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EXAMPLES OF NON-UNIQUENESS
FOR THE COMBINATORIAL RADON TRANSFORM
MODULO THE SYMMETRIC GROUP

JAN BOMAN and SVANTE LINUSSON

1. In a mathematical entertainment column the following problem was found.
A farmer asked his helper to weigh five sacks of wheat. However, the helper
weighed the five sacks in pairs of two, in all possible combinations, and wrote
down the resulting ten sums on a paper, without order. The question is if the
farmer could recover the weights of the sacks from this information.

It is natural to pose a more general problem as follows. Let X,, be the factor
space R"/S,, where S, is the symmetric group on n elements. The elements of X, will
be called bags. A bag will be denoted x = (x4,...,x,) and can be thought of as
a list of n real numbers, where repetitions are allowed and the order is irrelevant.
For any integer n = 2 we define an operator W,: X, = X,,—1)2 by Wox = u,
where u = (u;;), u;; = x; + x; for i < j. The problem is to decide for which n the
operator W, is injective. The answer was given in [SS]: W, is injective if and only if
n is not a power of 2.

More generally, if 1 < k < n we can define an operator

VVnk:Xn_'X(K)

corresponding to “weighing k sacks at a time”, that is, Wy'x = u€ X consists of

.....

transform modulo the symmetric group, see [BBO]. Here we will study the case
k=3
The following has been known for a long time ([SS]; see also [FGS]).

W2 is injective if n = 3is different from 3,6,27,and 486 = 2- 33, Conversely,
ifn =3 or 6, W2 is not injective.

Thus the problem to decide if W,? is injective has been left open for precisely two
values of n, namely n = 27 and n = 486. The purpose of this note is to settle those
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two remaining cases by exhibiting examples showing non-injectivity. We can
then conclude the following theorem:

THEOREM. W3 is injective if and only if n = 3 is different from 3, 6, 27, and
486 = 2-35,

What we need to prove is the proposition:

PROPOSITION. W3, and Wy are not injective.

Proor. We first consider the case n = 27. Let x € X, be the bag

{ _4’ — 116’ 210};
this notation means that the element —4 occurs once, the element — 1 occurs 16
times etc. We will show that x and —x = {—2'°, 1'6, 4} are mapped to the same
element by W;,. A calculation show that z = W}, x is the following element of
X(’,’) = X3925:
{ - 617, - 3q’ 0” 34’ 6”}7

where p, q, and r are the integers

10 16
10 16
q—(z) 16—-<3>+16 10 =720

10 16
r= (2) + (2())‘ 10 = 1245.

Thus z is symmetric, that is, z = —z, although x is not symmetric! Therefore
—x % x and W2 x = W34 (—x). This proves the first statement.
To prove the second statement we choose x € X g6 as follows

x={-1, 456, _ 1231 2176 522}.

We are going to verify that z= W3sx is symmetric, so that z=
We(—x) = Whex. Since x is clearly not symmetric, this will finish the proof.
The bag z consists of the numbers — 15, —12, ..., 12, 15 in quantities described
by the integers p,, p,,. .., P11, Where the value of pg is inessential and

56
pl—(z)—1540

p2 =56-231 + (536) = 40656
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231 56
P3 =( 5 )+ (2)-231 + 56-176 = 392161

pa= 56-(2;l> +231-176 + 5622 + (526>- 176 = 1800568

ps = (2?) +56-231-176 + 23122 + (1;6) + (526)’22 = 4358893
pr = 22-(2;1) +22:176-56 + (222) + (1;6)-231 = 4358893

Ps = (1;6) +22-176-231 + (222)~S6 = 1800568

po = 22'(IZ6> + (222>-231 = 392161

Pio = (222> 176 = 40656

P11 = (232) = 1540.

As seen from this list, p; = p;; _; for j = 1,2,3,4, 5, hence z is symmetric. This
completes the proof of the proposition and hence of the theorem.
2. We will now briefly describe how we found the examples above.

n). Following

Let x = (xy,...,x,)eX,and let z = W*x = (z,...,zy), N = (k

[SS] we introduce the sums of powers
() s,=yx; and S,=) z.

Since §,, as a function of x,, . . ., X,, is a symmetric polynomial of degree r, it must
be expressible as a polynomial in s;,. . ., s,. Obviously s, can only appear to first
order in this polynomial; hence there exists a constant A(k, n, r) and a polynomial
Q such that

(2) . Sr = A(k’n’r)sr + Q(Sl""’sr—l)'
A(k, n,r) can be computed (see [FGS, page 188]):
: i-1f M Va1
Alk,nr) = Y (—1) ki L
i=1 —1

In particular, for k = 2 and k = 3 the constant A(k, n,7) has the values
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(3a) A2 nr)=n—-2"1
(3b) AB,mr)=3m* - 2"+ Hhn+2-3 7Y,

If, for given k and n, the constant A(k, n, r) is different from zerofor 1 < r < ¢, then
S1,...,5 can be determined inductively from S, . . ., S, by means of the equations
(2), and hence so can x if t = n. In particular, if A(k,n,7) £ Ofor 1 <r < n, then
W must be injective. This together with (3a) proves that W,2 is injective if n is not
a power of 2. In the same way the “if’-part of the Theorem follows from (3b) and
the following lemma.

LEMMA. The equation
n—Q+hn+2-33"1=0
has the following solutions in integers n = 3 and r = 1 and no others:
r=3: n=23, n==6
r=5 n=6 n=3*
r=9 n=33 n=23%
The proof of this lemma is given in [SS].

We decided to look for examples x where x + —x and W2x = W3(—x).
Assume x has those properties, and let s, and S, be defined by (1). Let n be 27 or
486 and let r be the smallest r such that A(3,n,r) =0, thatis,ro = 50rr, =9,
respectively. Then the equations (2) imply that s, is uniquely determined by S, for
r <ro,hence) x; =Y (—x;) forallr < ry, hences, = Oforall odd r. It is natural
to try to find an example where x has many repetitions, in other words x consists
of n; copies of the number a;forj = 1,2,...,J, where J is a rather small number.
In the case n = 27 we have ro = 5, and taking J = 3 and noting that s, = Y n;a
we get the following requirements on q; and n;

ny+n; +n;= 27
nya; + n,a; + nya; =0
@ nya} + nya3 + nya3 = 0.

We are going to choose a; and then solve (4) for n;. It is natural to choose the a; as
an arithmetic progression. The following argument shows that the difference in
the progression should be divisible by 3.

If ny,n; 2 3 then 3a, and —3a, are the smallest elements in W>(x) and
W,3(—x) respectively, so then a, = —a; and n, = n;. Now the second lowest
elementis 2a, + a, and —2a; — a;_, respectively, hencea, = —a;_, andn, =
ny_,. Repeating this argument shows that x = —x. In (4) we have J = 3 and itis
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easily seen that the case n; and n; < 3 is not possible. We may hence assume that
n, = lor2andn; = 3,s0 a, + 2a, = 3(—a,) or 2a, + a, = 3(—a;) and hence
a, — a; = 3(a; + a;) or a, — a; = —3(a; + a,) respectively. In any case the
difference in the progression should be divisible by 3.

Since we did not want x to be symmetric, we chose the set {a;,a; a3}
non-symmetric about the origin. Thus we arrived at the choice a; = —4,
a, = —1, a; = 2. With those choices of a; the system (4) has the unique solution

n, = 1, n, = 16, n3 = 10,

which gives our first example above.

When n = 486 we have ro = 9, so we can get four equations corresponding to
r = 1,3,5,7 and one more equation, five equations in all. This means that we can
allow five unknowns n;, so we need to choose five a;:s. Reasoning as before we
were led to trying for a; the numbers

-7, —4, -1, 2, 5.
This leads to the system of equations
ny + ny + n3 + ng + ns = 486
(=Dny + (=4)n, + (—Dn3 + 2n4 + Sns =0

(=73n; + (—=49%ny + (—=1)3n3 + 2%n, + 5305 =0

(=7)3n; + (—4)°n;, + (= 1)°n3 + 2°n, + 5%15 =0

(=D 'ny +(=4)"ny + (=1)"n3 + 2'ny + 5'n5 = 0,
which has the unique solution

n=1 n, =56, ny=231, n,=176, ns =22
This gives the second example above.

NoTE 1. Another way of searching for examples is to look for binomial
identities of the type () = (*f). For example (3) = (*?) led us to look for an
example of type {a?b'°,...,c%} and we found {— 52, —2'°,1'°,4°} which also
has symmetric image in X2;). All examples we know of when n = 27 are (modulo
translations and scaling):

{_41 __110 216}
{____52, _210,110’45}
{___71’ _45’ - 110, 26’55}
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{—82% —5% —25,1%,43, 7%}
{—142, — 11, —83 -5 —23,1%,42,7° 10%,13%}

NOTE 2. When k = 4 it is known (see [SS]) that W,* is injective if n % 4,8 and
12, and that if n = 4 or 8, W is not injective. The case when n = 12 is still
unsettled. When1 < r £ 12, A(4,12,r) = Oif and only if r = 6. This means that if
there is an example x + ye X,, with W,x = Wy, then Y xf + ) y? since
otherwise equations (2) would imply x = y. Hence we must have x + —y, so an
example of the above type does not exist.

ADDED IN PROOF. W, has in fact been shown to be injective by John A. Ewell
[E]. The authors want to thank Melkamu Zekele for this information.
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