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L' NORM OF LEVY PROCESSES WITH
EXPONENTIAL TAILS*

MICHAEL BRAVERMAN and GENNADY SAMORODNITSKY

Abstract.

For a Lévy process {X(t), t > 0} for which both left and right tails of the Lévy measure are in the
exponential class S(«), and so is their sum, we compute the tail distribution of the sample path L' norm
on an interval of finite length.

1. Introduction.

Throughout this paper X = {X(#), 0 £t < 1}, X(0) = 0 a.s., is a process with
stationary independent increments (Lévy process). Its characteristic function can
then be written in the form

(1.1) Eexp(i6X(2)) = exp(ty(6)),

where

0

(1.2) W() = b0 — 6%0%/2 + j (€ — 1 — i0x1()x| £ 1))p(dx)
with be R, 6 = 0 and p a Borel measure such that j"fm (1 A x?)p(dx) < oo (the
Lévy measure of X).

Itis well known that a Lévy process has a measurable version, and in the sequel
we will without any further notice take a measurable version of X and any other
process with stationary independent increments. Studying the distributional
properties of the integrals of the absolute values of Lévy processes is not an easy
task. In the case of Browian motion this can be done using Kac’s formula (which
can be even made to work for the integral of the Brownian bridge), as demon-
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strated by Shepp [She82]. However, this approach does not seeem to be conveni-
ent to use in the case of more general Lévy processes, for the resulting equations
become too complicated. Therefore, other approaches are called for. For Lévy
processes with subexponential tails of the Lévy measure, such integrals can be
treated using the general results of Rosinski and Samorodnitsky [RS93]. The
corresponding case of exponential tails of Lévy measure could not be precisely
described by the existing results, with only partial information available (see
Braverman and Samorodnitsky [BS95]), and it is our goal in this paper to find
the eact asymptotic distribution of the sample path integral I(T) = jg | X ()| dt
under the assumption that the the tails of both positive and negative parts of the
Lévy measure p and their sum belong in the appropriate sense to the exponential
class #(a).

We remind the reader that a distribution F on [0, c0) belongs to the exponen-
tial class F(a), « > O if

(1.3) Ii= lim L@

= exists and is finite
imw  FA)

and F e ¥(a), where

Fu +v) _

(1.4) L) = {F: lim F)

u— o0

e * anyv > 0}.

Occasionally we will abuse the terminology a bit and apply the expression
ue #(x) to finite (not necessarily probability) measures on [0, o0).

We will use several well-known facts about distributions with exponential
tails, which are collected for convenience below.

First of all, in the remainder of this paper ¥ («) refers to the collection of
distributions on the whole of R which are in .#(«) and for which (1.3) holds. The
extensions of the quoted results to this more general case are entirely straightfor-
ward. See Willekens [Wil86], and also Bertoin and Doney [BD93].

LemMMA 1.1. Let Fe ¥(a), o > 0. Then

(i) (Chover, Ney and Wainger [CNW73], Cline [Cli87]) mgs(a) =
J ) e F(dx) < oo and | = 2mg() in (1.3).

_(;;) (Embrechts and Goldie [EG82], Cline [Cli87]) If the limit c; = lim,_, ,

Gi(4)
F(%)

exists and is finite for two distribution functions G, G, then

G, *G,(4)

lim 0

A=

= ¢ymg,(e) + c,mg (0)
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Moreover, G;e #() if ¢; > 0.
(iii) (Chover, Ney and \_V_elinger [CNW?73], Embrechts and Goldie [EG82])
. F*'(A
For every n > 1, llml_.w—ﬁ% = nmg()" 1. Furthermore, there is a K < o
such that for everyn > 1and A > 0

FX()/F(A) £ K(1 + mp(a)"~".

(iv) (Embrechts and Goldie [EG82]) For a u>0 let G(x)=
n ) ol 2

e ,‘j‘;o%F*"(x). Then llm,l_,w% = umg(a). More generally, if G is an
ifinitely divisible distribution such that the right tail p of the corresponding Lévy
measure p is equivalent to the tail of a distribution in S(a), then lim,_, ,, % =
me(). o

(v) (Cline [Cli86]) Let G € #L(x), and sup; o G(A)/F(A) < c0. Then H = F xG
is in S(x) and H(A) ~ mg(2)F(1) + mg(x) G(A) as A — oo.

A function h: R — R, is said to be equivalent to the tail of a distribution in S(a)
if there is an F € S(x) such that

. h(d)
lim Ty =

In the case when h is right continuous, non-increasing and converges to zero at
infinity, it follows from Lemma 1.1 (ii) that & is equivalent to the tail of a distri-
bution in S(x) if and only if the distribution G on [0,00) defined by
G(x) = 1 — min(1, h(x)) is in & ().

In the following section we collect and prove auxiliary results needed for the
proof of the main result of the paper, which stated and proved in Section 3.

2. Preliminary results and estimates.

Let p be a finite measure on [0, c0). We use the usual notation for the tail of p,
p(x) = p(x, ), x > 0, and we introduce further the integrated tail of p by

1
@1 p(x) = f 5 (%) dt.
0

More generally, given a probability measure H on [0, 1] we set

v /x
(2.2) Pu(x) = L ﬁ(7> H(ds).

LEMMA 2.1. Let pe L(a),a > 0. For0<é <1
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' ji—aﬁ(‘?)‘h
&) T

ProoF. Forany0<e<d

1
e oeJozol;)

One the other hand,
1-0 x X
(XN <1 —oa5(—>—).
J, o(asa-oa(:2)
Since p € #(a) implies
. plax)
lim — =0
x~w P(X)

for every a > 1, (2.3) follows.

Let X be a random variable with a distribution in &% (a), and U be a bounded
non-negative random variable, independent of X and not identically equal to
zero. It has been proven by Cline and Samorodnitsky [CS91] that the distribu-
tionof Y = XU belongs to the class ¥ (a)ifa = 0. The following propositionis an
extension of this statement to the case a > 0.

PROPOSITION 2.1. Let pe F(a), o > 0. If H((0, 1]) > O then py is equivalent to
the tail of a distribution in the class & ().

Proor. We may assume without loss of generality that the H((0,1]) > O for
every 0 € (0, 1). The case H({1}) > 0 being quite simple, we will consider the more
interesting case H({1}) = 0. It is obviously enough to prove our statement in the
case H({0}) = 0. We may assume further, without loss of generality, that p is
a probability measure. Let F be the cumulative distribution function (c.d.f.) of p.
Then jy is the tail of a probability measure as well, and we denote its c.d.f. by G.
Since it is easy to see that G € £ (a), we only have to show that

. G*G(x)
lim ———
s G0
An obvious application of Fatou’s lemma shows that

. G*G
lim “"(% 2 2mg(a)

X

= 2mg(a) < o0.

for every G € #(a), and therefore our remaining task is to prove that
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(2.4) lim

It is well known (see e.g. Cline [Cli86]) that for every F e #(a)

x

(2.5 F(x) = k(x) exp(—— J

0

a(u)du),

where k(x) »'k > 0 and a(x) = 0, a(x) = « as x = o0.

Keeping the same o(*) in (2.5) but replacing k(-) with k,(-) = k, we obtain the
tail of yet another distribution in #(«), say F,. Let G, be the c.d.f. of 1 — gy
corresponding to that case. Observe that

. F(x) . G(x)
lim —= = lim —= =1
X = Fl(x) X~ 00 Gl(x)

If F; € # (o) implies G, € ¥ (), then Lemma 1.1 (ii) shows that F € &(a) implies
G e &#(a). Therefore, it is enough to prove the proposition under the assumption
k(x) = k in (2.5).

Observe that in the latter case F is absolutely continuous and

. F(x)
(2.6) :13.10 Foo) a.
For a b > 0 denote
Fy(x) = F(%).
Then
1
2.7) G*G(x) = I l J F, * F,(x) H(dt) H(ds)
0o Jo
and
1
(2.8) G(x) = I F,(x)H(d?).
0

It easily follows from the relation F(ax) = o(F(x)),a > 1, that for every
O<b<1

(2.9) f ' f ' F,* F,(x)H(dt)H(ds) = o(G * G(x)).
0,J0

Taking into account the symmetric role of ¢ and s, we get
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(2.10) G*G(x) ~ 2 J 1 J t ( J °F ( X - 5y ) F(dy)) H(ds)H(d?).
b (1] 0

Let a > 0. For x > a divide the region of integration over y into two parts:
[0,5s™'a] and (s~ 'a, 00) and denote the corresponding integrals by I, and I,. In
the sequel C will be a generic finite positive constant that may change between
appearances.

Calculation for I,. Fix 0 < ¢ < 1. We have sy/t < a/b since y < s 'a and
b < t < 1. The assumption F € ¥(a) implies that there is x; = x,(a, b, &) such that
for ze[0,a/b] and x > x;

F(x — 2)
F(x)
see e.g. Cline [Cli86]. On the other hand,

(2.11) (1 + ¢ge”,

@.12) asyt™' — asy = aft-y-(l —f)<aab-! —1).

Hence, for all x > x,

@13) L <2l +¢) j H(d1) J (f ’ F(%) e”’/‘F(dy)) H(ds)
b 0 0

1

=21+ G)e’“‘b_l_“J F<i) H(dt)J1 J.s- ae"‘”F(dy)H(dS)
0 t oJo

< 2(1 + €)e*®" = Y o) G(x).

Calculation for I,. Now divide the segment [0,t] into three parts: [0, &t],
(et,(1 — ¢)t] and ((1 — &)t,t] and denote the corresponding integrals by I,,, I,
and I,;. Since F e #(a), then F * F(x) < CF(x). Therefore,

(2.14) I, < II J ‘We) H(ds)H(dz)

< cjl J F(%) H(ds)H(dt) = CH((0, £))G(x).
0 JO

Reasoning similarly we obtain
(2.15) L3 £ CH(b(1 — g), 1))G(x).

Now turn to the integral I,,. We have

(2.16) f °° F ( X - 4 ) F(dy) = J ? F(iitl> F'(y/s)dy/s.
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It follows from (2.6) that for y > aand 0 < s < (1 — &),

F'<X> F<l> F-< : )

s s 1—¢

F,<1> §CF<1> =G —r
t

t
Therefore, by (2.16), for every et < s < (1 — é)t,

z

m (i) e
J‘ F(X—tS,V)F(dy)§Cs“sup¥f—f F(x~y)F'(y/t)dY/t

la z>a F(Z) t

F( : > F( : )

-1 l—¢) ——on 1 l—¢) =(x

< Ce¢ 'sup o) Fix F(x) < Ce™'sup Fo) F(t)’
z>a z>a

using once again the fact that F e #(a). We conclude finally that

A,

(2.17) I, (x) £ Ce~ 1ili;:———W G(x).
It follows now from (2.13), (2.14), (2.15) and (2.17) that
2.18) fim GE(G()") <cC <H(0,s)) + H(B(1 — &), 1))

“tsup——= L | 421 + e @' Umg(a).
+ ¢ 'sup e +2(1 + ¢)e (@)
Letting first b — 1, then a — oo and then ¢ — O establishes the only important part

of (2.4). The finiteness of mg(«) follows from that of mg(x). This completes the
proof.

z>a

The next assertion is an easy consequence of Lemma 2.1.
LEMMA 2.2. Suppose H has a density h on an interval (¢, 1) such that the limit

lim h(x) = h(1)

x—=1-0

exists. Then

lim Eﬁgx—) = h(1).
x0 PX)
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We conclude this section with some elementary estimates involving Poisson
arrivals. Let {Z,,k = 1} be i.i.d. random variables with exponential distribution
with mean 1/u.

LeEMMA 2.3. Let m and k be positive integers and
k
U=} Zjlg 2,51
j=1

Then the continuous part of U has the density given by the formula

m-1 j 1 _ x),' xk_l
219 hx = ke"l‘(ell“"x) . “J( 3 ) i
) = ,;o 7 (k — 1)
0<x<1Ifm=0,then
k—1
= ko nx X

(2.20) h(x) = pke -
for0<x<1.

Proor. LetI',=Z; +...+ Z,,n = 1and N(t) = max{n: I, < t}, t > 0. Us-

ing the notation P* for the continuous part of the distribution of U we have by the
standard properties of Poisson processes,

PUSX)=PIy=x, T4 +m< 1)
x . tk—l
- - —) >
L Ue *—1) P(N(1 — t)) = m)dt

for 0 < x < 1, and so

k—1
) = ™ PIN(L = ) 2 m)
= “ke_ﬂx x"—l e"l‘(l‘x) i (ﬂ(l _ x»j/'
(k— 1) I5

as required.
The following lemma is an immediate corollary of Lemma 2.3.

LeEMMA 2.4. Let
k
W= (1 — 2 Zj)l(,;';:;"zé,.
j=1

Then the continuous part of W has the density given by the formula
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k- _“x_m—lx—j (1__x)k—l
@2y o0 = e 5 )ues
forO<x<1lifm>0and
1 — xp-1
(2.22) g(x) = pren1-n 7 _x)l)!

forO0<x<1lifm=0.

ReMARK. It follows from Lemma 2.3 that for0 < x < 1
k+m

Mu

where we put (—1)! = 1. Lemma 2.4 gives us the same bound for g(x).

3. Tail distribution of the L! norm.

Let X be a Lévy process as defined by (1.1) and (1.2). For an x > 0 we define
p+(x) = p(x, 00) and p_(x) = p(— 0, —x). Let

1 1
(3.1) po(x) = f m(%)dr, ﬁ+(x)=j m(—’t‘-)dz.
0 0

The following is the main theorem of this paper. It gives the exact tail behavior
for the probability

PU1) > ) = P< f 1 X (@) dt > z)
0

when the left the right tails 5_ and j, and their sum are equivalent to the tails of
distributions in % (). We remark that a weaker result,

P(J1 | X () dt > x) P<J1|X(t)|dt > x)
0 T 0

R R e E e R N Ry R
follows from the general theory of subadditive functionals of infinitely divisible
processes with exponential tais developed in Braverman and Samorodnitsky
[BS95]. The result of the present paper gives the exact weights one needs to put
on the positive and negative parts of the integrated Lévy measure, §.(x) and
P _(x) to make the limit exist, and equal to 1.

THEOREM 3.1. Suppose that p, p— and p + f_ are equivalent to the tails of
distributions in (). Then

< 00
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P< J ' IX(0)| dt > x)
li °

I O+ A

(3.2

where

A+(p) = Ee*lo-— EeaLl,X(t)dt

© e _ | _gx — tax21(x| < 1)

ox

= exp (ab/2 + a?0?/6 + J p(dx)),

A_(p) — Ee—alo = Ee—aLl)X(t)dt

© e — 1 +ax — 3a?x21(x| £ 1)

oax

= exp(—ab/2 + a?a%/6 — j p(dx)>,

and where §, and j_ are defined by (3.1).

Theorem 3.1 is closely connected with the next theorem. In fact, the two are
reformulations of each other. We state the two theorems separately both because
the latter one exhibits a rather unexpected property of Lévy processes with
exponential tails and because our strategy in the proof will be to switch from one
formulation to another at the appropriate moments.

THEOREM 3.2. Under assumptions of Theorem 3.1,

P( f 1 |X () dt > x>
(3.3) lim 9 =1

xm® P( fIX(tMt > x)

1]
Theorems 3.1 and 3.2 are equivalent to each other because the random
1
variable I, = f X(t)dt is clearly infinitely divisible with characteristic function
0

(3.9 Eexp(ifl,) = exp <i0b/2 — 6%a%/6

J‘w e — 1 —ifx + %elel(lxl < 1)
+ .
. ifx

p(dX)) .

In particular. the positive and the negative parts of the Lévy measure of I, are
given by 5_ and g, accordingly. Under the assumptions of the two theorems
above we know by Proposition 2.1 that both 5 _ and § , are equivalent to the tails
of distributions in &(«). By Lemma 1.1 we obtain
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J X(t)dt| > x) = P(.(lx(t)dt > x) + P(le(t)dt < —x)

0
~ A4 (P)p+(x) + A_(p)p-(x)

(3.5) P(

as x — oo.

It is interesting to find out how wide is the class of Lévy processes for which
(3.3) holds. We do not know the answer yet.

Our argument will go as follows. We will first prove Theorem 3.2 for the
particular case when the Lévy process X is a compound Poisson process.
Together with (3.5) this will establish the statement of Theorem 3.1 for that
particular case. We will then extend the latter to the general case, from which the
general case of Theorem 3.2 will follow after appealing once again to (3.5).

PROOF OF THEOREM 3.2 FOR COMPOUND POISSON CASE. Here

@

Eexp(i0X(t)) = exp (tj (e — l)p(dx)),

= 00
where p is now a finite measure. We write

N(@)

(3.6) X(=Y % t20,
k=1

where {N(1), t = 0} is a Poisson process with the rate 4 = p(R) independent of
a sequence of i.i.d. random variables {Y;, k = 1} with the distribution ulp.
Denote N = N(1) and consider the events

B,={o:N=n}, n=0,1,....
Let {I', k = 1} be the arrival times of N(-). Put
Zo=T,Zy=Tys1— T k2L
Then {Z,, k = 0} are independent exponential random variables with mean 1/u.
If we B,, then
(3.7) Ll X@O\dt = |VZ + 1Y+ VGl Z+ ..+ Y+t Vel 2oy

Y 4 A Y (L= Zo—Zy = .= Zy)) = Sn:
Define for k = 2
A, = {weB,sign(Y) = ... =sign(Y; + ... + hiy) = —sign(Y; +... + K}

The events A,, A3, ... are obviously disjoint. Let
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o)1),

Observe that for every we D,

(3.8 S, = Jl | X(t) dt = fl X(t)dt
0 0

Denote
1
AX(x) = {weA,,:j |X(0)| dt > x},
0

k = 2,...,n. The next assertion is crucial:

llm Z:)=ZZ:=2 P(A:‘l(x)) =0.

Eind ] ﬁ_(X)+ﬁ+(X)

We now prove (3.9). Denote ¢, = sign(Y; +... + ¥%), k= 1 and
U,=1-2y-2,—...—Z,_)).

3.9

Fix an we | J; -, 4. We get from (3.7)

n—1 n—1
(3.10) S" = Yl (ann + Z EJZ]> + ),2<8nUn + Z EJZ]> + ...
=1 j

ji=2

+ Xl—l(ann + 8n—lZn—l> + YnanUn

=< lYll[max(l —ZO—Z,') V(Zl +...Z,,-1)]+Zz|]’zl +Z3|Y2 + Y3| + ...

iz2
+Z, 4L+ + L+ UL+ + Y
s |Yl|[max(l —Zo—-2Z)v(Z,+ --'Zn—l):l
iz2
+(Zz +23 + ... +Z”_l + U,,)malez + ...+ Yll
Jjsn
< (lel + max|Y, +... + Y,I)[ max (1—-Zo-2Z)v(Z,+ ...Z,,_l)].
JjSn 15isn-1
Observe that for any x > 0,
(3.11) P(|Y1|+max|Y2+...+ Yj|>x)
jsn

P(Yi| +...1%] > x)
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It follows from Lemma 1.1 (iii) that there is a finite positive constant K such
that forall x >0andn = 1,

(3.12) P( Y %> x) S KpT L+ my (o) + mye sy (— )54 () + f-(x))

k=1

Let V be a random variable with distribution H concentrated on [0, 1], and
independent of Y},..., Y,. Then by (3.11), (3.12) and (3.13) we obtain

(3.13) P<V<|Yl|+max|yz+...+ 1g|>>x>

Jsn

—1 T A Y _(x
S Kpm 1 4+ my-a,(0) + my-1(—a) . - n +p4 n H(dt).

In particular, using fori = 1,...,n — 1

(3.14) V=01-2Z—Z)lz} 2,51

and (2.23) with k = 2, m = n — 2 we conclude that forevery i = 1,...,n — 1,

(3.15) P((|Y1|+max| ,+...+ Yj|>(1 ~ZO——Z,-)>x>

jsn
< Kp Y1 4 my-1(0) + M-y (=) M0 — 3))7HE-(x) + 5 ()
Similarly, using
V=Zl +-.. + Zn—l
and (2.23) with k = n — 2 and m = 2, we obtain the same bound

(3.16) P((lYII + max|Y, + ... + Y,-|>(z1 +oHZy)> x)

jsn
SKpt M1+ my-a (@) + my -1, (— )"~ H(n — NP -(x) + f+(x)
Therefore, we obtain by (3.10), (3.15) and (3.16)
o v P(4;(x))
n=ak S P-() + ()
= i K'(n + D"~ (1 + my-1,(0) + m,-1,(—a)f~H(n — M <o
n=2
(recall that (— 1)! = 1), and so (3.9) will follow if we prove that foreveryn = 2and
2<5kZn,
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L PAx)
3.17) Im o+ 59

To this end observe that it follows from (3.10) and (3.14) that for every n = 2
and2<k<n,

(.18 PAR)S Y Ku M1+ myiy(—0) + my- s (— )y~
i=1

Jo (- (5) 7 (5))

wherefori=1,...,n— 1, H;isthelawof (1 — Z, — Z) g 2 z,<1),and H, is the
lawof(Z, +... + Z,- 1)1(2;';; z;s1)- Now (3.17) follows from (3.18) and Lemmas

2.2, 2.3 and 2.4. This proves (3.9).
Now the conclusion of Theorem 3.2 in the compound Poisson case follows
from (3.9), (3.8) and (3.5).

We have, therefore, established the conclusion of Theorem 3.1 for compound
Poisson processes. As announced, our next step is to prove this theorem in the
general case.

PROOF OF THEOREM 3.1 IN THE GENERAL CASE. We start with observing that

1 1
f | X(0)| dt = I X(t)dt|. Therefore, (3.5) shows that we only need to prove that
0 4]

P(f1 |X(8)] dt > x)
—e 0
(3.19) :‘j‘; A(p)P+(x) + A_(p)F-(x)

We add first a possibility of a drift. Specifically, let p be still finite, and suppose
that

L.

lIA

e}

(3.20) W(6) = ib0 + j (€°* — 1)p(dx).

For an n > 1 let X, = (X,(t),t = 0) be a process with stationary independent
increments, with Lévy exponent given by

g

(3.21) ¥,(6) = n(e®" — 1) + j (@** — 1)p(dx).

Observe that

X, = X as n — oo weakly in D[0, 1].
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The latter space is equipped with Skorohod topology J;. See e.g. Skorohod
[Sko57]. Now, X, is a compound Poisson process and its Lévy measure is given
by

Pn = P + nOipm.

In particular, p, satisfies the assumptions of the theorem. Therefore, as we know
by now,

P ( f 1 1X,(0)| dt > x>
(3.22) lim g =1

1 1
xo® Eeajox,.(z)dzﬁ+(x) + Ee—aj'ox,.(z)drﬁ_(x)

Observe that

(3.23) lim Ee*JoXn®4 — 4 (p),
and

(3.24) lim Ee~*JoXnd — 4_(p).

By an embedding theorem (see e.g. Theorem 1V.3.13 of Pollard [Pol84]) we

may assume that (X(z),t = 0) and (X,(t),¢ 2 0) are defined on the same probabil-
ity space in such a way that

X, —» X asn— oo a.s. in D[0, 1]

and the process (D,(t) = X(t) — X,(¢), t 2 0) is independent of the process (X (1),
t = 0). Then, in particular,

1
(3.25) f D, ()| dt £ max |X(f) — X,(t)| =0

0 0o=sts1
a.s. as n — co. Moreover, Ee*JolDnt0ldt < Ee*JoDndt 4 Eea foDntrat easily seen to
be bounded in n. .

Let (X,(t) = X(t) — bt,t = 0). Then the process Xo = (Xo(t),t 2 0) is a com-

pound Poisson process, and so for this process the statement of the theorem has
been proved to be true. Fix a y > 0. For all x > 0 big enough we have
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P(fllX(t)ldt > x>
(1]

= P(Jl | X(t)| dt > x, JI | X,(0) dt + JI | X(t) — X, (0)ldt > x)
V] 0 0

< P(J‘1 | X,(0) dt > x — y> + P(Jl | X(2) dt > x,fl |D,(t)| dt > y>
(1] (V] V]

< P(Il 1X,(0) dt > x — y) + P(Jl IXo(Oldt > x — |b|,fl D) dt > y).
0

0 0
Therefore, by (3.22) and the properties of exponential distributions,

P(JllX(t)ldt>x)
T 0

lim P+ + 4059

1 1
Ee* jo Xn(t)dt Ee™ @ joxn(t)d‘ )

1 1
EetJoXar  po—af,xwar

< e* max (

E o fo Xodt E —a [y Xott)dt 1
+ max< 2 = eMP( | IDo)dt > 7).
0

1 1
Eea IOX(x)dt Ee —u].oX(t)dt

We now use (3.25) and let first n — oo and then y — 0 to obtain (3.19).

We now consider the general case of characteristic exponent given by (1.2). The
argument is similar to the one before. For an n > 1 let X, = (X,(t),t = 0) be
a process with stationary independent increments and characteristic functional

given by
(3.26) Ya(0) = n(e®" — 1) + n[n(e™ — 1) + n¥e " — 1)]
+ J (€ — 1 — ifx1(x| £ )p(dx).
|x|>1/n
Now, X, is a process with characteristic functional of the type (3.20), and,
moreover, its Lévy measure is
Pn = PLi—1jn, yn + Moy + M20 (g + 120 g2y,

In particular, p, satisfies the assumptions of the theorem. Therefore, (3.22) holds.
Of course, both (3.23) and (3.24) hold as well.
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Write
(3.27) X()=W,() + Z,(t), t 20,
(3.28) Xu(t) = Wy(t) + Upy(1), t 2 0,

where the processes W, = (W,(t), t 20), Z, = (Z,(t), t 2 0) and U, = (U,(¢),
t = 0) are processes with stationary independent increments, with corresponding
characteristic exponents

Yw,(0) =f (€ — 1 — ifx1(|x| < 1))p(dx),
|x|>1/n

Yz, (0) = ib0 — 626%/2 + an (" — 1 — ifx1(]x| £ 1))p(dx)

- 1/n
and
Yu,(0) = n(e™" — 1) + n[n(e®" — 1) + n¥(e” %" — 1)),

The processes W,  and Z, are independent in (3.27), and the processes W, and U,
are independent in (3.28).

Observe that if B = (B(t), t = 0) is a Brownian motion with drift b and
dispersion ¢, then, as before, we obtain

Z,=»B
and
U,=B

as n — oo weakly in D[0, 1] equipped with Skorohod’s J; topology.

We use once again the embedding theorem quoted above to put everything on
the same probability space in the following way. Let W, be the same in (3.27) and
(3.28) and live on (2,, #,, P,), and let Z,, U, and B live on another probability
space (Q,, #,, P,) in such a way that

Z,—Bas.,

U,—-Ba.s.

in D[0, 1] as n —» c0. Observe that (3.25) holds with D,(t) = Z,(t), t 2 0.
Fix once again as y > 0. We have
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P<J1|X(t)|dt > x) = P(fllX(t)ldt > X,
0 0

Jl | X,(8) dt + J 1 |X(t) — X, () dt > x)

=< P(JIIXn(t)Idt >x — y) + P(JIIX(t)Idt > x,jllD,,(t)ldt > y)
1] 0 0

< P<f1|Xn(t)ldt >x — y) + P(f1 [Wi(t)| dt + fl |Z,(t) dt > x,
0 0 0

J l ID(9)l dt > V)-
0

Therefore, by (3.22) and the properties of exponential distributions,

B P(JllX(t)ldt > x)

-
o AL (P () + A_(P)P_(0)

1 1
EetJoXndt  po=afoXntat >

1 k4 1
EetfoX®at ~ pp-afoX@ur

<e* max(

o [ W att)de —a [y Wamdt . 1
+ max( ke , Ee 0 )E (eaj"'z”")""l (J |Dn(2)| dt > ?))
0

1 1
EetloX0dt — po—afoXwar

From this (3.19) follows as before once we observe that
EeaI;W,,(t)dt_}Eeaj,;x‘(t)dt’
1 1
Ee_“.’.ow"m‘“-—)Ee—"joxtmd"

where (X, (t), t = 0) is a process with stationary independent increments and
characteristic exponent

Val6) = f " (€% = 1= ibx1(x] < D)p(d),

—
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E (e“ﬁ)lzn(')""l ( f l ID (1)l dt > y>>
0
1 1 1/2
< (Ee?Jolz-0idy 2 (PU ID,(1)| dt > y))
0
1 1/2 1 1/2
< (E f ezl dt) <P< J ID,(1) dt > y))
0 0
1 1/2 1 1/2
< <EJ (e 4 g™ 20Zn(t)) dt> (P(J |D,(t)| dt > y))
0 0
1 1/2
s k<P< J ID(0) dt > v>) ,
0

where k is an absolute constant. This completes the proof of Theorem 3.1 in its
full generality.

and that

REMARK 1. Theorem 3.1 establishes the tail distribution of the L' norm of
Lévy process on the interval (0, 1). The case of L' norm on an interval (0, T) for
a T > 0 reduces to the above by a simple change of variable. As a corollary, we
obtain that under the assumptions of Theorem 3.1 and under its notation we

have
T
P(f | X () dt > x)
0

(3.29) lim - — =T
s (A+(PNP+(x/T) + (A ()75 -(x/T)

REMARK 2. We cannot characterize so far all Lévy processes for which The-
orem 3.2 holds. However, the present argument given for that theorem easily
shows that its statement holds when, say, g . is equivalent to the tail of a distribu-
tion in & (a), and p _ is of a smaller order. Then, in particular,

P(JTIX(t)I dt > x>

(3.30) AT

The case when j_ is equivalent to the tail of a distribution in #(«), and g, is of
a smaller order is, of course, similar.
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