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ON THE CORRESPONDENCE PRINCIPLE
FOR THE QUANTIZED ANNULUS

MIROSLAV ENGLIS and JAAK PEETRE

1. Introduction.

A general scheme for quantization has been proposed by Berezin (see e.g. [B1],
[B2],...). This scheme involves as main ingredients a complex manifold Q equip-
ped with a measure du and a family of Hermitean line bundles .%, depending on
a parameter 7 — O (interpreted as “Planck’s constant”). (Actually, nowhere in
Berezin’s work one finds line bundles; this point of view was introduced by [P0].)
Let A%(, u, £,) be the Hilbert space of square u-integrable sections of %, Then
to each linear, say, bounded operator T on A*(®,pu,%,) there corresponds
a scalar function f, its covariant symbol in the sense of Berezin; the assignment
[ Ty is the quantization rule. Furthermore, operator multiplication induces
a multiplication of functions (symbols), written (f,g)+>f *,g; formally:
Trus = Tr° T,

REMARK (on geometric quantization). A related point of view appears in
geometric quantization (as developed by Kirillov, Kostant, Lichnerowicz,
Souriau and others). A comparison with Berezin’s theory is made in Cahen, Gutt
and Rawnsley [CGR1]; Section 1 of that paper contains also an excellent
introduction to geometric quantization on the whole.

If Q is a Kihler manifold, there is a natural choice for du: it is the Kéahler-
Liouville (symplectic) measure, while for &, one can take powers of the canonical
bundle (possibly even fractional ones). In this situation there arises the natural
question whether one can recover the Kéhler or symplectic structure from the
multiplication of symbols. We speak of the correspondence principle. In terms of
the so-called Berezin transform B, (definition below in a special case) acting on
symbols, this involves expanding, for each f, the function B, fas a series in powers
of h. The zeroth term is expected to be just f (i.e. we have then B, f — fash — 0).
If the first order term happens to be hAf, whee 4 is the Laplace-Beltrami
operator, — a very lucky situation! — one finds that
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limi
n—o iR

(fxg—g=f)=1{f9g)

where { } is the Poisson backet.
Specializing further we let 2 < C be a planar domain of hyperbolic type and

ds = —I% the Poincaré metric on . Then we have the Bergman spaces A2(€2) of
(z

analytic functions on Q square integrable against w(z)*dE(z), where dE is the

Lebesgue area measure, o« and # being related by the formula 7 = ; thus

1
o+ 2
o> —1 and A > 0. In what follows we shall use as a label instead of 7 the
parameter a. It can be shown that A2(€2) are Hilbert spaces admitting a reproduc-

ing kernel K,(x, y), i.e.
fy) = Lf (KL (x, §)w(x)*dE(x) Vfe AZ(Q).

The Berezin transform corresponding to A2(Q) is the integral operator on
bounded functions on Q2 given by

K,y (x, 7)Ko(y, X)
Ko(y,¥)
In this paper we will mostly be interested in the particular case when Q is the

annulus Ag = {zeC:1 < |z| < R}. It was then shown in [P1] that, for functions
f continuous on the closure of Ag,

B.f(y) = f ﬂf ) w(x)* dE(x).

B,f—>f asa— +o0;

this is a weak form of the correspondence principle. Our main result (Theorem 5)
here will be the following “strong” correspondence principle: if f is a polynomial in
z and Z, then

B,f=f+%w(z)2Af+ O@™ %) aso— +o0.

2

I3}
Here 4 = 5207

the Laplace-Beltrami operator on Ay corresponding to the Poincaré metric ds2.
An important ingredient in the proof of Theorem 5 will be the fact (Theorem 1)
that

is the usual Euclidean Laplace operator on C and 4 = w(z)*4 is

5 a+2
lim K,(z,2) w(z) _ _1_
o T
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as o tends to infinity through the set of even integers. This seems to be closely
related to an analogous result of Cahen, Gutt and Rawnsley [CGR2] for
compact Kahler manifolds. Note that the quantity K,(z, Z)w(z)**? has a mean-
ingful analog also in the general case of a Kihler manifold equipped with a line
bundle, with which we began this discussion. It plays a rdle also, for instance, in
the theory of Hankel forms [JPR].

We also obtain a similar asymptotic estimate for the limiting case R = + oo,
i.e. for the punctured disc Ay = {z€C:0 < |z| < 1} (Theorem 7).

For the annulus itself we find also (Theorem 6) the second term in the
asymptotic expansion of the Berezin transform.

At any rate, even from the point of view of Riemann surfaces it is a very special
situation that we are considering. Accordingly also the method used is adapted to
the situation at hand. It depends on the orthogonal development of functions in
the special basis z%, p = 0, + 1, +2,. .. and performing quite explicit calculations.

It would be interesting to obtain analogous formulas for general Riemann
surfaces. In this direction some results have been obtained by the junior author.
In particular, he has been able to obtain a generalization of Theorem 1 [E].

1Y,
REMARK. As the referee also points out, actually o + 2 (z —h—) is the natural

parameter, not «. However, the passage to o + 2 does not lead to any major
simplification of our formulae. Therefore, in order also to conform with [P1] and
other papers, we have decided to work with a after all.

2. Asymptotics of the reproducing kernels.
From now on, we take Q to be the annulus Ag = {zeC:1 <|z| < R}. The
|dz]
2Im:z

. . |d . .
Poincaré metric |_2_|’ corresponding to the metric on the upper half-plane,
(03]

can be found from the formula in [P2]:

2logR . nloglz|
= |z sin logR °

(1) (2)

The factor 2logR

was ignored in [P2], but we retain it as it will make our results

look more aesthetic; of course, we must keep in mind to modify the formulas from
[P2] accordingly.

The functions 2, p = 0, +1, +2,...,form an orthogonal basisin A2(Ag). For
a an integer, their norms are (see [P2], p. 127)
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R2p+a+2 + ( )a+l
[LE-o(p + mi(x — 2k))°

"zp"2 = 2a+1nAa+1 1

where we have put
A=10gR, p=Q2p+a+ 24

For simplicity, we shall treat only the case when a is even: a = 24, AeZ.. The
last formula then simplifies to

R2(p+A+ 1) 1
[T 4o + 2kmi)
Using the parameter ¢ = p + A + 1, this may be rewritten as

R* —1

+A_ . (2qA + 2kmi)

L |
2Aq[Jf-1 @A%q* + 4n?k?)

@) I22]2 = 224+ 11 A24+124)! = N, (A).

"zp“z = 22A+17IA2A+1(2A)!

3) = Q24+1p f24+1() 4| M, (4),

with the understanding that for ¢ = 0

2q __ 2q _
R ! =2logR(=1imR 1).
q q=0 q-+0 q
The reproducing kernels are then given by ([P2], p. 129)
_ (xy)? L a-r e XP)
4 K (x,7) =
@ Alx, ¥) gz N,(4) = (xy) qg,z M,(A)’

where, abusively, we write simply K, instead of K,. For A = a = 0, this sum
admits a closed expression in terms of the Weierstrass z-function ([Bg], p. 10):

1 1
Ko(x, y) = P [/L(Iog xy) + '7:'7 - -2—/1—]

1 !
) - m[ﬁ(logﬁ') - "7],

where £ is the Weierstrass elliptic function with fundamental periods (27i, —2A),
and 5 = {(ri), n’ = {(—A) are the half-period increments of the Weierstrass
{ function with the same period lattice. Here we have used the Legendre relation
(see [A], Table V, or [MOS], p. 390)

n-(—A) — o' (i) ="7".
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Our main goal in this section is the following
THEOREM 1. With the notations as above,

5 24+2
lim Ka@2e@™" 1
A-+ o0 24 n

uniformly on Ag. More precisely, there is an asymptotic estimate

nKA(;’j)i)(f)“” =1+00k"* uniformly on A,
where
_1+ cos};(an/A) o1
Proor. From (4) we get
|Z|2A+2KA(Z, 7) = Z |Z|2q :
ez M (A)

Denote, for brevity, |z|? = t. Using (3), we see that

|21*4*2 K 4(z,2) = kq(log?),

where
et A 442992 +4Aq 249,
k = et
A(u) qu Mq(A) (2A)2A+ 1 qu kzl qu RZ‘I —_ 1
dl 272
2 4
a4 a A4 ank IZ ‘.
“\24 ,‘Ul n?2k(2k — 1) n 5 R¥—1
dz 212
2
z \24 A 44 W+47‘C k
© =<ﬂ) U=y /@
where
7 = kol) = —( ptw) - -
(7) fw) = o(u)—n AW ——

owing to (5). Consider the differential operators
d2 22
447 + 4’k

®) Dy:= P AT keZ\{0},

187
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and introduce the following notation
(9@)a:=D4Dy-1...D1g(u)

for iterated applications of D,; here g is an arbitrary analytic function of u. Since

24\?4*2 nlogt
2A+2 __ A+1 3 .24+2
(2) —< - > t7 " sin ECVER

the limit which we are interested in is simply

24\? . 244 U
| (T ) (f@)asin®**2 2
lim

A=+ 2A+1 ’

u = logte(0,2A1).

Of course, the Weierstrass z-function with periods (27i, —2A) is the same as the
s-function with periods (24, 2=i), and similarly for {-functions. Taking the latter
as the fundamental period pair and recalling the formula in [A], Table X, or in
[MOS], p. 389, we see that

O = pw+ D=

= icosec =_z z gmriu/A | o~ mniu/A
42 24 A2 ,Km_l ,

where K = ¢2**4 > 1. Expanding 1/(K™ — 1) into a power series
1 o]

- = K—cm,

K" —1 c;

changing the order of summation (which is easily justified), and using the formula

mt™ d

™Ms

N
we obtain
Z — emmu/A Z Z mK Mg mmiu/A
=1 K - c=1m=1
_ © em'u/AK-c
- = (1 _ eniu/AK—C)Z'
But

m’u/AK—c 1 -2 nu lan -2
—_ wiu/2A g —c/2 __
(1 niu//lK—c)Z ( K m'u/ZAK—c/2> (21311](2/1 A ) ’
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so the last sum is equal to

1 00
—— Y cosec?(s + ica),

4c=1
where
oo T n?
240 4T

Replacing s by —s and substituting both formulas into (9), we get

(10) nf(u) = 4A2 Z sin~2(s + ica).

ceZ

To obtain (f(u))4, we use the following wonderful lemma.

LEMMA 1. For any non-zero integer k and complex number C,

o s (2 ) o222+ )

Proor oF LEmma 1. Compute:

& . mu d i n
Eu—zsm (—27+C>——‘—1—;<2ksm °COS* 2A>

2 2
_ S 2k=2.(1 _ ain2). s 2k—1. oy, T
= 2k(2k — 1)sin (1 — sin?) Ve + 2ksin (—sin) YE
2 2
=02 2k2k — 1)sin?*~2% — e 4k?*sin?*

(we have omitted the argument ﬂ + C). Thus,

dz
2_—
<4A o

and the lemma follows.

+ 41t2k2) sin?* = n22k(2k — 1)sin?* "2,

Returning to the proof of the theorem, we get
(cosec?(s + ica)), = DyD4_1 ... Dy (sin™%(s + ica))

24+124—-1 3 - .
= wi.—D_ D_441...D_y(sin” *(s + ica))
2A—124—3"""1 AT 1

(11 = (24 + 1)sin™ 247 %(s + ica).
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Here we have used the “wonderful lemma” (Lemma 1) together with a simple
observation

2k +1
D, = T D_ ©» kF0.
It follows that
(12) (mfW), = AZ (2A + 1)) sin" 2472 (s + ica),
ceZ
and
24\ i 24+2 U
(T) OIS 28 5(_sins Y
24+ 1 ~ S\ sin(s + ica)
However,
(13) |sin(s + ica)|?> = sin(s + ica)sin(s — ica) =
1 1
= ?(cos 2ica — cos 2s) = —i(cosh 2ca — cos 2s).
Therefore

sins 2

sin(s + ica)

_ 1 —cos2s < 2
" cosh2ca — cos2s = cosh2ca + 1

Now we can use the following elementary lemma.
LEMMA 2. Let {a;}{2, be a sequence of positive numbers such that a; > a, 2
as 2 ..., and assume that Z}i 1 @] converges for some q > 0. Then

Y a8 =0(%) asq— +oo.
=1

PRrROOF OF LEMMA 2. We have

@

Z aj = a [1 + (a2/a,)’ Z (a,/az)"]

but,since 0 < a;/a, < 1forj = 3, thelast sumis a decreasing function of ¢, and we
even have

al =aj-[1+ 0((ay/a,))] = ai(1 + o(1)) as g— + 0.

J

'MS

<.
]
-
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Setting

2

a; =
7 cosh2ja+ 1’

an application of the lemma shows that

i SiIlS 24+2 < © Sil’lS 24+2
=1\ sin(s + ica) = /21| sin(s + ica)

Ms

2 4+1 4
1(coshan + 1) =007,

(4
where

1 2
y=1/a, = +cos}21(27t /A) o1

Of course, the sum over the negative ¢’s can be treated in the same way; hence,

(2 asanasintes s 24

—1+00p4),
24+ 1 +0079

and Theorem 1 follows.

For future reference, we list the following two corollaries, which are direct
consequences of Theorem 1.

. |zPK4(z,2) n? , mloglz|
C . = Badud -1l
OROLLARY 3 Ath:lw K, 22 4L

w2 Kaou(2,9) .znlogIZI)
— — S
442 127K 4z, 2) A

, uniformly on Ap.

COROLLARY 4. lim (4 + 1)
A+ ©

, uniformly on Ag.

. , nlog|z|
= —sin? —=—2
A

PrROOF. By Theorem 1,

24+2 U _
|Z|2A+2KA(Z,Z-) — 24 +1 (2—-7;—) Siﬂ‘ZA_ZH'(l + O(y A))
T

Hence,

n? Ky 4(z2) nm® 24—-1(n\"%_ ,nu -4
2 = —_— . 1 + 0 'y
447 22K ,(z.5) 44 24+1\24) " A1+ 0077
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SO

2 K,_(z2) , T .
5 . . —_ 0 —A
RGN AT T A A +067,

and the assertion follows.

ProOBLEM. To extend the results of this section to « non-integer.

3. The correspondence principle.

Consider now the effect of the Berezin transform B, on a “binomial” z*z (k, [ € Z).
In [P1], it was shown that

B 7 » Npix+1N, (22)F / » (zz)P

k=l
7’z peZ NP+kNp+l NP

(14)

peZ NP

and proved that this ratio tends to 1 as « — + oo through the integers. We want to
determine the first order term (the coefficient at « ~ ) in the asymptotic expansion,
as a — + o0, of (14). In other words, we want to evaluate the limit

+k

a—+ o a—'+oo pez p p pez 14

(The computations below indicate that « + 2 is a more natural parameter than a.)
For simplicity, we will again assume that o = 24 is an even integer. From (2) we
get

24+1 R* -1
Ny = (@4 n(24) [154- 4 2Aq + 2kmi)
k=-A
R* — 1

= (24)*4* 1 n(2A4)!

(Qrip 4+ A, (% " k>
Aq
r{ &L _
_ AA+1(2)! R~ 1)- ( i A)
A~ 1)1 4q ’
r ey + A+ 1)

where we have again introduced the parameter ¢ = p + 4 + 1. Recalling the
functional equation for the I" function, we have
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A
F(—mg”A>= /;z ' A :
sinn( q-A) F(——q—

— ,+A+l)
T

m

_ 2mi(—1)*R* 1
~ R¥-—| '
(- as1)
m

Therefore

-2

15) N, =2n'"24424*1(24)'R-

A
r(—‘? +A+ 1)
i
Similar formulas, of course, hold for p + k, p + land p + k + lin the place of p.
Introduce an auxiliary function F,,(x) by

F(x+—-/715,(—>1*(x+%>
= Fi(x).

Ak
F(x)F(x + —Li-—l)>
wi
Then
Npix+iN, (Aq )2
16 ekt =+ A+1).
( ) Np+kNp+l K m

We want to use the formula (see [MOS], p. 12, or [BE], 1.18.(4))

rx+a) L[, .1, _ _2]
ford_, [1+2x(a BYa+b—1)+0(x"?) |

which implies that

IF'x+al(x+c) _ xate—b-d
I'(x +b)I'(x +d) B

(17)

[1+31_(a2+c2_b2——d’—-a—c+b+d)+0(lxl"2)]’
x

both formulas being valid when

(18) largx| <mn—3d (6>0)

Since x = ﬂ + A + 1 satisfies (18), an application of (17) is legitimate, and we
i

get
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A 1 24%ki 1
Fm<~n—f—+A+1)=1+ y -2 +0<A2+ 2),
2<—mi+A+1> 9

so the right-hand side of (16) equals

A2kl [ Aq -1 1
AL 441 -
1+2Re[ — (ni +A4+ ) +0\

A
=1+ 24%kl * 1 +0< L )

A*q* + n*(4 + 1)? A + ¢*
It follows that
N, N (4 + 1)? A
A+ | 1) = 24%kl o< )
( )<Np+kNp+l A2q2 + 752(A + 1)2 + AZ + q2
A? 1
20 =2A%k] ———— i |
(20) 24 klA2q2+n2A2+0(A)
The last equality is justified by the fact that (K = 4%¢?/n?)
2 2 .

1) 4+1 A _ K-24+1)

K+(A+1? K+A>2 (K+ A)K + (4 + 1))

24 +1 1
<—————=0(—)
TK+(4+1)y? O(A>

Consequently, the limit which we want to evaluate,

Npi+1Np 1 t?
Lo\ NN YN
+kiVp+1 p

lim (24 + 2) £ m
A=+ Zpez_j\']—'
p
Y224 + 2)(M _ 1>i
= lim Np+kNp+l M
A—+ o t?
quZ M

q
t=zz2,q=p+ A+ 1,N,=N,(4A) = M(A) =M,

now becomes
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Z n2A? 0 1 t?
442kl lim PeZ 2@ + A2 + FVARA
2

p
A=+ 0 tp ’
ZPEZ N
p

. P - .
Of course, since N is always positive, the term O(1/A) gives zero contribution to
4

the limit.
2 42
It ins to deal with the term —————. N , ,
remains to deal with the term i+ A ote that, by (3)
(23)
N,(A) M4 44%-2424 - 1) A 1
Nyof(A—1)  MA—-1) 442> +4n°4>  A%@® + n*4? A)
Again, the term O(1/A4) will not contribute to the limit, and we have
L s Nl e
, P A2q% + 12 A% N, . "2 N,o1(A—1) N,
lim > = lim 5 -
A-+ o Z _t_ A~ +© 44 Z _t_
peZ N peZ Np
2 K 5
- n lim A—l(z’z) by (4)

47 ) 1P K (2, 2)

by Corollary 3.

_ ., rmloglz]
(24) = sin’ —=—

Thus we finally arrive at

N, t?
etk )| —
) Y24 +2) (Np+kNp+, ) N, _ 4A% , mloglel
im 3 sin A

14
e Yoz N~
peZ
N

or, since A(zFz') = kiZ*~17'71,

lim (24 + 2)

A—=++©

2A(Zkz) 2 A(z"z')
( o wep 222,

Summarizing, we have proved

THEOREM 5. Let f(z) be a polynomial in z and . Then
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lim (x4 2)(B,f — f) = 0*4f.
a—+ o0,
a even integer

In other words,
1.
B,f=f+;Af+O(a'2)

as « — + oo through the even integers, where 4 = w*A is the Laplace-Beltrami
operator corresponding to the Poincaré metric on Ag.
4. The second coefficient.

In this section, we will compute the second order coefficient in the asymptotic
expansion, with respect to a + 2, of (14) (as « — + c0). The computationis broken
into a series of “claims”. Let us begin by introducing some more notation: set

B=A+1,

_A
=1

where, as before, 4 =a/2 (x being an even nonnegative integer) and
q=p + A + 1. We shall also keep our previous notations

For a sequence {a,(A)},e; of complex numbers depending on the parameter 4,
define

t? e
Zpez aq(A) W— quZ aq(A) V
L@fA)i= lim ———=F = lim ——— L,

- t -
A-+ 0 Zpez __I_V_ A=+ quz __M_
p q

Thus, for instance, (24) can be rewritten in short as

A? ., MU
@) 3’(7:&‘) =snon
The symbol . is clearly linear, satisfies #(a,(A4)) = 1if a,(4) = 1for all g and 4,

and, as we have already observed, the positiveness of all the t*/M, implies that

ZL(a (A)) =0 if a,(4) = O(1/A4) uniformly in q.
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Using these properties of 2, the second order coefficient we want to evaluate can
be expressed as

B k =1 2
26)  lim (23)2( z‘fz I _ A mzi"_)

om 2872 ™ 24
N N 24%kl
=%(4B?| 20 27 T in s:D
< [Np+kNp+l Bn?

We now need an amplification of the formula (17):

CLAM 1. In any sector larg x| < 7t — 8,6 > 0, the following asymptotic expan-
sion holds:

F(x+-/1—k—>r<x+il>
(27 Fulv) = Ty el EECR e LRNT Y
I’(x)[’(x+——_—~)

i
where d, e and f are real numbers given by
A%kl 1 A3kl(k + 1)

ProOF. We shall employ the asymptotic formula of Barnes [BE, 1.18.(12)]:

+1
logI'(z + o) = (z+a—7)logz~z+logf+ Z ((/-il-yl)z’ Bji1(®) +0(z73),

which is valid in any sector of the above type; here Bj() are the Bernoulli
k AI Ak + lj}

polynomials. Taking, successively, and adding up

the resulting expansions with appropriate signs, the first three terms cancel out,
and we get

S

R -
lOg Fkl(z) = 22 6 ~ 2 + O(Z 3)’
where
24 2kl
R = By (Ak/mi) + By(Al/mi) — B,(0) — By(A(k + I)/zi) = =2d,
33Kk + )
S = By(Ak/mi) + Bs(Al/ni) — B3(0) — B3(A(k + )/ni) = B 3d.

Exponentiating, we obtain the desired expansion.
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CLAIM 2. With d, e and f defined by (28) above, we have

(29)
NpvieiNp _ o 2dB az__ 2e(B* — C*) — 4BC f
Ny +ikNp+i B*+C*  B*+(C? (B* + C??

ProoF. In view of (16),
NoprisiNp _ Fk,(Aq + A+ 1)

Np +kNp +1
Plugging (27) into this formula gives (29).

2

= |Fu(B — iC)|2~

BZ
CLAIM 3. g(m) = Sil’l2 S.

ProoF. In view of the estimate (21), this follows from (25).

B4
CLAIM 4. g(m) = Sil‘l4 S.

PrOOF. By (3),

M) ( 24\* A(A—1/2)(4 — 1)(4 — 3/2)
M(A-2) \ = A2+ CHA-12+CY

Now by (21),

A(A - 1) A2 B?

and similarly for 4 — 1 in the place of 4; thus,

4+ My A B*
a (2) Tl - Gy + oW,

Awter)-(3) «Giass
(B*+ C?)? 24 M,(A -2
< n ) K4-2(2,2)
24 A-+oo |2I*K 4(z, 2)

= sin“% by Corollary 3.

It follows that

+ 0(B73).



ON THE CORRESPONDENCE PRINCIPLE FOR THE QUANTIZED ANNULUS 199

B*C?

CLAM S, & <—(32—+C2—)5

) = sin?scos?s.

PROOF. Since B*C? = B*(B? + (C?) — B, this follows at once from Claims
3 and 4.

(BZ _ CZ)BZ
COROLLARY. z(m

) = sin*s — sin? scos?s.
CLAM 6. The following analogue of Theorem 1 is valid for the derivative of k 4:
(32)

_ar (24 + (24 + 2)i I 2Mscosec“+2 cot + o(1) ).
SMA) 7 \24 24 ng

ProOF. Let us recapitulate some facts from the proof of Theorem 1: with the
usual notations ¢t = |z|* and u = logt, we have seen that, by (4),

K57 = T o = k)

qeZ q

where, by (6),
P 2A
mh () = (2 A) (/W)
and (nf(u)), is given by (12). Thus we see that

8K 4(z,2) = Y, e < n >2A+2(2A + 1)) sin~ 247 2(s + ica)
2,Z)= ) — =—— )
4 qeZ Mq n 2/1 ceZ

t=1z%, u=logt, s=nul2A.

Differentiation with respect to u gives

qt? 1/ = \?4*3 cos(s + ica)
£E=~_<2A> QA+ D@4+ DT 2T

By a computation similar to (13),

cos(s + ica) |2
sin(s + ica)

_ cosh 2ca + cos2s < cosh2ca + 1 < cosh2a + 1 = (say),
cosh2ca — cos2s = cosh2ca—1 = cosh2a — 1

for any ceZ, ¢ + 0. Employing Lemma 2, we conclude that

=By

c0

24+2

i =280(™*)=0(™%)

sin?4+2g y cos(s + ica)
sin(s + wa)

crosin?**3(s +ica)| T

as A — + oo, where y > 1 is the constant from Theorem 1. Hence,



200 MIROSLAV ENGLIS AND JAAK PEETRE

aA42 cos(s + ica) _ O(y—4
sin sﬁ}‘;———-——smuﬂ(s ica) cotgs + O(y ™),
and (32) follows.

Cramm 7. £(C/B?) = 0.

PROOF. #(q/B?) = lim 4 4 o B™2(Q 4e2qt*/Mp)/(} 4ezt’/M,); by Theorem
1 and (32), this equals

1 —(24 + 1)24 + 2)(m/24)*4* > cosec®* 2s(cotg s + o(1))

Jim 24 + D)(r/24 2% cosec?A* 2 5(1 + o(1))
. —24-2 =
= BBI:IOO—*—B—Z——‘ 7A~(cotgs + 0(1)) = 0.
B3C .
CLAIM 8. g(m—z‘) = ——Sll’l3 SCOS S.

Proor. From (31) we see that
_BC (=) _ M@ C_ ,(C
(B*+C?)?* \24) M(A-2) B B )
In view of the previous claim, Theorem 1, and (32), we therefore have
33C m 4 C Mq(A)
z’(w‘ ¥ CZ)Z) - (ﬂ) i”(B M,(4 —2)

() im 1.4 Tgatitia

24 B-+ o B =n quz tq/Mq(A)
Afn\ .. 1 —(24-3)24 — 2)(n/24)*4 1 sin~24*25(cotg s + o(1))
=—|5;) lm — 24+2 o -24-2
n\24) g+ B (2A + 1)(m/2A4) sin s(1 + o(1))

A\ . —QA-3)Q2A-2( n\?.
=“{(ﬂ> Jm AT heA+ D) (27) sin’ s cotgs + o(1)

= —cosssin3s.

n?  MJ(4) 2 — )
Cramm 9. .?(B[‘MZ M4 — 1) sin s:I)— sin®s.

Proor. This quantity equals to
2 K,_(z2) nu)
lim Bl — ———"—% —sin?—),
Botoo (4A2 1212 K 4(z, 2) 24

which in turn is equal to —sin?s, by Corollary 4.
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B sin?s 1
10. #| B? - = — —gin? 2 2
CLAIM ( [32 e B ]) 5 sin®s + 2sin“ scos?s.
PrOOF. By virtue of (23),
2 M(A) _AMA-12) A2 1 A

442 M(A—1) A2+C* A +C: 2 A2+C*

In view of the estimate (21),

A? _ B? _ C24+1) _ 2BC? +0 1
A2+ C* B2+ C* (CP+A4%(C*+BY) (CP+BY B*)
A similar estimate shows that
4 B_|_ofL
A*+Cc* B*+c*| T\ B/

Hence,

n? M, (A) _ B? _ 2BC? B _1_ B + 0(B~Y)

44* M(A—-1) B*+C* (B*+C»* 2 B*+(? ’

or

B* nr  M(4) L1 B 2BC?
B>+ C* 44> M (A-1) 2 B*+C*  (B*+C?
Thus,
B sin®s 12 M,(A) .
2 _ = a7 ¢in?
B [132+c2 B ] 3[4/12 Ma—1 °"°
B? N 2B*C?
tI B T B0

-+ O(B™2).

~ + 0(1/B),

and the claims 9, 3 and 5 give

1n2
'g(BZI: B sin S]): _sinls+%sin2s+2sin2scos2s

B? + C? B
1 . 2 . 2 2
= — —sin®s + 2sin“scos”s,

as asserted.

Putting all the pieces together, we get from (26) and (29)
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B,Z*% 442kl
li A+ 2L -1 ——————sin’s | =
Jlim 24 +2) ( 77 224+ " s)
= 8d(2sin? scos?s — §sin?s) + 4d*sin? s
+ 8e(sin*s — sin?scos 2s) + 16fcos ssin’s,

where d, e and f are the numbers given by (28). Using the relation e = d(d + 1)/2
and a little elementary trigonometry, the right-hand side can be simplified to

(33) 8dsin? s + 8d(d — 1)sin*s + 16 f cos ssins.
Let us compare this with the action of (w? 4)? on z*z. We have
442 . 1 Z .
(34) w? A5 = 7 Iz|? sin? Z0BZZ  p1k- 15171 — agsin2 s 45

Consequently,

d n
2 k 1-1 k-1, —
Aw?A4z¥7") = 4d - P [z 17! Ysin?s + Z¥2' "1 - 2sinscos s ZA]

-4d|:klz" 1zl-1gin2s + z*" 115"~ 1. 2sinscoss* H+

+ kz¥~1z'1-2sinscoss- g+z" 1zt El— 2(cos?s — sin’s)- 2A]

and

(35) w?dA(w?4Z*3) =

an? ., 2 T n’ 2 02 k51
= sin®s-4d| klsin s+(k+l)7s1nscoss+—/17(cos s —sin®s) | 22",

2

Hence,

2A)2 k3 . 16A(k .
Lw_Zk)Z_I_z_z_ = 16d?sin*s + —Lniﬁd'sm3 scos s + 8d(sin? scos? s — sin*s)

=16d(d — 1)sin*s + 8dsin*s + 32fsin®scosss,

and, owing to (34),

1 (w?4)?2¢2' w?AZ*3

5 © z“)f‘ < e = 8d(d — 1)sin*s + 8dsin®s + 16 f sin® scoss,

which is the same expression as (33)! Thus, we have finally proved that
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lim (24 +2)?

A+

BAz 7! L 4A%kl 2\ [@?4) + (@ 4))27
QA+ " 24) T 7

and may summarize our results in the following theorem:

THEOREM 6. Let f be a polynomial in z and Z. Then the asymptotic expansion

B.f=f+~ ! S A+ ! <"2 a 0?3
(a+2)2 +)f+ ((1)

holds as o — + oo in the set of even integers, where A = w(z)*4 is the Laplace-
Beltrami operator corresponding to the Poincaré metric on Ag.

REMARK. Itis clear that the above procedure could be applied to obtain other
higher order coefficients as well: slight modifications in the proofs of Claims 4 and

8 show that
k2n—k
& <(_l?2—%—67)"—> = (—1)*sin* scos® ¥,

and the remaining terms, of the type that appears in Claim 10, can be handled by
Theorem 1 and (32). Thus, departing from Barnes’s formula for log I'z + ), it is
in principle possible to obtain the whole asymptotic expansion of B, f The
calculations involved, however, become increasingly difficult, and so we prefer
not to pursue this direction any further.

5. The punctured disc.

We conclude by investigating the limiting case R = + o, or, equivalently, the
case when Q is the punctured disc

A, = {zeC:0< 7| < 1}.

We begin by computing the Poincaré metric. Introduce the uniformizing par-
ameter

{=—ilogz, orz=¢° (Im¢>0).

Then
dC = -l:dzi, ImC = - lOgIZI,

and so




204 MIROSLAV ENGLIS AND JAAK PEETRE

gl _ |dz|
2Im¢  —2|z|loglz|”

Thus we are led to take
w(z) = —2lz|loglz] (z€Ay)

and consider the weighted Bergman spaces 42(A,), « = 0, of analytic functions
on A, square integrable with respect to w(z)*dE(z), dE being the Lebesgue area
measure. Let us compute the A2 norms of the functions z, n =0, +1, +2,....
Using the polar coordinates, we have

1
1
I2"11%2 =j |2 w(2)*dE(z) = 27rj. 2“r2"+“log“—r—-rdr =
@ Ao o

+ o
1
=2““7tf e (ntat e gy (t=log-;—,dr=—e“dt).
0

For a = 0, this is finite if and only if
2n+a+2>0.
Substituting u = (2n + o + 2)t, we find

2u+1n + o0 2a+1n_a|
"2 —uy dy = : = X
12"l (2n+a+2)°‘“fo W = e g 2t = N

Looking at Taylor expansions reveals that the functions {z"},. _+2y2 form an
orthogonal basis in 42(A,). It follows that the reproducing kernels are given by

@n + o + 2™t

1 S\
Ka(an) = ; Z 2a+1a! (Xy) ’ x7y€AO'

n>-at2

For simplicity, we will henceforth consider only the case when « is an even
integer: « = 24, AeZ ... Switching to the parameter ¢ = n + A4 + 1, we see that
the basis is simply {z2~4 "'}, while the reproducing kernels are given by

0

@A ,.=Z_A(n + A + 1) (xp)y

l a
- S\g-A-1,24+1
A ,,; (xp) g4,

KA(x’ .}-)) =

where, abusively, we write K, instead of K, Thus, again, we see that
(x7)** 1K 4(x, ) is an analytic function of log xy:

(x§)* "1 K 4(x, 7) = fa(logx7)
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where

1 S i T ( 1 d? e
S = G ,,Z:lq er=11 2k(2k — 1) 7177) a(l — )

It follows that

K4(z,2)(2)*4*2 = |logt|*4*2- f,(logt)

24+2 o

v

24+1 -
Y g*tle
=1

@A),

(36) =

where we have put
t=122€(0,1), v= —logte(0, + c0).
Now we can establish the following analog of Theorem 1.

THEOREM 7. For each zeA,,

llm w(z)2A+2 KA(Z9 Z-) = _!_
Ao too 24+ 1 n’
as A tends to infinity through the integers.
PrOOF. According to (36),
CO(Z)2A+2KA(Z,Z-) _ 02A+2 020: q2A+1e—qu _ 02A+2 e-—u(p(e—u Y 1)’
24 +1 QA+ Dn = 2A+ N)n ’ ’

where

©
D(z,s,w)= Y, W+n7°z" |zZ<l,w#0,-1,-2,...,

n=0
is the Lerch transcendental function. According to Lerch’s inversion formula (see
[BE], 1.11.(6)),

+ )
¢(Z,S9W) = Z“Wr(l —_ s) Z (—lOgZ + 2"7[5)’—182"”'"',

n=—oao

0<w<=<1,Res <0,larg(—logz + 2nmi)l £ =,

S0 in our case

+ o0

Ple?, —24—1,1)=e’ QA+ 1) Y (v+ 2nmi)”

n= —a

24-2

Therefore
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2A+2K = 24+2 +o
CL)(Z) 7 — f(z’Z) - v - Z (l) + 2n7”-)—2.4—2

1 1 \24+2
o)
T W ,Fo\V+ 2nmi

But, as v€(0, + o), Lemma 2 can be applied to

2 UZ

= T e <1 forn#0,

v

a, =

v + 2nmi

and it follows that the last sum tends to zero as 4 — + co. This completes the
proof.

Observe that, in this case, the convergence is not uniform on A, but only on
subsets of A, that are bounded away from the origin.
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