notice that 1 €(X;, ,)? but 1¢(X%; ;, since f = 1 only

can be decomposed as a sum of two decreasing functions as ¢ + (1 — &) with
0<e=zl,ande¢L;.

3. Reiteration.

In this section we adapt the beautiful Holmstedt Theorem (cf. [Ho]) to our
setting. Let X be a fixed pair of quasi-Banach function lattices,0 < 3o < &; < 1,
=9, — 8% and 0 < gy, q; £ . Forall feX(X% andj = 0,1 we define

1/q;

t 1/q; © d
Pif(t) = (L [s~ %K/, s)]‘“ﬂsi) and Q4f(t) = (I [s~ %KY f,s)]% _Si)

The following Lemma will allow us to avoid taking differences f — g of decreas-
ing functions, which need not be decreasing.

LEMMA 2. Let f € 2(X?) be such that Paf(ty) < oo and Qi f(to) < 0, for some
to > 0. Then there exist a decomposition f =g + h, with ge(X,)s, ,, and
he(X%g,.q,» and a constant ¢ > 0 such that ||glls,.q,,a < cPef(to), Ihlls,.q,.a <

cQ1f (to).

PROOF. Let f =g + he X¢ + X{ and |g|lo + to |hll1 £ 2K4(f;to).
Then K%g,s) < 2K“(f,to) and K%h,s) < (2s/to)K%(f;to) for any s > 0. Now,
K*(f; t)/t being decreasing and K*(f, t) increasing, we find that

Qg(to) < cPif(to) < o0, Pih(to) < Q1 f(to) < c0.

On the other hand, if f =g+ h and g,h are decreasing, then g < f and
K%g,s) < K%, s), thus Pig < P4f, Q%h < Q4 f. It follows that '

191185, go.a = (P3g(t0))™ + (Q0g(to))*® < C(P3f (L)) < 0.
Similarly, "h"\‘)o.qo,d é CQ’:f(tO) < 0.
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Now the proof of Holmstedt’s Reiteration Theorem is easily adapted to our
case of pairs of cones of decreasing functions:

THEOREM 3. Let KU(f,t) = K(f,5;(X%s,, 40 (XYs,.,)- Then

KU(£,t0) =~ Pif(0) + £°Q1 £ (1)

and
©) (X6, 000 (Xs,,0,)5,4 = (X954
with equivalent “norms”. Here 0 < ¢ < 0,0 <3 < 1land & =(1 — 99, + 39,.

ProOF. Let H(f,t°) = P3f(t) + t°Q4 f(t). Then

H(f,1) £ CKY(f,1)

is proved as in [Ho].

To obtain the converse inequality we observe that, if feZ(X?) is such that
Pif(t) < oo and Q4 f(t) < oo, we know from Lemma 2 that there exists a decom-
position f = g + h with

191150, 40,4 < cPOS(®), hlls,,q,.a < cQ1S(2)

and
RY£,1) < c(Pof (1) + Q11 (1) < cH(f,t").
Finally, (5) is proved exactly as in Theorem 3.1 of [Ho].

COROLLARY 2. If X is a Marcinkiewicz pair, then (X, 40, Xs,.4,) is also a Mar-
cinkiewicz pair and (X%, (Xs,,0.)8. = (Xg',o)", where §' = (1 — 9)3, + 99;.

PROOF. Let fe(X%s, 4 + (X%s,.0,- We know that KU(ft)) = Pof(t) +
t°Q4 £(t), and from K%(f;t) ~ R(f;1) it follows that

t 90 t 1/q0
i = ([t )" < ([ ki) = roro
0 0

and also Q1 f(t) ~ Q,f(t). So, K%(f;t) ~ K(/, ). Let us prove now that
(X55.00 + XY8,.0, = Koggo + Koy, 1"

Suppose that
fe[Xoyq0 + Xopad' = ZX) = Z(XY).

Then Py(t) < o and P(t) < oo forany ¢ > 0. Since K%(f;t) ~ K(f,t), we also have
Pif(t) < oo and Q%f(t) < oo, and from Lemma 2 if follows that f €Xo00 +

Xslv‘Il'
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The reiteration property follows from the above reiteration theorem and from
the equality (X% , = (Xy., )"

The following example is a simple application of the above reiteration results.

ExaMmpPLE 2. Forany0 < p < o, (L,, L) is a simple of a Marcinkiewicz part,
and (Lpo’ ao)s.q = (Lpoa Loo)g,q, with l/p = (1 - ‘9)/p0
Toseethat(L, + L) = L% + L% ,let fe(L, + L, ). Wehave f* = f and, if

Jo(x) = (fx) = f(t"Dx0.em(x) and  fi(x) = f(")x0,en(*) + f(X)Xer, )(%);

then f=fo+ fieli+ L!. Finally, it is well known that K(ft) ~
(5 f*(x)? dx)'’? and the equivalence K(f,t) ~ K4/, t) follows from

s

1/p
KY(ft) < ( . |f(x) — f*@?)P dx) + (P @)P)P

(1P 1/p 24 1/p
< < . |f(x) = f*@)P dX> + (L Sy dx)

Wid 1/p
< ( fexp dx)
Jo

Now, by reiteration,
(Ldo’ P1)3 q ((LF’LOO)go.po’(L"Lw)gl.m)s-q = (L"LCO :‘l-q = L‘;q
for suitable values of r, 3; and 5. In the same way, for Lorentz spaces we have

(L =L,

Po, 90° m qx)'l q9

with 1/p=(1—-38)/r and 0 <r <min(py,p;) such that 1/p;=(1 — 9;)/r
(j =0,1), since, if $ = (1 — )3 + 194,

( o, 40° m ql)ﬂ a = (L, Lw)‘f%.qo’ (L, Loo)§ 94, ql)'l = (L"Lw)g,q

4. Symmetric spaces.

A symmetric space will be a quasi-Banach function lattice X over (0, o) with
Lebesgue measure such that, if f € Ly and g € X are such that f* = g* then fe X
and | fllx = llgllx, where f* denotes the decreasing rearrangement of | f|. Ob-
serve that the operator Df(t) = f(t/2)is bounded on X (cf. [HM]), and it is easily
seen that (Df)* = D(f*).

THEOREM 4. If X, and X, are symmetric spaces, then X is a Marcinkiewicz pair.

PrOOF. If f =f, + f;€Z(X)! with 0 < fie X, then f* < Df¥ + Df* and
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Df* € X;. We apply Lemma 1 to obtain a decomposition f* = g, + g, with g;
decreasing and g; < Dfi*. It follows that g;eX?,llg;l; < IDI| | f*|; and
f=r*=go+g1eZ(X9).

Foragivent > 0and ¢ > 0 we can consider a decomposition f = f, + f; with
0= fieX;and | follo + ¢l fills < K(£t) + & Then

KY(f,0) < lgollo + tllgalls S IDI (1SS0 + 11 £*111) < CK(f,1) + ¢)
and we obtain K%(f, 1) ~ K(f;1).

As an application we can prove a Wolf’s reiteration type theorem for decreas-
ing functions. First we observe that, for any quasi-Banach function lattice X, if we
denote

X*={feLy f*eX},

then(X%)? = X“and that, if X has Fatou property, then X* with || |l xs = || f*||x is
a quasi-Banach function latice. To see this, observe that for any Cauchy sequence
{f.} = X* we can suppose that lim, f,(t) = f(¢) a.e. Since X* has Fatou property,
| fllxs £ liminf, || f,||xs < co, thus f € X* and similarly || f — f,|lxs = 0.

THEOREM 5. Let X; (j = 1, 2, 3, 4) be four quasi-Banach function lattices such
that X;(j = 1,2, 3, 4) are quasi-Banach function lattices and X; N X4 = X, N X3.
If
(Xg’ Xi)&.q = Xg and (de’ Xg)«p.q = Xg’
then
(Xf’Xi)t.r = Xg and (X‘i’Xi)%q = Xg’
withe = 3/(1 — @ + ¢%) and Y = 9/(1 — ¢ + ¢9I).

PROOF. The spaces X; are symmetric, so X3 = (X3,X3)s,, and X; =
(X5, X3),.,. Since Xjn X< X3nXj it follows from Wolf’s theorem that
(X3 = (X3, X3)!, and we obtain

X4 = (X3 = (XD, (X3 )e.r = (X1, XO)e.r

5. Weighted function lattices.

If X is a quasi-Banach function lattice, for any weight 0 < we Lo the correspond-
ing quasi-Banach weighted function lattice is

X(w) = {f€Lo; foeX},
and "f”X(m) = | follx.
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For a pair (wg,®,) of weights, we are looking for conditions under which

= (X(wo), X(w,)) is a Marcinkiewicz pair. We begin with an example without
property X(X?%) = Z(X)". Recall that X is a Kothe space if yzeX for any
measurable set E with finite measure.

ExaMpPLE 3. Let us associate to a fixed 0 < ge L, the weights

e e} o]
Wo = Z 9X@2n,2n+1) T Z X@2n+1,2n+2)

n=0 n=0

and

= Z Xn, 2n+1) T Z 8X@2n+1,2n+2)-

n= n=0

Then (Ly(wo), Ly(w,)) is a pair of Kothe spaces such that 1e(Ly(wo) + Ly(®,))*
but 1¢ Ly(we)* + Ly(w,)".

To prevent such examples we need to impose some restrictions to the behav-
iour of ¢ = w,/w, at 0 and at co. We say that it has property 0 if

liminfo(x) =0 and limsupo(x) = oo,
x—0 x—0

and property co if

liminfa(x) =0 and limsupo(x) =

X0 X0
In Example 3, ¢ has property co.

THEOREM 6. If X(w;) (j = 0,1) are Kéthe spaces and o = w,/w, has neither
property 0 nor property oo, then (X(wo) + X(w,))* = X(wo)® + X(w,)°.

ProOOF. If fe(X(wo) + X(w,)), it is known that
(6) K(f,t) ~ || foomin(1,t0)llx =~ || fwoxge> 13llx + Il f01 %o < =l x-

Since o does not have properties 0 and oo, there exist 0 < 6o, < J,; and
0 < ¢g,¢y < oo such that at least one of the following facts is true:

(@) o(x) > coif 0 < x < dp,and a(x) S ¢, if 6, £ x < ©

(b) o(x) £ cpif 0 = x < dp,and o(x) > ¢; if 6; Ex < 0

(€) o(x) Scoif 0 = x<dg,and o(x) £ ¢, if 6, £x <

(d) o(x) > coif 0 £ x < &y, and a(x) > ¢, if 6; £ x < 0.

In every case it is shown that f € X(w,)* + X(w,)? by taking a suitable decom-
position f = f, + f;. In case (a), the functions

Jo=0f = f6:)]x0,sy and fi = f(61)x0,5,) + Ao, )
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are decreasing and, since X(w,) is a K6the space, if we apply (6) with t = 1/c,, we
obtain

Il follxwe < C(K(fyco) + SO X581l x(0g) < ©°

In the same way we obtain | f || x(,) < 0.
The other three cases are similar. In case (c) we consider

Jo=(f = fOMxs0.80 + (f(60) — f(01))x0. 50

and

Ji=1f=(f(60) = fOx0.50 + F(O X160, 61 + flisy, )

If for the couple X = (X(wo), X(w,)) of Theorem 6 we have K(f,t) ~ K(f,1)
over all functions f € X (X¢), since K(x0.5t) = | x0,5y min(wo, tw,)| x (cf. (6)) and
K (x0,5)> 1) = ming <, < 1(& | %0,9@0 llx + t(1 — €) | X0,®1lx); the condition

7 I X0, 5y min(@o, tw,)ll x ~ min(||x,5@ollx,t I X(0.9®1 /1 x)

is necessary for X to be a Marcinkiewicz pair.
If X = L,, for any pair (wo,w,) of decreasing weights of the class &/, of
Muckenhoupt, property (7) is always true, since in this case (cf. [GR])

smin (-I—J wo,ij w1> < Csmin(wg(s), tw,(s)) < CJ min(wg, tw,).
s Jo S Jo 0

THEOREM 7. Let (wo,w,) be a couple of locally integrable weights of class
42(wj(2t) £ Cw(t)), with property (7) and such that 6 = w,/w, has neither prop-
erty O nor property co. Then (L(wo), Li(w,)) is a Marcinkiewicz pair.

PROOF. In this case the Lorentz spaces A(w;) = { f € Lo; [& f*(s)w(s)ds < o0}
are quasi-normed spaces and, if f and g are decreasing,

If+ g||A(w.,)+A(w,) < ||f||A(wo)+A(w,) + ”g”A(wo)+A(w,)-

To prove that K(f,t) ~ K%(f,t) we can suppose f = Y % o #;X(0.x )» simple and
decreasing. Then

K(f,t) ~ Jmf(s) min(wo(s), twy(s)) ds = Zn: o; xjmin(wo,twl)
0 =0 " Jo

V8

~

xj xj n
azjmin( f ot f w,)z S K(tto,uyn ; La(@o)s Ly(@, )
(1] 0 j=0

0

J

3 Koot A A1)

~ Z K(X(o.x,)a t; A(wo)?, Alwy)) ~
j=0 j=0

2 K(f t; A(wo), Alw,)) = K(f0).
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ReMARK 1. If (wy, w,) is a pair of decreasing weights, we can use the fact
(A(@o), A@y))s,1 = A[(P5~°P1)]
(cf. [Me]) to obtain
(Ly(@o)’, Ly(@1))s,1 = AL(P5*®))]* = L, [(P1~°®YY]"
REMARK 2. Since
K(f7,%; Ly (o), Ly(@1))''? = K(£;; L,(wo), Ly(®,))
and
K(f?,1% Ly(wo)’, Ly(w1))'"? ~ K(f1; Lp(wo)d, Lp(wl)d),

Theorem 7 can be easily extended to the case X = L, (1 < p < o0).

ReMARK 3. For any quasi-Banach function lattice X, (X, L) is a Marcin-
kiewicz pair, since in this case it is routine to obtain (X + L, ) = X + L , and
to prove the equivalence K4(f,t) ~ K(f,t) for fe(X + L)* we can consider

Ef o) = inf{|| fillx,; f = fo + fu, ie X | follx, < 1}

Then KYf,t) ~ K(f,t) if and only if E%f,t)~ E(f;t) and in our case
E(f,)) ~ |I(f — )+ lIx = E¥f0).
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