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ON FATOU-TYPE THEOREMS FOR
NON-RADIAL KERNELS

SADAHIRO SAEKI

In his 1906 paper [2], P. Fatou proved thatif uis a bounded Borel measure on the
unit circle T and if u is differentiable at some z, € T, then the Poisson integral P[]
of u has a nontangential limit at z,. The “standard” proof of this classical result
heavily depends upon some special properties of the Poisson kernel and integra-
tion-by-parts, which renders the proof somewhat complicated; see A. Zygmund
[9; p. 99-101] and, for a detailed proof, K. Hoffman [3; pp. 34-37]. (The proofs in
[9] and in [3] must be modified because the function g(t) in [9], that is, the
function G(¢) in [3] is not integrable on any neighborhood of ¢t = & in general.)

Recently higher dimensional analogues of Fatou’s theorem and some partial
converses to them have been obtained by W. Ramey and D. Ullrich [6] and also
by J. Brossard and L. Chevalier [1]. The harmonicity of the Poisson kernel is
essential in [6] while the authors of [1] have proved Fatou-type theorems for
some radially decreasing continuous kernels including the Gauss kernel. In the
present paper, we shall obtain several analogues of Fatou’s theorem for a wide
class of kernels which are not necessarily radial or real-valued.

In the sequel, we shall choose and fix a norm || || on R" for which the unit open
ball B:= {x: |x| < 1} has |B| = 1, where |B| is the Lebesgue measure of B.
A nonnegative function K on R" is said to be radially decreasing if || x| < ||x’||
implies K(x) = K(x'). We shall write A for Lebesgue measure on R". In the
following definitions, F is a Borel function on R", xo€R", and p is a Radon
measure on R", that is, a countably additive complex-valued set-function defined
on the ring of all bounded Borel subsets of R".

Define F,(x) = y "F(x/y) for y > 0 and xeR". Let

©1) FLUI(%0,) = (Fy  i)xo) = j Fy(x0 — ) du)

for each y > 0 for which the integral exists. The least radially decreasing major-
ant of F is the function F* defined by
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0.2) F*(x) = sup{|[F(x): X eR" and [x'| 2 [lx|} VxeR"

Let E be a bounded Borel subset of R" with |E| > 0. We say that u is
differentiable at x, with respect to E if there exists y e C such that
(0.3) lim p(xq + rx + rE)/[rE| =y VxeR"

rlo

In this case, we call y the derivative of u at x, with respect to E and write (Dgu)(xo)
for y. If, in addition, E = B, then we shall drop “with respect to B” in the above
definitions and write (Du)(x,) for y. The Hardy-Littlewood maximal function of
uat xo is

(0.4) (Mp)(xo) = sup{|ul (xo + rB)/IrBl:r > 0}.

If u is real-valued, we define the upper derivative and the symmetric upper
derivative of p at x, by setting

0.5)  (UD u)(xo) = sup {limsup pu(xo + rx + rB)/|rB|: xeR"}, and

rlo

0.6) (SUD p)(x,) = lim sup u(xo + rB)/|rBl.
rlo

Now let H be a function defined on a strip R” x (0, t) for some ¢ > 0. We say
that H has a sectorial limit y € C at (x,,0) if

0.7 lim H(xy + yx,y) =7y VxeR"

ylo
A nontangential null sequence is a sequence (x, y,) in the open upper half-space
R" x R such that |x;|| + yx = o(1) and | x;||/yx = 0(1) as k = co. H is said to
have a nontangential limit y at (x, 0) if

(0.8) lim H(xo + X, yi) = 7
k-0

for all such sequences. Finally, let K be a strictly positive Borel function on R".
We say that K satisfies the comparison condition if

0.9) sup{K,(x)/K(x:0<y <1 and |x| =1} < co.

For some examples of such functions, see Examples 1.7 stated below.

IfT = ypand F = P (the Poisson kernel), then Fatou’s theorem for the real line
is the statement that if |F| [|u] < co everywhere and if T[x] has a sectorial limit
7 at(xo, 0), then F[u] has nontangential limit y at (x,, 0). It is natural to ask: For
which test functions T and kernels F, is this abstract form of Fatow’s theorem valid?
(In our usage, a kernel simply means an L,-function.) In section 1, we shall prove
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that if x, is a Lebessgue point of x4 with (Mu)(x,) < oo, then F[u] has a nontan-
gential limit at (x,,0) whenever F is a bounded Borel kernel with | F*|; < co.1In
the other three sections, x, is always chosen to be the origin of R". In section 2, the
Lebesgue point condition at 0 is replaced by the weaker condition that
(SUD |ul)(0) < co. We shall prove that if (Mu)(0) < co and if there exists
a bounded Borel kernel T on R"such that [ Tdx = 1, [ T*dx < oo and T[] has
a sectoril limit y at (0,0), then F[u] has nontangential limit ij dx at (0,0) for
each bounded continuous kernel F with j F*dx < o0. The major hypothesis in
section 3 is that (UD |u|)(0) < oo. Results similar to those in section 2 will be
proved for a wide class of bounded almost continuous kernels. (For the definition
of almost continuity, see section 3.) The final section contains some generaliz-
ations of Fatou’s theorem for the real line and the circle, each with a simple proof.

§1. Nontangential Convergence at Lebesgue Points.

Let 1 be a Radon measure on R". Recall that x, € R" is called a Lebesgue point of
w if there exists y € C such that

lu—yAl(xo + rB)/IrB| = 0(1) as r|0,

where A is Lebesgue measure on R". In this case, (Du)(x,) exists and equals y. The
following result with K = P (the Poisson kernel) is well-known and is proved in
Stein [7; pp. 197-198]; see also Stein and Weiss [8; pp. 13-15].

THEOREM 1.1. Let the Radon measure p satisfy

0] lul B)/IrB| = 0(1) as rT oo,

and let K be a bounded Borel function on R" such that [ K*dx < co. Then
K*[|u]] < oo everywhere and K[u] has nontangential limit (D,u)(x(,)jde at
(x0,0) for each Lebesgue point xq of .

PrOOF. We shall prove the first conclusion at the very end of the proof.

To prove the second conclusion, choose and fix a Lebesgue point x, of u. We
may and do suppose that (Du)(x,) = 0 after replacing u by u — (Dp)(xo)4. It will
suffice to show that K*[|u|] has nontangenrial limit 0 at (xo, 0). Therefore we may
further assume that K = K* and u 2 0, and also K(x) > 0 for some x # 0 and
u:=sup{K(x): x + 0} = K(0).

First consider the case x, = 0, so (Mu)(0) < oo by (i). For each 0 < t < u, let
B, = {x: K(x) > t}. Then B, is a ball centered at 0 because K is a radially
decreasing L,-function. Moreover, Fubini’s Theorem ensures that y > 0 implies
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r

K(x/y)
) K, 00 = v~ | Kee/y)du) =y J L dtdu)
J

r

=y |l Koy) > £ dt

JO

(fu

=y™"| wyB)dt
0

uﬂ()’Bt)
LT
L vB) Bl

This with 4 = A shows that t - (Mu)(0)|B,] is an L,-function over (0, u), and the
integrand of the last integral in (1) is dominated by this L!-function and con-
verges pointwise to 0 as y |0 since (Du)(0) = 0. It follows from Lebesgue’s
Convergence Theorem that (K, * u)(0) —» 0 as y | 0. (Notice that this proof does
not require the boundedness of K, so it gives a simple proof of Theorem 1.25in [8;
p- 13])

Now let « > 0 be given. By our additional assumption assumption on K,
K(x) > O for some x # 0. Therefore Lemma 1.3 stated below yields § = f(x) > 0
such that ||x'|| < « implies K(x' + x) < BK(x/p) for all x e R". Therefore, ify > 0
and ||x'||/y < a, then

@ K[p)(x',y) =y™" j K((x" — x)/y) du(x)

Sy'B f K(—x/By)du(x)

=" (Kgy*m)(0) = o(1) as ylO.
Since a > 0 was arbitrary, this confirms that K[x] has nontangential limit 0 at
0,0).
In general, define a Radon measure u, by setting uo(E) = u(E + x,) for each
bounded Borel subset E of R". Then p, satisfies condition (i), 0 is a Lebesgue point
of o with (Duo)(0) = 0, and a simple calculation shows that

K[ul(x,y) = K[pol(x — x0,y) V¥xeR" and y>0.

Hence, by the above result applied to u,, K[ ] has nontangential limit 0 at (x,, 0).
Finally, pick any Lebesgue point x, of 4 such a point exists by Lebesgue’s

Differentiation Theorem. Define y, as in the last paragraph. Then (1) and (2)

applied to p, show that K[pe] < oo everywhere, which completes the proof.

REMARK 1.2. Let K be a radially decreasing bounded L,-function on R" with
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K(x) > Ofor some x % 0,and let u be a Radon measure on R". Then the last proof
shows that

(@) (Ky*[u)O) = K] (M)(©0) Vy>0,

and that given a > 0, there exists 6 = f"*! > 0 such that

(b) K[lp1x',y) < 8 [IK[l:(Mp)©)
whenever x'€R", y > 0 and ||x'||/y < a.

LeMMA 1.3. Let K be a bounded nonnegative radially decreasing function on R"
such that K(x) > 0 for some x £ 0. Given a > 0, there exists B > 0 such that

K(x' + x) £ pK(x/B) Vx'eaB and xeR"

Proor. Fix a > 0 and any unit vector x, in R". Choose B > 2 so large that
K(0) < BK(2axo/p). If |x']| < @ and | x| £ 2«, then

K(x' + x) = K(0) = BKQoxo/p) = BK(x/B)

since K is radially decreasing. If ||x'|| < « and ||x| > 2a, then ||x|/2 £ ||x" + x|};
hence

K(x" + x) < K(x/2) £ BK(x/B),
as desired.

REMARK 1.4. Suppoose u is a Radon measure on R", K is a bounded non-
negative radially decreasing function on R", and (K, * |u[)(0) < oo for some ¢t > 0.
Then K[|u|] < oo on the strip R" x (0, ¢).

To see this, fix « > 1. If x,xeR" and | x| = «||x'|, then ||x" — x| = ||x|| —
X'l = o Y(a — 1) ||x|. Therefore x'eR" and 0 < y < a ™ *(a — 1) implies

Y'K[u(x',y) = KO)|ul («[IX'l| B) + j Ky ' — x))dul (x)

{1xll Z allx|l
< KO) |l (@'l B) + fK(y“a"(a = Dx)d|pl (x)

< K(0) |ul (e |Ix'|| B) + t"(K, * |ul)(0) < 0.
This confirms our assertion.

THEOREM 1.5. Let K be a bounded strictly positive radially decreasing function
in L,(R") that satisfies the comparison condition (0,9), and let p be a Radon measure
on R" such that (K, * |u|)(0) < oo for somet > 0. Then, for each Borel function F on
R" with |F| < K and each Lebesgue point x, of p, F[u] has nontangential limit
(Dp)(xo) | F dx at (xo,0).

ProoF. We may and do suppose that (Du)(xo) = 0 and u 2 0. It will suffice to
show that K[u] has nontangential limit 0 at x,.
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First consider the case x, = 0. Let ¢t > 0 be as above, and define 4’ = y,pu and
i’ = pu — . Then y' is a bounded positive measure with (Du')(0) = 0. Hence
K[ '] has nontangential limit 0 at (0, 0) by Theorem 1.1. To prove this conclusion
for K[u"], let & > 0 and let § = f(«) > 0 be as in Lemma 1.3. Then, if x"e R",
y > 0and | x'||/y < a, we have

(1) K[p")(ex', ty) = (ty)™" fK((tX' — X)/ty)dp"(x)
S(@y)p JK(X/ﬁty) du’(x)
=gt j Kpey(x) du(x)

=p! JQ(x, YK (x) du(x),

where Q(x, y) = 0 for ||x]| <t and
Qx,¥) = Kpy(x)/K(x) = Kyt~ x)/K(t ™ ')

for ||x|| =t Since K* = KeL,, it is easy to check that K(x) = o(1/||x|") as
x|l = oo (see [8; p. 14]); hence Q(x,y) = o(1) as y |0 for each fixed xeR".
Moreover, Q is uniformly bounded on R" x (0, 1/B) because K satisfies (0.9). It
follows from (1) and Lebesgue’s Convergence Theorem that K[ u"](x;, yi) = o(1)
as k — oo for each nontangential null sequence (x;, y,) with sup, ||x; [|/y, < a. As
o > 0 was arbitrary, we conclude that K[u"] has nontangential limit 0 at (0, 0).
Hence K[u] = K[y'] + K[¢"] has the same property.

The proof for the general case (x, F 0) will be obvious from the corresponding
part in the proof of Theorem 1.1 combined with Remark 1.4.

REMARK 1.6. The comparison condition on K is essential in Theorem 1.5. In
fact, suppose that the function K in Theorem 1.5 does not satisfy that condition.
Then there exists a sequence (y,)7 in (0, 1) and a sequence (x,){ in R™\ B such that
K, (xi)/K(x;) > k for all k. It is easy to check that y, — 0and ||x,| — co. Define
u= Y7 {k*K(x\)} ~'5,,, where 6, is the Dirac measure at x. Then Ois a Lebesgue
point of u with (Du)(0) =0 and K[u](0,1) = {Kdu < oo. But K[u](0,y,) =
f Ky, du > k for all k. Hence the conclusion of Theorem 1.5 does not hold.

ExaMPLEs 1.7. Leta 2 nand B 2 O satisfy either (i) « > n or (i) > 1. Define
K(x) = K(x,a, ) = 1/[(IIx]|* + 1){log(2 + [x])}’] VxeR"
Then K is in L;(R") and satisfies condition (0.9). Similarly, if « > 0 and > 0,
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then the function exp(—« |x||?) satisfies (0.9). In particular, both the Poisson
kernel and the Gauss kernel satisfy (0.9).
The proof is straightforward.

Now consider the class of all ¢ € L,(R) having the property that the functions
g;.x(x):= ¢(2’x — k) with j, ke Z span a dense subspace of L,(R). This class of
functions is of vitalimportance in the study of wavelets. The following result gives
a sufficient condition in order that ¢ possess the above property.

THEOREM 1.8. Suppose that ¢ is a bounded measurable function on R" such that
j ¢*dx < oo and [pdx = 1. Let (a;)7 be a sequence of positive reals such that
a; — 00, and let E be a nonempty subset of R" such that
@) lim inf {distance(a;x, E)} < o0 for a.a. xeR"
j= oo
Then the functions
(ii) 9, x(x):= ¢plo;x — x) with jeN and x'e€E

span a dense subspace of L, Ly(R") with respect to the norm |f|, ;:=
/1, + £ whenever 1 < p < co.

PROOF. Suppose this is false for some 1 < p < oo. Then the Hahn-Banach
Theorem yields a nonzero element fe(L, + L,)(R") such that

1) Jd)(ajx —x)f(x)dx=0 VjeN and x'eE.
Write y; = 1/a; and y(x) = ¢(—x). Then je N and x’ € E implies

e YL, y) = jWyj(ij’ — x)f(x)dx

= of Jd)(ajx —x)f(x)dx = 0.

Now let x, € R" be a Lebesgue point of f satisfying (i). So there exists a subsequ-
ence («)f of (a;)7 and a sequence (x;)f of elements of E such that
sup; Ila;xo — x|l < oo. Since a; — o0, it follows that the sequene (y}x;, y}), where
¥; = 1/a, converges nontangentially to (x,,0). Since y* is a bounded radially
decreasing L,-function and [y dx =1, it follows from Theorem 1.1 that
YLAIW;x), ¥}) = f(xo) as j > co; hence f(x,) = 0 by (2). Since this is true for all
X as above, we conclude from Lebesgue’s Differentiation Theorem that f =0
almost everywhere, which contradicts our choice of f.
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§2. Fatou’s Theorem for Continuous Kernels.

Throughout this section, we choose and fix a strictly positive radially decreasing
bounded L,-function K on R" that satisfies the comparison condition (0.9), and
also a Radon measure u on R" such that

2.0) (SUD |u))(0) < 0 and (K, *|u|)(0) < c0 for some ¢ > 0.

Thus Remark 1.4 ensures that if F is a Borel function on R" with |F| < K, then
F[u] is defined on the strip R" x (0, ¢).

LeEMMA 2.1. Let H be a radially decreasing bounded L,-function on R". Then
there exists a radially decreasing function Se C(R") n Ly(R") such that H < §
pointwise and

sup{H(x' — t " 'x)/S(x): |x'|| <a and O<t<a}—>0 as [x|— o0
for each fixed o. > 0.

PROOF. It is easy to construct a radially decreasing function Fe C(R")n
L(R") such that H < F pointwise. Regard F as a function on [0, c0) in the
obvious fashion. Then we can choose asequencer, = 0 < r; < r, < ---such that

1) F(rj-1/27Y) > (j + 1)F(r;/2)) VjeN, and
2 i G+ 2)!f F(x/2))dx < o,
Jj=1 R(rj_y,ry

where R(r,s) = {x:r < ||x|| < s} for r < s. Define
3) S(x) = j!-max {F(x/2'~1),(j + D)F(r;/2)} VxeR(rj_,r;) &jeN.

Since F is a radially decreasing continuous function on R, it follows from (1) and
(3) that § is also such a function on R". Moreover, S = F > H pointwise and

@ j S(x)dx < j! J {F(x/27Y) + ( + DF(r;/2%)} dx
R(rj_y.ry) R(rj-q,1y

SGi+2) J F(x/2%)dx.

R(r = 1s75)
Hence | S(x)dx < oo by (2).
Finally, let « > 0 be given. By Lemma 1.3, there exists ke N such that k > «

and H(x' — x) < kF(2x/k) whenever x'eaB and x e R". Therefore, if |x'|| < o,
0<t<aand ||x| > r, then

H(x' — t™'x)/S(x) < kFQx/k?)/{(k + 1)IF(x/2%} < 1/k!

by (3). Since k can be chosen as large as one wishes, this completes the proof.
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LEMMA 2.2. Suppose (Mp)(0) < oo, Fe C(R"), [F*dx < oo, and (x, yy) is a se-
quence in R" x R™ such that x,/y;, — x, for some x,€R". Then

lim {F[u](xx, yi) — FLul(ykxo, i)} = 0.

k-

PROOF. Let S beasin Lemma 2.1 with H = F*, and let ¢ > 0 be given. Choose
o > 0so that ||x;||/y, < o for every k. Then the conclusion of Lemma 2.1 yields
6 > 0 such that

1) sup{F*(x' — x): |x'|| £ «} < &S(x)/2 VxeR"\(3B).
Since F is continuous and inf {S(x): | x|| < 6} > 0, we also have
?) [F(vg %, — x) — F(xo — x)| < eS(x) VxedéB

whenever k is large enough. For each such k, the inequality in (2) holds for all
x € R" by (1); hence

&) IFLi)(xe, i) — FLudaxo, il < yie ”JIF(Y[ "o — x))
= F(xo — yi 'x)| d|ul (x)
Sey” f S(yx "x)dul (x) < e ISI,(Mu)O),

where the last inequality follows from Remark 1.2. As ¢ > 0 was arbitrary, this
completes the proof.

We are now ready to prove our main result in the present section.

THEOREM 2.3. Given a complex number y, the following assertions are equival-
ent:

(a) Given Fe C(R") with |F| < K, F[u] has nontangential limit y | F dx at (0,0).

(b) There exists Te C(R") with |T| < K and a dense subset D of R" such that
|Tdx =1and lim, ;o T[u](yx,y) = 7y for every x € D.

(©) There exists a Borel function T on R" with |T| < K such that j Tdx =1and
lim, o T[u](yx,y) = y for a.a. xeR".

(d) There exists a Borel function T on R" with |T| £ K and afunction he L,(R")
such that supp h is compact, { Tdx = [hdx = 1 and

lim jT[u](yx, Ph(x' — x)dx =y fora.a. x'eR"
yio

ProOF. Without loss of generality, assume y = 0. Let ' = ypu and u” =
u— . Then 0 is a Lebesgue point of y” with (Du”)(0) = 0. Since K satisfies
condition (0.9) by our standing hypothesis, it follows from Theorem 1.5 com-
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bined with the second condition in (2.0) that K[|u"|] has nontangential limit O at
(0,0). Therefore, upon replacing u by y' if necessary and taking (2.0) into account,
we may and do suppose that (Mu)(0) < co.

(a) = (b). Trivial.

(b) = (c). Let Tand D be asin(b). To prove(c), it will suffice to show that T[u]
has sectorial limit 0 at (0, 0). To thisend, fixany x,eRand e > 0. Let Sand 6 > 0
be as in the proof of Lemma 2.2 with F = Tand a = | x,|| + 1.Since D is densein
R" and T is continuous, we can find an x’'e D such that ||x' — x| < 1 and

IT(x" — x) — T(xo — x)| < &S(x) VxedB.
Then the proof of Lemma 2.2 with F = T shows that

I TLul(yx', y) — TLul(yxo, Y| < IS (Mw)(©0) Vy > 0.

Since T[u](yx',y) -y = 0as y | 0 by (b) and since ¢ > 0 was arbitrary, it follows
that T[u](yxo,y) — 0 as y | 0 for each x, e R".

(c)=>(d). Let T be as in (c), and let he L,(R") have compact support. Since
(M) <o and T*eL;nL,, the function x— sup,.o T*[|u[I(yx,y) is
bounded on each compact set by Remark 1.2. Hence the conclusion of (d) follows
from (c) combined with Lebesgue’s Convergence Theorem.

(d)=(a). Let Tand hbeasin (d). Plainly h* Te Co(R" and [ h*Tdx = 1. To
show that ||(h * T)*||; < oo, choose a > 0 such that supp h = «B. By Lemma 1.3,
there exists f > 0 such that

(1) T*(x' — x) S BT*(x'/B) Vx'eR"® and xeaB.

So x' € R" implies
(03] (h* T)(x)| < J T*(x" — x) |h(x)| dx
aB

=B T*(X’/ﬂ)flh(X)I dx = B ||hll, T*(x'/B).

Hence |(h* T)*||; < p"** ||h||, || T*||; < co. Moreover, an easy application of
Fubini’s Theorem shows that x’ € R" and y > 0 implies
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©) (b T[] (X', y) = (hy* T, » p)(yx)

= | (T, * w(yx' — x)h,(x)dx
= [(Ty* Wyx" — yx)h(x) dx
o

= [(T* WOxhx' — x)dx

~

= | T[ul(yx, ph(x' — x)dx.

o
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Hence (h * T)[u] has sectorial limit 0 at (0,0) by the conclusion of (d) and the

proof of (b) = (c). Accordingly, after replacing T by h * T, we may and do suppose

that Te C(R"), | T*||, < o, j Tdx = 1 and T[u] has sectorial limit 0 at (0, 0).
Now let Fe C(R") and x' € R" be given. If t,y > 0, then (3) with h * T replaced

by F * T, shows that

@ (F* T)[ul(yx', y) = J TLu](yx, ty)F(x" — x)dx.

It follows from Lebesgue’s Convergence Theorem that each (F * T;)[u] has
sectorial limit O at (0, 0). To prove that F[u] satisfies this conclusion, let S be as in
Lemma 2.1 with H = T* and let ¢ > 0 be given. Choose a > 0 so large that

{x'} U (supp F) = aB and
) T*(x/2) < eS(x)/|Fll; VxeR™uB.

Since[ Tdx = 1land FeC,(R"),wecanfind0 < ¢t < 1suchthat |F — F* Tj|| , <

e/(4a)". If ||x|| = 4a, then F(x' — x) = 0 and so

(6) [F(x' — x) = (F*T)(x' — x)| = J T*(x" — x — u) |[F(u)| du
aB
s Iﬂ*(x/z)lF(u)l du
< &5y(x)

by (5). Hence

() P — x) — (F* T)(x' — x)| < e{(40) "Yaap(x) + Se(x)} VxeR"

It follows that y > 0 implies
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®) |F[ul(yx,y) — (F * D[] (yx', y) < (Fy — (F* Tyl * [u)(yx)

= y""JlF(x’ -y 'x)

—(F*T)(x' — y~'x)|d|ul (x)

Sey" J{(‘*a)‘"mn(y‘ 'x)

+ Sy7 %)} dlpl (x)

=¢ {(4}’0!)"" |ul (4yaB) + j Siy(x)d |pl (X)}

< e{(Mp)(0) + (Mp)0) |IS]!1}
by (7) and Remark 1.2. Since (F * T;)[ 4] has sectorial limit 0 at (0, 0), we infer from
(8) that

©® lim sup [F{u](yx', y)l < eMp)(O){1 + [IS]]1}.

yi0

As ¢ > 0 was arbitrary, this confirms that F[u] has sectorial limit O at (0,0)
whenever F € C(R").

Now let Fe C(R") be an arbitrary function with | F*||; < co. To prove that
F[u] has nontangential limit 0 at (0, 0), we may and do suppose F = 0. Let x' e R"
and ¢ > 0 be given. Choose B = f(x’) > 1 so that xe R" implies F*(x' — x) =
BF*(x/p). For each § > 0, let F* A 6 = min{F*,d} pointwise. Then

(F* A 8)(x' — x) < B-min{F*(x/B),0} = p"* '(F* A d)(x)

for all x e R". Hence, as in the proof of Theorem 1.1, we have

(F* A O)luOx,y) < g1 J (F* A d)gydlul < B H(Mp(O) | F* A 6]

for all y > 0. Therefore, if we choose é > 0 sufficiently small, then

(10) I(F A 9)[ulyx',y)l <& VYy>0.

On the other hand, (F — )* € C(R") and so (F — 8)*[u] has sectorial limit 0 at
(0,0). Since F = (F — )" + F A 4, it follows from (10) that

(11) lim sup |[F[u](yx', y)| < &.

yi0

As ¢ > 0 was arbitrary, this confirms that F[u] has sectorial limit O at (0, 0).
Finally, suppose that (x,, ;) is an arbitrary nontangential null sequence in
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R" x R*. To prove that F[u](x,, yx) = 0, we may suppose that x,/y, — x, for
some x, € R". But then

IFLul (e yi) — FLud(pixo, i)l >0 as k- oo
by Lemma 2.2. Hence F[u](xy, yi) = 0 as k — oo, which completes the proof.

ReEMARK 2.4. If (Mu)(0) < oo, then the above proof shows that the condition
|F| £ K (or |T| £ K) in Theorem 2.3 may be replaced by the weaker condition
that F*e L, n L, (or T*e L, N L). This comment applies to all of the results in
the present section and in section 3.

THEOREM 2.5. Suppose that there exist two bounded Borel functions T and ¢ on
R" and a function he Ly(R") such that supph is compact, |T| < K, [ Tdx =
fhdx =1, and

(i) lim JT[u](yx, Ph(x' — x)dx = (¢ *h)(x") fora.a. x'eR"
yi0
Then y: = lim,, , r"¢, exists in the weak-* topology of L.,(R") and
(ii) lim F[u](xx, ) = (F *9)(Xo)
k-

whenever FeC(R™, |F| £ K, and (x4, y:) is a nontangential null sequence in
R" x R* such that x,/y, = xo€R".

We shall not prove this generalization of Theorem 2.3. Instead we shall give
a simple result of this type in section 3 (Corollary 3.5) and another in section
4 (Corollary 4.2).

COROLLARY 2.6. Let E, and E, be two bounded Borel subsets of R" with
|E{| = |E,;| = 1, and let y, and y, be complex numbers. If

@ lim u(yx + yE)/|VE(| =y for a.a. xeR"(k =1,2).
yio
then Y1 = 'J)z_
ProoF. Fix ke {1,2} and set E = E,, y = 3 and T(x) = xg(—x). Then x'eR"
and y > 0 implies

Tlyx,y) =y " j xye(x — yx')dx = p(yx’ + yE)/|yEl.

It follows from (i) that T[u](yx’,y) - yas y | Ofor a.a. x' € R". Therefore Theorem
2.3 ensures that if F e C(R") and jF dx = 1, then F[u](0,y) -y as y | 0. Hence

Y1 =72
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The special case of the following result with E = Band F = K is due to Ramey
and Ullrich [6]if K = P (the Poisson kernel)and y = Oor u = fAwith f e BMO,
and to Brossard and Chevalier [1] if K belongs to a certain class of radially
decreasing kernels including the Gauss kernel.

COROLLARY 2.7. Suppose that p is differentiable at O with respect to some
bounded Borel subset E of R" with |E| = 1. Then, for each F € C(R") with |F| < K,
F[u] has nontangential limit (Dgp)(0) [ F dx at (0,0).

Proor. Take T(x) = yg(—x) in Theorem 2.3 (c).

THEOREM 2.8. Suppose that there exists a function T € C(R") with | T*||, < oo,
a set E = R" and a complex number y such that | T dx = 1;

(a) the zero measure is the only Radon measure v on R" such that
(K + |T*))[|v]] < oo everywhere and T[v](yx',y) = O for every y > 0 and x' € E;

(b) lim,, T[u](yx',y) =y for each x’ € E.

Then, for each F e C(R") with |F| < K, F[u] has nontangential limit y | F dx at
(0,0).

PrOOF. Asin the proof of Theorem 2.3, we may and do suppose thaty = O and
(Mp)(0) < co.

Choose and fix an arbitrary F e C(R") with ||[F*|; < co. By Lemma 2.1, there
exists a radially decreasing function Se C(R") n L,(R") such that F* + K +
T* < S everywhere and

(1) {F*x' —t ')+ K(x' —t 'x) + T*(x' —t " 'x)}/S(x) -0 as [x| - o0

for each fixed x’eR" and t > 0. Thus, for each such x’ and ¢, the continuous
functions F(x' — ¢t~ !x)/S(x) and T(x' — ¢t~ !x)/S(x) vanish at infinity.

Now fix xoeR" and ¢ > 0. We then claim that there exist «,...,,€C,
tys..tm > 0and x,,..., x,, € E such that

@

F(XO — x) - Z (ij;j(t]xJ i x)
j=1

/S(x) <e VxeR"

In fact, suppose this is false. Then the Hahn-Banach Theorem combined with the
Riesz Representation Theorem (and the above remark) yields a nonzero bounded
measure ¢ on R" such that

do(x)
S(x)

Define dv(x) = da(x)/S(x). Then (K + |T*)[|v]] < co everywhere by (1), and (3)
simply says that T[v](¢x',t) = O for every t > 0 and x’ € E. Hence 6 = Sv = 0 by

3 f?}(tx' - X) =0 Vt>0 and x'€E.
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(a), which contradicts our choice of ¢. This reductio ad absurdum establishes our
claim.
Now let y > 0 be given. Then (2) is equivalent to

C)] <eS,(x) VxeR"

Fy(yxo = x) = ), oT;,,(t;yx; — X)

VP

]

j=1

We integrate each side of (4) with respect to d || (x) to get

m

FLul(yxo,y) — Z o TLud(eyx;,t59)

i=1

)

Se fSy(X) d|ul (x)

S e(Mp)0)[Sl,.
Upon letting y | 0 in (5) and utilizing condition (b) with y = 0, we obtain
(6) lim sup |F[u](yxo, y)| < e(Mp)©Q) S|4
yi0

Since ¢ > 0 was arbitrary, (6) shows that F[u](yxoe,y) = 0 as y | 0. Since x,€ R"
was arbitrary, we conclude from Lemma 2.2 that F[u] has nontangential limit
0 at (0, 0), as desired.

In order to give nontrivial examples of test functions T and sets E that satisfy
condition (a) of the last theorem, let P and G be the Poisson kernel and the Gauss
kernel for R", respectively. Thus

P(x) =——— and G(x) = n~"2exp(—x?),

(xz + l)n';l
where x2 is the inner product of x € R" with itself and the number «, is chosen so
that | P(x)dx = 1.

The following result appears to be new even for n = 1.

THEOREM 2.9. Let T be either P or G, let V be an open nonempty subset of
R" x R*, and let v be a real Radon measure on R" such that T[|v|] < oo on
(R" x RY)n V and T[v](x,y) £ My for all (x,y)e(R" x R*) n 8V and for some
0SM<oo. If the set C:={xeR™(x,00€dV} has |v|-measure O, then
T[v](x,y) £ My whenever (x, y)e V. If, in addition, T[v] = 0 on (R" x R*)n dV,
thenv = 0.

ProOF. (I) Choose a > 0 so large that T(x) < o/|x||" for all nonzero xeR".
Given ¢ > 0, define 4 = C, = {xe R™ dist(x, C) < ¢} and

(1) F(x,y) = T[v — 2alVl = 1ap M1(c, ) — (6 + M)y ¥(x,y)e(R" x R*)n ¥,

where B’ is the complement of the unit ball Bin R".
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Since T[v] £ My on (R" x R*)n 8V, F is negative on (R" x R*)n V. We
claim that if x € C, then the limit supremum of F(x, y) as (x, y)€ V approaches
(x0,0) is nonpositive. In fact, if x’,xeR", x¢éA4 and [x" — xo| < ¢&/2, then

X' — x| 2 llxo — x|l = [Ix" — xoll 2 llxo — x[|/2. Therefore (x’,y)eV and
Ix' — xoll < &/2 implies
() F(x',y) £ Tlv — 241X, y) < Tlxa VI, )

= y'"L Ty~ '(x' — x))d v (x)

sy L' Ty~ (xo — x)/2)d vl (x)

= 2"T[xaIVJ(x0,2y) = o(1) as y|O

by Theorem 1.5, which establishes our claim.

Next suppose that V is unbounded. We claim that the limit supremum of
F(x,y) as (x,y)e V recedes to the point at infinity is nonpositive. In fact, the
definition of F shows that

) F(x',y) £ T[V — 2ap V1(x', ) £ Tlxas V(¥ y)
= y_"Jl Ty~ '(x' — x)d v (x)
aB

for each (x', y)e V. In particular,
4) F(x',y) £ TO) vl (@B)/y" V¥(x,y)eV.

On the other hand, (3) and our choice of « ensure that (x’, y)e V and ||x'| > 2«
implies

) F(x',y)s y"'LB T(y™'x'/2)d|v| (x)

< ¥ /X 1Y M (xB) = 2%l (B |

Combine (4) and (5) to conclude that the limit supremum of F(x', y) as (x, y)e V
recedes to the point at infinity is nonpositive.

(IT) Weshall show that T[v] < T[xc|v]] + Myon V. To thisend, let a, &, 4 and
F be as in (I). First suppose that T = P. Then F is defined and harmonic on
R" x R*. Therefore, from (I) and the maximum modulus principle for harmonic
functions, we infer that F < 0 on ¥, or equivalently

©)  TOVI(xy) = Txai1x,y) + Thtas M1(x, ) + (€ + M)y V(x,p)eV.
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Next suppose T = G. A direct calculation shows that the function Q(x, y):=
G,(x) satisfies a modified heat equation, namely,
2 0 noo9? )
7 —_——— —]0(x,y) =0 V¥(x,y)eR" x R*.
@) (y ay Lo O(x,y) (x,y)
Therefore it is easy to check that F(x,y) + (¢ + M)y also satisfies (7) with
R" x R* replaced by V. Hence

n 2
® (%5% -3 5‘1—2) Fix,y) = =26+ M)y <0 V(x.))e¥,
so F has no local maximum in V (cf. F. John [4; p. 215]). Therefore it must be the
case that F < 0 on V by (I). Thus we have confirmed that (6) holds in either case.

Now it is obvious that C is a closed set. Moreover, 4 = {x: dist(x, C) < ¢} and
(6) holds for each sufficiently large o > 0 and each ¢ > 0. Therefore T[v] <
T[xcM1+ Myon V.

(IIT) Suppose |v|(C) = 0. Then T[v] < My on V by (II). If we further assume
that T[v] = Oon(R" x R*) N dV, then we may apply the above conclusion to —v
toget T[v] = Oon V. But it is obvious that T[v] is real -analytic in each variable.
Hence T[v] = Oidentically, or equivalently, T, * v = 0 identically for each y > 0
small enough.

Finally, let F be an arbitrary element of C.(R"). Then T,*(v*F)=
(T, * v) * F = 0 identically for each y > 0 small enough. Hence v * F = 0 ident-
ically by Theorem 1.5 with u = (v * F)A. Therefore v = 0, which completes the
proof.

LEMMA 2.10. Let T be a strictly positive continuous function on R" with T < K,
let v be a Radon measure on R" such that (K, *|v|) < oo for some t > 0, and let
xo€ R" be given. If there exists a nontangential null sequence (x,, y;) in R" x R*
such that T[v](xo + Xi, ¥i) = o(y; ") as k — o0, then v({x,}) = 0.

PROOF. Lety = v({xo}) and ¢ = v — yd,,. Given ¢ > 0, choose a > 0 so small
that |o] (xo + aB) < &/|| T . Write ¢’ = ¥, 4,80 and ¢” = ¢ — ¢’. Then T[0"]
has nontangential limit 0 at (xo,0) by Theorem 1.5. Moreover, x'e R" and
0 < y <t implies

Y ITOIX, Y S 1Tl *lol (xo + aB) <.

Since T[o] = T[6'] + T[6"] and since ¢ > 0 was arbitrary, it follows that
y"T[o](x, y) = O nontangentially at (x,, 0). Therefore, if (x,, y;) is a nontangential
null sequence as above, then
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0] YTxk/Vi) = Ve T[¥0x,1(x0 + Xus Vi)
= yrTLv — 61(xo + Xx, Y1) = o(1).

But T is a strictly positive continuous function and (x,/y;)f" is a bounded
sequence in R". Hence (1) is possible if and only if y = 0.

COROLLARY 2.11. Let T be either P or G, let E be a dense subset of dU for some
bounded open nonempty subset U of R", and let v be a Radon measure on R" such
that (T, * |v])(0) < oo for some t > 0. If for each xe E, {y€(0,1): T[v](yx, y) = 0}
contains an infinite compact set, thenv = 0. In particular, T and E satisfy condition
(a) of Theorem 2.8 with K = T.

Proor. Without loss of generality, assume that v is real-valued. Let
V,={(yx,y):0 <y < tand xe U}. Then V;isopenin R" x R*,¥,n(R" x {0}) =
{(0,0)}, and

Y, ={(yx,y:0<y<t and xedU}u(tU x {1}).

For each x € E, the real-analytic function y — T[v](yx, y) vanishes on an infinite
compact set by the hypotheses. Therefore T[v](yx, y) = Oforall0 < y < tand all
x € E. But T[v] is continuous on R" x (0,t) and E is dense in dU. Hence

(1) T[v]l(yx,y) =0 VxedU and O<y<t.

Since U + (7, we have v({0}) = 0 by (1) and Lemma 2.10.

Now suppose T = P. Then it is obvious that we may take ¢t = oo in (1). Hence
v = 0 by Theorem 2.9. So suppose T = G. Given a sufficiently large « > 0 and
a sufficiently small ¢ > 0,let F = F, be as in the proof of Theorem 2.9 with V = V,
and M = 0. Then (8) in that proof shows that F has no local maximum in ¥}, and
that the restriction of F to (R" x R*) "V} ; has no maximum in (¢/2)- (U x {1}).
Hence F < 0 on ¥,,, by (II) in that proof. Since w({0}) = 0 and since ¢ > 0 was
arbitrary, it follows that G[v] < 0 on V],,. Therefore G[v] = 0 on V¥, ,; hence
v = 0 by Theorem 2.9.

COROLLARY 2.12. Let Tand E < U be asin Corollary2.11,and let {A,: x€ E}
be a collection of infinite compact subsets of (0, ). Then the linear span of the
Sfunctions

T(x'—y 'x) with xXeE and yeA,

is uniformly dense in Co(R"), norm-dense in L, L,(R") with respect to
I lp, 2= 1fll, + If1if 1 £ p < 0, and weak-* dense in L,(R").

Proor. Combine Corollary 2.11 with the Hahn-Banach Theorem.
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COROLLARY 2.13. Let T = Por G, let V be an open subset of R" x R* such that
(R" x {0}) n ¥ = {(0,0)} and v({0}) = 0. If the limit supremum of T[v](x,y) as
(x, )€ 0V approaches (0,0) is nonpositive, then the limit supremum of T[v](x, y) as
(x,y)eV approaches (0,0) is nonpositive. Therefore, if ye[— o0, 0] and if
T[v1(x,y) =y as (x,y)edV approaches (0,0), then T[v](x,y)—>7 as (x,y)eV
approaches (0, 0).

PROOF. Suppose that the limit supremum of T[v](x,y) as (x,y)edV ap-
proaches (0, 0) is nonpositive. Given ¢ > 0, choose ¢t > 0 so small that T[v] < ¢
on (¢B x (0,t]) ~ 0V and T[|v|] is bounded on V n (tB x {t}). Thus there exists
M > 0 such that T[v](x,y) — My <& on (R" x R*)n dV,, where V, = (¢tB x
(0,t)) n V. Therefore Theorem 2.9 ensures that T[v](x,y) < My + ¢ whenever
(x,y)e V,. As ¢ > 0 was arbitrary, this proves that the limit supremum of T[v] as
(x, y)e V approaches (0, 0) is nonpositive.

Now suppose y e[ — o0, 0] and T[v](x, y) = y as (x, y)e 0V approaches (0, 0).
We may suppose y < oo (if necessary, replace v by —v). Given a real number
y' > v, we then have that T[v — y'A](x,y) =y — y" as(x, y) e 0V approaches (0, 0).
Hence the limit supremum of T[v](x,y) — " as (x,y)€ V approaches (0,0) is
nonpositive. As 7' >y was arbitrary, it follows that the limit supremum of
T[v](x,y) as (x, y)e V approaches (0,0) is <y. If y = — oo, then we are done. If
y > — o0, then we may apply the above argument to —v to see that the limit
supremum of T[—v](x,y) as (x,y)eV approaches (0,0) is < —7. Hence
T[v](x,y) = y as (x, y)e V approaches (0, 0).

§3. Fatou’s Theorem for Almost Continuous Kernels.

Throughout this section, let K be a strictly positive radially decreasing bounded
L,-function on R" that satisfies the comparison condition, and let x4 be a Radon
measure on R" such that

(3.0)  (UD[u)0)< oo and (K,*|u)(0) < oo forsome ¢ > 0.

A function on R" is said to be almost continuous if it is continuous on R"\C for
some closed subset C of R” with |C| = 0. Thus, if 4 is a subset of R", then y, is
almost continuous if and only if |0A4| = 0.

LEMMA 3.1. Suppose that v is a real Radon measure on R" such that
(i) (UD)0) < 0 and (Mv)0) < oo,

that F is an almost continuous nonnegative bounded Borel function on R" with
|F*|l; < oo, and that (x;, y;) is a nontangential null sequence in R* x R*. Then

(i) lim sup F[v](x, yi) < (UD v)(0) | F[};.

k— o0
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Proor. Without loss of generality, suppose x;/y, — X, for some x,€ R". Let
T = yp. If FeC}(R") and t > 0, then

(1) lim sup (F * T,)[v1(yxo, y) < (UDv)(0) ||F ;.
vio

In fact, (4) in the proof of Theorem 2.3 shows that

2 (F* T)[vI(yxo,y) = JT[VJ(J’X, ty)F(xo — x)dx
= (ty)""jv(yx + tyB)F(xq — x)dx

= fQ(x, VEF(xo — x)dx,

where Q(x,y) = v(yx + tyB)/|tyB|. Since (Mv)(0) < oo and the support C,  of
F(xo — x) is compact, sup, o |Q(x, y)| is bounded on C, . Moreover, limsup, ,
Q(x,y) < (UDv)(0) by the definition of UD v. Hence (1) follows from (2) com-
bined with Fatou’s Lemma.

Now suppose FeC/(R") and ¢ > 0. Then (8) with S = P in the proof of
Theorem 2.3 shows that there exists 0 < t < 1 such that y > 0 implies

©) [F[v1(yxo,y) — (F * T)[v1(yXo, y)| < e(MV)(0){1 + [IS],}.
Since ¢ > 0 was arbitrary, it follows from (3) and (1) that
@) lim sup F[v](yxo,y) < (UD)(0) | F|;.

yio0

This, combined with Lemma 2.2, ensures that (ii) holds if F e C}(R").

Next suppose that the function F has compact support. Since F is almost
continuous, F is continuous on R™\C for some closed set C with |C| = 0. Upon
replacing C by C n (supp F), we may suppose C is compact. Given ¢ > 0 choose
geC}(R" such that g<1 on R", g=1 on C and |g|/, + ||gF|, <& Then
(1 — g)Fe C}(R"), and so

&) li‘:I sup((1 — g)F)[VI(x yi) < (UDY)(O) (1 — g)F .

Moreover, the result proved in the last paragraph holds with v replaced by |v].
Hence

(6) lim sup (gF)[v1(xx, y«) < limsup || Fl| o gLIv[1(xis yi)

k— o0 k- o0
= IF|l o (UD |v))(O)e.
As & > 0 was arbitrary, (5) and (6) establish (ii).
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In general, we use the decomposition F = (F — 8)* + F A ¢ for a sufficiently
small 6 > 0. Upon arguing as in the paragraph before last in the proof of
Theorem 2.3, we can prove that F satisfies (ii).

THEOREM 3.2. Suppose that there exists an almost continuous Borel function
T on R" with |T| £ K and [ Tdx = 1, a set E = R" and a complex number y such
that:

(@) If pe L, (R") and (T, * ¢)(yx') = 0 for all y > 0 and x'€ E, then ¢ =0 a.e.

(b) For each x'€E, lim, ;o T[u](yx',y) = .

Then, for each almost continuous Borel function F on R" with |F| £ K, F[u] has
nontangential limit vy j F dx at (0,0). In particular, (Du)(0) = y.

ProoF. Once again, we may and do suppose that y = 0 and (Mu)(0) < oo.

Choose and fix an arbitrary almost continuous bounded Borel function F on
R" with ||F*|,; < oo and x,€ R" In light of the Hahn-Banach Theorem, (a) is
equivalent to the condition that the function T;(¢tx" + x) with¢ > Oand x’ € E span
a dense subspace of L,(R"). So there exist ay,...,2,€C, t,...,t, >0 and
Xy,...,Xn€ E such that |H||, < ¢, where
) H(x) = F(xo + x) — ) o;Ti(t;x; + x) VxeR"

j=1

Notice that H is an almost continuous bounded Borel function on R", and that
||[H*||; < co by an application of Lemma 1.3. (Note F* + T*e L, n L,.) More-
over, v = |y| fulfills the assumption (i) of Lemma 3.1 by (3.0) and (Mu)(0) < o0.
Furthermore, (1) shows that y > 0 implies

@ |FLud(rxo,¥) — X a; TLul(t;px),t59)| = IH[K](0, )| < |H|[v](0, y).

j=1
Let y | 0in (2), and utilize condition (b) with y = 0 and Lemma 3.1. The result is
3 lim sup |[F[u](yxo, y)| < (UD)(0) [HIl; < (UD |u])(0)e.

yio

As ¢ > 0 was arbitrary, this shows that F[u] has sectorial limit 0 at (0,0).
Therefore Theorem 2.3 ensures that if J e C,(R"), then J[u] has nontangential
limit O at (0, 0).

Now let (x,, y;) be an arbitrary nontangential null sequence in R” x R*. Given
€ > 0, choose J € C.(R") such that |F — J||; < &. Then Lemma 3.1 with v = |y]
ensures that

(4) limsup |F[p](xx, yi) — JLu](xx, yi)l < limsup |F — J| [v](xk, yi)

k- ko

= (UDWO) |IF — J|I; = (UDv)(0)e.

1
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Since J[u](xx, yx) = 0 and since ¢ > 0 was arbitrary, it follows from (4) that
FLu](xk, i) = 0, as desired.

The special case of the following result with K = T = P and F = ypis due to
L.H. Loomis [5]ifn = 1 and u = 0;to Ramey and Ullrich [6]if 4 =2 Oor u = f2
with f e BMO; and to Brossard and Chevalier [1] under their own assumptions
which are stronger than our assumptions.

COROLLARY 3.3. Suppose that there exists an almost continuous Borel function
TonR"with|T| £ K and | T dx = 1,a dense subset E of R", and a complex number
y such that
(M) lim T{uj(yx',y) =y Vx'eE.

yio0
Then, for each almost continuous Borel function F on R" with |F| £ K, F[u] has
nontangential limit y | F dx at (0,0). In particular, (Dp)(0) = y.

Proor. Pick any ¢ €L, (R") with (T, * ¢)(yx) =0 for all y >0 and x'eE.
Then, since T, * ¢ is continuous on R" and since E is dense in R", T,*x¢ =0
identically on R". Moreover, j Tdx = 1, and so T, * ¢ — ¢ in the weak-* topol-
ogy of L,(R") as y|0; hence ¢ =0 a.e. Therefore the desired result is an
immediate consequence of Therem 3.2.

The following result with K = P, F = yg,and u = Oor u = fAwith fe BMOis
due to Ramey and Ullrich [6].

COROLLARY 3.4. Let E be a dense subset of 0U for some bounded open nonempty
subset U of R", let K be either the Poisson kernel or the Gauss kernel, and let the
measure y satisfy (3.0). If there exists a complex number y such that
U] lim K[p](yx',y) =y Vx'€E,

vio0
then, for each almost continuous Borel function F on R" with |F| < K, F[u] has
nontangential limit y | F dx at (0, 0).

Proor. By Corollary 2.11, both P and G satisfy condition (a) of Theorem 3.2.

COROLLARY 3.5. Let n=1, let K be either P(x):=n"'(x*+1)"! or
G(x):= 1~ "2 exp(—x?), and let u be a Radon measure on R that satisfies (3.0).
Then the following assertions are equivalent:

(I) Both lim, o u([0, y])/y and lim, o ([ — y,0])/y exist.

(I1) There exist real numbers x, < x, such that for each j = 1,2, K[pl(yx;, )
has a limit as y | 0.

(IIT) Whenever F is an almost continuous Borel function on R" with |F| < K and
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(%, i) is a nontangential null sequence in R x R* such that x,/y, — x, for some
Xo€R, then

lim F[u}(x, i) = BJ Fdz + aj F dx,
k— o0 - Xg
where a and B are complex numbers independent of F and (x, ).

Proor. (II) = (I) and (III). Let x; < x, be as in (II). Define

) ;= limK[u](yx;,y) for j=1,2,
yl0

) a=/1+(/1—/2){r de}/JxZde,
(3) B=/1—(fl—fz){fdex}/szde,

and ¢ = ay—,0) + BYo, ) Then FeL(R), x'eR and y > 0 implies

o

4) F[pAl(X,y) = a Fy(x' — x)dx + ﬁfw F(x" — x)dx
0

o T 0

(*

=o| Fy(x)dx+ BJX Fy(x)dx

’
X

=aq ) F(x)dx + BJX/YF(x)dx.

Jx'ly

The reader checks that we have defined « and f§ in such a way that

(5 lim K[y — ¢A)(yx;,y) =0 for j=1,2.
10
It follows from Corollary 3.4 with n =1 and E = {x;,x,} that u — ¢/ has
derivative 0 at 0. This combined with the definition of ¢ shows that
©) lim p([—y,0])/y =a and lim w(0,y]/y = p.
yi0 yl+0

To prove (I1I), let F, (x,, y;) and x, be as in the hypotheses of (III). Since u — ¢4
has derivative 0 at 0, Corollary 3.3 with T =2"'y_, , ensures that
F[u — ¢A](xi, ) = 0 as k — co. This combined with (4) establishes the con-
clusion of (III).

(II1) = (II). Trivial.

(I) = (I). Suppose (I) holds, and define a« and B by (6). Then u — @4 has
derivative 0 at 0, where ¢ is defined as above. Hence, by Corollary 3.3,
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K[u — ¢4] has nontangential limit 0 at (0,0). Thus (II) is an immediate conse-
quence of (4).

REMARK 3.6. In Corollary 3.5, replace the assumption (UD [])(0) < oo by the
weaker assumption that (SUD [u/)(0) < co. Then Theorem 2.3 combined with the
above proof shows that each of (I) and (IT) implies (IIT) with “almost continuous”
replaced by “continuous”. Notice also that the special case of (III) with F = P
becomes

lim P{ul(yx, y) = E{Arctan x + —725} + X {% — Arctan x'}
y10 T A
a+pf f—ua

= + Arctan x’,
2 T

which is nothing but the familiar formula of F. Prym.

PROPOSITION 3.7. Suppose, in addition to the hypotheses of Theorem 3.2, that
u = Y4 for some Y € L (R"). Then the conclusion of Theorem 3.2 holds for each
FeL,(R".

Proor. Let FeL,(R") and let (x,y,) be a nontangential null sequence in
R" x R*. Given ¢ > 0, choose H € C.(R") such that |[F — H|, < & Then

[F[p] — Hpll S IF — HI[W] = IF — Hll1 Yo = 1¥llwe

everywhere. Moreover, H[u] has nontangential limit y | H dx at (0,0) by The-
orem 3.2. As e > 0 was arbitrary, it follows that F[u](x,, yx) = y | Fdx as k — co.

§4. Fatou’s Theorem for the Real Line and the Circle.

Choose and fix a Radon measure pon R. Let F = F, be a distribution function of
U, i.e., a function on R such that
F(y) — F(x) = u((x,y]) whenever y=x in R.

Thus u is differentiable at 0 if and only if F is differentiable at 0, in which case
(Du)(0) = F'(0). We say that u is semi-differentiable at 0 if both

— F( -
0.0):=lim TP =FO nd 0,70 = lim ED=FO
x10 x x10 x
exist in C.
THEOREM 4.1. Let K be a bounded nonnegative measurable function on R, with

{Kdx = 1, such that K is increasing on (— oo, 0) and decreasing on (0, c0). Suppose
also that (K, *|u|)(0) < oo for some t > 0 and
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@@ | —r, 0Dl + 1[0, 7])| = O(r) as r1oo.

If p is differentiable at O, then K[ ] has nontangential limit F'(0) at (0, 0).
Proor. Without loss of generality, assume F’'(0) = 0.
Case 1: K = 0 on(— o0, 0). For notational simplicity, we shall assume that K is

lower semicontinuous on (0, ) and u:= K(0) = sup{K(x): x > 0}. Thus, for
each 0 < t < u, {x: K(x) > t} = [0,#(t)) for some r(t) > 0. Note that

(1) JW ri®)dt = v[‘K(x)dx < o0.
(4]
Now define g(x) = {F(x) — F(0)}/x for each real x # 0 and ¢(0) = 0. Then
2 F(x) — F(x') = xq(x) — x'q(x) VYx,x€R,

gis continuous at Osince F'(0) = 0,and | ql|, < oo by(i). Moreover, if x' € R and if
y > 0 is small enough, then

"

() K[,y =y~ | K(x = x)/y)du(x)

(Cu

=y . p({x: K((x" = x)/y) > t})dt

(fu

=y . Hx" — y[0,r(t)) dt

~

| {F(x') — F(x' — yr(t))} dt = L o(t, x', y)dt,

JO

where
“) 0@, x',y) = y~Ix'q(x') — {y™'x" — r()}q(x’ — yr(t))
If « > 0 and |x'/y| < «, then

10, x", )| £ l1qll 0 (2a + r(t)) € L1((0,u))

by (1). Moreover, if 0 < ¢t < uisfixed, then Q(t, x', ') - 0as(x’, y) = (0, 0) nontan-
gentially because g is continuous at 0 and ¢(0) = 0. It follows from Lebesgue’s
Convergence Theorem and (3) that K[u] has nontangential limit 0 at (0, 0).

Case 2: K = 0 on (0, c0). Similar to Case 1.
In general, write H = ;0. o,)K andJ = K — H.ThenK = H + J, and so K[ u]
has nontangential limit 0 at (0, 0) by Cases 1 and 2.

COROLLARY 4.2. Let K and u be as in the hypotheses of Theorem 4.1. If p is
semi-differentiable at 0, then
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lim K[ (e 3) = (D,F)O) f “ K(x)dx + (D, F)0) f " Keodx

k- 0
whenever xq € R and (x, yx) is a nontangential null sequence in R x R™ such that
X/ Yk = Xo-
Proor. Let « = (D F)(0), B =(D,F)0) and ¢ = ax(- »,0) + BX0,x)- Then
u — ¢4 has derivative 0 at 0. Therefore K[y — ¢4] has nontangential limit 0 at
(0,0). Moreover, x'e R and y > 0 implies

K[pA](x',y) = af K(x)dx + ﬁj K(x)d

x'ly
Since K[u] = K[¢A] + K[u — ¢A], this completes the proof.

REMARKS. If K is strictly positive and satisfies the comparison condition (0, 9),
then condition (i) in the last two results may be omitted.
For each o > 1/2, determine C(c) > 0 by the requirement that

*  Clo) _
J_w iy
We define the Poisson kernel (for the circle) of order o to be

Clo)1 —r)*~1
{1 — 2rcosx + r?}°

P,(x,r) = (xeR and 0=r<1).

For each complex Borel measure p concentrated on [ —7, 7], let
P, [u](x',r) = IP,,(x’ —x,r)du(x) (xeR and 0=Zr<1).
Thus, if ¢ = 1, then P,[ 1] is essentially the usual Poisson integral of u, in which

case part (a) of the following result is due to P. Fatou [2].

COROLLARY 4.3. Let a > 1/2, and let pu be a complex Borel measure on R that is
concentrated on [ —r, 7t].

(@) If uis differentiable at 0, then P,[u] has nontangential limit (Dp)(0) at (0, 1).

(b) If u is semi-differentiable at 0 and if xo € R, then

C(o)dx
—w (7 + 1)
whenever (x,ry) is a sequence in [—mn,n] x (0,1) such that r,11 and
xi/(1 = 1) = Xo.

lim P,[p](xe, 1) = (DF)(©O) + {(D,F)(0) — (D,F)(0)} J

k= o

PROOF. Let 0 <r < 1and y > 0 be related via y = (1 — r)/\/;. Define
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(1) A= A(x,r) = 1/{2(1 — cosx) + y?},

(2) B = B(x,y) = 1/(x* + y*) and K(x) = C(e)/(x* + 1)°.
Since 1 — 2rcosx + r* = 2r(1 — cosx) + (1 — r)?, it is easy to check that
3) JrP(x,r) = Clo)y** 14, and

4) K,(x) =y~ 'K(x/y) = Clo)y**~ ' B".

Note that x* = 2(1 — cos x) for each real x, {x*> — 2(1 — cos x)}/x* < 1/12 for
each real x (by four applications of the generalized mean-value theorem), and
x%/(1 — cos x) £ = for |x| < n. Hence |x| £ n implies

(5) 0< A4 - B=AB{x* — 21 — cosx)}
SA-xX*12L 1.
It follows from the Mean-Value Theorem that ¢ = 1 and |x| £ = implies
6) 0= /rP(x,r) - Kyx) = Co)y* (4" — B)
< aClo)y*"'4°" (4 - B)
< aClo)y* "ty 271 = 0C(o)y.
Similarly, if 1/2 <o < 1,0 < y < 1 and |x| £ =, then
() 0 < /rPy(x,r) — K,(x) £ 6C(0)y** " 'B°~ (4 — B)
< 6C(o)y?** ~Y(n? + 1)! 77 £ 4aClo)y** L.

Now it is obvious for each § > 0, P,(x,r) — O uniformly in xe [ — =, n]\[ -9, 6]
as r11. So, in order to prove the desired results, we may suppose that u is
concentrated on [ — 1, 1]. Therefore, if ¢ = 1, then (6) ensures that

®) /P, [ul(x', 1) — K[u](x', Y| < oC(o) [lull y

whenever 0 < r < 1 and |x'| < 7 — 1; hence (a) and (b) follow from Theorem 4.1
and Corollary 4.2. In light of (7), the proof for 1/2 < ¢ < 1 is similar.

COROLLARY 4.4. Suppose that u is concentrated on [—m,n] and
(UD |u))(0) < 0. If there exist two distinct real numbers in xy, x, in (—7,7) such
that for each k, lim, ;, Py[u]((1 — r)xi,7) exists, then p is semi-differentiable at 0.

Proor. Combine the above proof with Corollary 3.5.
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