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A NOTE ON TOLSTOV’S THEOREM
ON HARMONIC FUNCTIONS IN THE PLANE

N. V.RAO

Abstract.

Tolstov has proved in [T] that if u is any bounded function which has second order derivatives
separately in x and y and satisfies the Laplace equation in a plane region £, then it is harmonic in the
classical sense, i.e., u is twice continuously differentiable jointly in x and y and satisfies the Laplace
equation. In this note I shall show that if u belongs to L''°° and satisfies the rest of the hypothesis of
Tolstov, then u is harmonic in the classical sense. Also I shall show that this is the best possible result.

1. Introduction.

The aim of this note is to clearly establish the best of the theorems of a certain
kind which belong in the realm of regularity of solutions of the Laplace equation
in the plane. To this end we need to abuse some well-established notation.

Let C denote the space of functions u defined on a region Q in the Cartesian x,
y plane with the following properties:

a) u is continuous,

b) u is twice differentable in x, y separately,

C) U, + u,, = 0 everywhere in Q.

Let LP'°° denote the space of functions u which satisfy b) and c) above and
instead of a), satisfy

a) |ul? is locally summable.

We assume that 0 < p < oo. Let H denote the space of real-analytic functions
that satisfy the Laplace equation in Q. Now we can state the classical theorem as
proved in [P, pp. 239-241] as follows:

THEOREM 1.1. H = C.

In the same book on page 238, Petrovskii presents the example,

_1
u=Ree™z*
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to show that the theorem cannot be improved. This particular function is
presented by various authors [L, p. 107], [T, p. 559] to name a few, for a similar
purpose in each case. For example Tolstov [T] proves,

THEOREM 1.2. [*''°¢ = H,

He cites the same example in order to show that his result is the best possible.
Another interesting fact is that Tolstov makes use of the theorem 1.1 to derive
theorem 1.2. Betterment is obtained froma strengthening of the maximum
modulus principle. In this note we shall establish an even better maximum
principle than Tolstov’s and assuming the theorem of Tolstov, derive

THEOREM 1.3. L''°° = H.

This is not unusual as can be seen from the various versions of the Phrag-
men-Lindelof theorems, one successively better than and based on the previous
one.

The example of

Xy
U=-—0r
|z|*

shows that u satisfies b) and c) everywhere in the plane and belongs to every L'
for 0 < p < 1 and does not belong to H. This proves that our theorem cannot be
improved.

2. The proof of Theorem 1.3.
We need a lemma before the actual proof.
LeEMMA PL. Suppose u is sub-harmonic in the square
D={(x,y:0<x<R,0<y<R}
and
limsupu < M forevery qo€0D\{0}

990
where qe D, O is the origin, and further
limsupr’M(r) £ 0
r-0
where M(r) = sup u on the lines x = r and y = rin D. Then u £ M on all of D.

This is a non-traditional version of the Phragmen-Lindeloff theorem. Nor-
mally oo is the exceptional point and in our case it is the origin. For the case of
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holomorphic functions, one can find the proof in Boas [B, pp. 242-245] for
example. Our lemma is easily established by imitating the proof.

Now for the proof of theorem 1.3. Since u,, u, exist everywhere in Q,
Q=0UYE,
where E, is the set of points in 2 for which
lu(z + h) — u(z)) < n|h| for |k < 1/n.

Here welet z = x + iy denote (x, y) and h be either real or purely imaginary, n any
positive integer. One can check that each E,, is relatively closed in Q. See [T] for
example. Let F be the set of all points z in Q such that u is not bounded in any
neighbourhood of z. Obviously F is a closed set and also any interior of any E,
does not belong to F. By the Baire category theorem we see that the interior of
F is empty. Next we show that F itself is empty. Since F is a locally compact
metric space and is a countable union of sets F n E, closed in F, by the Baire
category theorem there exists an open square S contained in Q such that for some
positive integer n,

@.1) SAFcSnE,

and S N F is non-empty. Choose a point gin S N F and a square Q of side length
0 < 1/nentirely contained in S and centered at g. We say that a point { is “seen”
by a point z in the plane if z — {is real or purely imaginary. Thus if a point in { in
Q is seen by a point zy in Q N F then

u(0) — u(zo)l < nd < 1
since z, belongs to E,. Since such a z, and g both see a point 4, we obtain

22 ) — u@) = ) — ulzo)l + lu(zo) — u(A) + |u(4) — u(g)l < 3.

Hence on all vertical and all horizontal segments of Q that meet F, the estimate
(2.2) is valid.

Let @, = Qbeaclosed square centered at g and let G be the union of all vertical
and/or horizontal segments running from one end of Q to the other meeting
0N F.By(2.2),|u] < |u(g)| + 3 on G and by the continuity of u on horizontal and
vertical lines, u is bounded on 0Q;. So there exists an m such that |u] < m on
y =G udQ,. Since F is closed, G and so y are closed. If Q; = y, then |u| is
bounded by m on Q, and hence q¢ F — a contradiction.

Suppose that Q,\y is non-empty. Because y is made up of of vertical and/or
horizontal line segments, Q, /y is a disjoint union of rectangles. Let R be one such
rectangle,and let I, I, I3, [, denote the segments from y bounding R on the north,
south, west, east respectively. Now the region A which is the union of the vertical
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strip bounded by /3, [, and the horizontal strip bounded by I,, 1, is free of points of
F and so by theorem 1.2,

(2.3 u is harmonicin A.

Further on each of these lines |u| < m. Also since at each of the corners ¢ of R, the
disc with center at a point ¢ in R close to ¢ with radius |t — c| lies entirely in 4 and
since u belongs to L', it is easy to see that

2.4) mlt — ol u(t) < f |u(z)| dx dy;

lz=t]<|t—c|
lu(t) = o(t —c|™%) as |t—c|—0.
We now apply lemma PL to R at each of the corners and obtain that
2.5 |ul < m

on R and hence |u| < m on all of @, which means q¢ F — a contradiction. This
proves our theorem 1.3.

3. Conclusion.

The theorem of this paper is closely related to the Looman-Menchoff [R] and so
does its proof. Also for more information and bibliography, one must refer to [S]
and the references there. The open problem that remains interesting in this area is
what kind of sets F are sets of singularities for functions u that satisfy b) and c).
From our proof here it is obvious that F must be closed and totally disconnected.
In fact one can assert that there exists a relatively open and dense subset U of
F such that locally any projection of U on to the axes is totally disconnected. One
canask ifu belongs to L? forsome 0 < p < 1,is the set F of measure zero? Would it
depend on the p? The same questions remain open in the case of the Loo-
man-Menchoff theorem also.
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