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NONSTABLE K-THEORY RESULTS
FOR SOME AH-ALGEBRAS

CORNEL PASNICU!

In this note we prove that “many” unital AH-algebras (which may not be of real rank zero) have
cancellation, (SC) and that their K ,-group is weakly unperforated in the sense of G. A. Elliott. A new
characterization of the AH-Algebras of real rank zero and with the dimensions of their local spectra
uniformly bounded (< 3) is given.

1. Introduction.

In this note we consider C*-algebras that can be represented as inductive limits
A = lim(4,, P, ») of what we shall call trivial locally homogeneous C*-algebras
A, = @, P, M, y(C(X,, )P, ;, where X, ; are finite connected CW complexes
and P, ; are projections. Following a terminology introduced in [4] we shall call
these C*-algebras AH algebras (approximately homogeneous). E. G. Effros raised
in [8] the problem of finding suitable invariants for AH algebras. We prove that
“many” unital AH algebras 4 have cancellation and also have (SC)(strict compara-
bility), i.e. for any two projections p and q in A4 such that 1(p) < t(q) for any tracial
state 7 of A it follows that p is (Murray-von Neumann) equivalent to a proper
subprojection of g (see Theorem 3.1). If A is a addition simple, then K ((A) is weakly
unperforated (see Corollary 3.2). In fact, as we point out, Ky(A) is weakly unper-
forated, but in the sense of Elliott [9], even when A is not simple. These results give
new particular affirmative answers to a conjecture of B. Blackadar in [3]. For
related results see [2], [4], [1],[20], [21],[7],[18],[14],[15] and [16]. The proofs
of our above results rely on the new idea of using the fact that (SC) and cancellation
are shape invariant (see Lemma 2.5) and they combine [11, Lemma 2.3, Remark
2.4 and Lemma 2.13] with techniques from [18].

The class of unital AH algebras which are proved in Theorem 3.1 to have
cancellation and (SC) contains e.g. all the unital, real rank zero AH algebras
A = lim 4, where the spectra of the trivial locally homogeneous algebras 4, are
uniformly bounded. This follows immediately from [22] and [11, Remark 1.4.6].
In our Theorem 3.3 we point out a new characterization of the real rank zero
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inductive limits of trivial locally homogeneous C*-algebras whose spectra have
uniformly bounded dimensions (< 3) (see also [6] and [13]) which have been
intensively studied by Elliott and Gong in their remarkable classification paper
[11]. This characterization is an asymptotic condition in terms of the spectrum
variation of the connecting homomorphisms and of the dimensions of the spectra
of the building blocks in an appropriate inductive system of the C*-algebra (in
fact, it is a similar condition with the hypothesis of Theorem 3.1, but stronger in
the unital case).

The results proved in this note can be used, in particular, to identify
C*-algebras which do not belong to “large” classes of AH algebras and also they
are related to Elliott’s project of the classification of the separable, nuclear
C*-algebras ([10]).

2. Preliminaries.

Let 4 be a unital C*-algebra. We shall denote by T(A4) the set of all tracial states
on A. We shall say that pe A is a projectionif p = p* = p2 For two projections p,
ge A we shall write p < q if p is equivalent to a proper subprojection of g, i.e.
(3)ve A such that v*v = p and vv* < g. We shall say that Ky(A4) is weakly
unperforated if whenever n-x > 0 for some x € K((A) and some positive integer
n, it follows that x > 0. For the definition and some properties of the spectrum
variation SPV(®) of a homomorphism ¢ between two trivial homogeneous
C*-algebras (with metrizable spectra) see [11].
In what follows we shall need the following results and definitions:

THEOREM 2.1 (see [11, Lemma 2.3 and Remark 2.4]). Let X be a connected
finite CW complex with metric d, F = C(X) be a finite set. For any integer N and
& > 0, thereis & > 0 such that, if &: C(X) —» PM(C(Y))P is a unital homomorphism
with SPV(®) < 6, where Y is a connected finite CW complex and P € My(C(Y)) is
a projection, then one of the following two statements is true:

(a) rank(P) = N

(b) There are py,p;,..., pn€ PM(C(Y))P with Y ;p; = P and

Io(f) — Y fxp:ill <e forall feF
i=1
and furthermore, ® is homotopic to @' defined by

#() = 3. e

o
The following is also true: SPV (®) < 7 implies either (a') rank (P) = /N or(b) as

above,
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THEOREM 2.2 (see [22, Theorem 2.5]). Let A be a unital inductive limit of
(Ay, Dy, m) With A, = ®F2 My, iy(C(X,,,:)), where X,, ; are path connected metrizable
spaces and [n,i] are integers. If A is of real rank zero, then for any given nand ¢ > 0,
there is an m > n such that any partial homomorphism

DS My, iy(C(X,., 1) = Mim, jf(C(Xop, ;)
of ®, . satisfies:
SPV(®.i) <.

The following lemma is a result of K. R. Goodearl ([16]) and N. C. Phillips
(C19]):

LemMa 2.3. Let X be a compact space of dimension d and let p, q be projections in
C(X,M,). If rank(gq(x)) — rank(p(x)) = max{(d — 1)/2,1} for all xe X, then
p<q

The following simple result is a slight improvement of Lemma 3.2 in [18] and
its proof, which will be not given, follows an idea in [2]:

LEMMA 2.4. Let A = Lim(A,, P, ), where the C*-algebras A, are unital and
have tracial states and the connecting homomorphisms @, ,,: A, — A,, are unital.

Let p and q be projections in some A, such that o(p) < a(§) for any o€ T(A),
where p(resp.q) is the canonical image of p(resp.q) in the inductive limit
A = lim(A,, ,,m). Then there is m > n such that:

UPn,miP)) < U(Pn,m(q))
for any te T(A,,).

DEFINITION (compare with [3]). A unital C*-algebra A is said to have (SC)
(strict comparability) if T(A) + ¢ and whenever p and g are projections in 4 with
7(p) < 1(q) for any 1€ T(A) it follows that p < q.

The next proposition is a slight extension of a result in [18] and has a similar
proof (which will be not given):

ProrosiTION 2.5 (see [18, Proposition 3.13 and its proof]). Let
A =lim(4,, ®,) and B = ligl(B,,, ¥.), where A,, B, are arbitrary unital C*-alge-
bras and the connecting homomorphisms &,, ¥, are unital.

Suppose that there is an EP-commutative diagram (see [18, 2.3]) with unital
homomorphisms a, and f,(n = 1).

Al“_’A2—>A3-—)A4&+...

"N 6/ 0‘\ B8/ 03\, Y

v
B1 —-b B2 ——2) B3 —_)W3
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(note that this happens if e.g. the above diagram is commutative at the level of
homotopy). Then:

a) T(A) % ¢ <> T(B) + ¢

b) A has (SC) <> B has (SC).

If furthermore the above diagram is a stably EP-commutative diagram (that is,
after taking the tensor product with M, for any n, it is still an EP-commutative
diagram) then:

c) A has cancellation <> B has cancellation.

DEFINITION (compare with [7,2.1.8]). Let 4 = PM;(C(X))P and B =
OM,(C(Y))Q be homogeneous algebras, where X and Y are compact and connec-
ted and P and Q are projections. A *-homomorphism @: 4 — Bis said to be large
if

a) =0
or

b) &(P) = Q and rank(®(P)) = max {dim(Y)/2, 1} rank(P).

3. The main results.
THEOREM 3.1. Let
A = lim(A,, B, )

where A, = ®i% | P, ;M. i(C(X,,, ))P,.i» X, ; are finite connected CW complexes,
P, e My, 5(C(X,.,)) are projections and &, ,, are unital. Let 5(n, i) be the largest
strictly positive number (perhaps + o) (depending on X,, ; only) d such that B(x; a) is
contractible for any a < 25 and any x € X, ;, where B(x; a) denotes the closed ball in
X,,.; of center x and radius a. Suppose that for any given positive integer n there is
m > n such that any partial homomorphism

‘D:.]m Pn,iM[n,i](C(Xn,i))Pn.i - Pm,jM[m.j](C(Xm,j))Pm.j
of D, , satisfies:

6("15 l)
max {dim (X, ;)/2, 1}

SPV(di)) <

Then:
a) A has (SP) (see Preliminaries for definition).
b) A has cancellation.

PROOF. a) From the proof of [11, Lemma 2.3] it follows that (for any n and i)
either &(n, i) is a positive number § as in [11, Lemma 2.3], corresponding to
X=2X,;,F=¢,and N =¢=10rd(n,i) = +oo. Let us introduce for any n and
i the usual notation A} = P, ;Mj, 4(C(X,, :))P,,;. Using now the hypothesis, it
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follows that there is n, > n, = 1 such that all the partial homomorphisms
i) - AL - Al satisfy:

1,n2

SPV (&}, < 2.
(P57, max {dim(X,, ;)/2,1}

By Theorem 2.1 it follows that for any i,j either
B, Ay~ B, (1404, B, (14)

1,n2
is large (see Preliminaries for definition) or @}, : 4% — &%/, (1 A )AL DT (1 Al)is
homotopic to a unital *-homomorphism A4} — &%/, (1 A )AL @47 (1 i) with

finite dimensional image. Hence there is a diagram:

¢1,1»2
) A= A,
ar\, /B
B
where:

i) a, and B, are unital *-homomorphisms

ii) By = @1, B’ whereforanyj B} = Q iMn (C(Z;)Q; with Z; a finite connec-
ted CW complex and Q; a projection in M,, (C(Z;))

iii) any partial homomorphism A4} — (a;)"¥(1 A )B4 (e, (1 al) induced by «, is

either large of surjective with finite dimensional image.

iv) the above diagram (1) is commutative within homotopy.

Continuing in this way, we construct inductively a diagram of unital
*-homomorphisms:

Al M "4112%—‘"’3 Aﬂa — A"'m ¢“71"—':+) A"rn+1 e
a\, /B a\, /B omN, /B
Bl B2 Bm
which commutes within homotopy and each diagram:
An, 5" A,
o\, /B
B,

has the above properties i}-iv). Using Proposition 2.5 and supposing that
n, =m,m 2 1 (to save the notation), we may assume that A4 is the C*-inductive
limit of the system:

141 __f:_’ 131 "El—* /12 "23‘* 132 —-gz‘* /13 I P e 4 /1"'“22** l;"__£2_+ fini-l —_— ...

Now let P and Q be projections in A with ©(P) < ©(Q) for any 7 e T(A4). By
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simple approximation arguments and changing the representatives in the induc-
tive limit, since A = () i »(4,), Wwe may suppose that P = u; ,(p),
Q = Uy, o(q) for some projections p and q in A4;. Here pu, ,:A,—» A=
li_r_;l(A,,,, B o a,,) are the canonical *-homomorphisms.

Considering 4 = Iil)n(A,,, pnoa,) and applying Lemma 2.4, we may suppose
that:

(2 o(p) <olq) forany oeT(4,)

Let p = ®Iscl= 1P, 9 = @i; 19« € A, = @i;lA,; where A'{ =
Py «Miy 1g(C(X, k))Py . By (2) it follows that:
(3) rank(p,) < rank(q), 1=k =<

Let ()% A% — (o))"(1 A VB (ary)(1 4i) be the partial homomorphism in-
duced by a,. It can be shown (using [11, Lemma 2.13] and [18]) that there is an
integer k; ; = 0 such that for any projection r in A} we have:
) rank ((a)"(r)) = k; ;- rank(r)

We have to consider three cases for i, j fixed:

) If k; j = 0, then (@) (p;) = (21)"/(q:) = 0

1) Ifk; ; > 0 and (a,)"/: 4} > (ozl)"'f(lA;)B{(al)""‘(l,,il) is surjective with finite
dimensional image, then using [ 11, Lemma 2.13] and [ 18] it is not difficult to see
that (;)"/(p;) < (¢1)"%(q:) (We use (3)).

1) Ifk; ; > 0and (ay)"”: A} - (2,)"(1 Al )B (o) (1 4i)is large, then, using (4)

and (3), we have:
rank ((@,)"(q;)) — rank ((21)"/(p)) = ki ;(rank(q;) — rank (p;))
2 k; ; 2 max{dim(Z;)/2, 1}
By Lemma 2.3 this implies that:
(@) i(p) < (@1)"¥(g;) in Bj

In conclusion (using also the fact that 4 has (SC)), it follows that
P =3 (B1o01(p)) < Q = p2, o (B1°24(q)).

b) Working as in the proof of a) we may suppose that every unital partial
homomorphism induced by each &, ,,, is either large (see Preliminaries) or
homotopic to a homomorphism with finite dimensional image. Now the result
follows using Lemma 2.5c) and stability results for vector bundles in [17].

COROLLARY 3.2. Let A be as in Theorem 3.1. If in addition we assume that A is
simple, then K o(A) is weakly unperforated.
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PrOOF. Observe firstly that because A is in addition a simple C*-algebra, for
any two projections p and g in A we have:

p<q in A< 1p)<1(q) forany teT(A).

Since by Theorem 3.1 4 has cancellation, in order to prove that Ky(A) is
weakly unperforated, it is enough to prove that if for some projections p and g in
some matrix algebra B over 4 and some positive integer n we have:

(*) n-p=pOpd...0Op<n-¢g=9gdqgd...Dg
N’ ————
n times n times

in M,(B), then:
(*%) p<gq in B

Lette T(B). Theno = t ® tr,e T(B ® M,)if tr, is the (unique) tracial state on
M,. By the above remark, (*) implies that:

o(n-p) = ©(p) < o(n-q) = ©(q)
Since 1 € T(B) is arbitrary, by Theorem 3.1 a), it follows that (**) is true.

REMARK. Ifone replaces the above weakly unperforated property in Corollary
3.2 by the one in the sense of Elliott ([9]), one can obtain the result without the
restriction that 4 be simple. The proof goes using some of the arguments from the
proof of Theorem 3.1.

The next result gives a new description of the AH algebras 4 = l@ A, with real
rank zero for which the dimensions of the spectra of the trivial locally homogene-
ous algebras A, are <3 (see Theorem 3.3). Note that by a recent remarkable
result proved by M. Dadarlat [6] and by Gong [13] it is known that this class of
C*-algebras coincides with the class of the AH algebras of real rank zero which
are inductive limits of trivial locally homogeneous algebras with the dimensions
of their spectra uniformly bounded. Our description is in terms of the spectrum
variation of the connecting homomorphisms and of the dimensions of the spectra
of the building blocks in an appropriate inductive system of the C*-algebra (in
fact is a similar condition with that in Theorem 3.1, but stronger in the unital
case). In the simple case, by a remarkable result of Elliott and Gong in [11], this
class of C*-algebras is classified by the graded, scaled, ordered K, group.

THEOREM 3.3. Let A be a C*-algebra. The following are equivalent:
a) A can be written

A = lim(4,, 8, ),
where A, = @i P, iMy, if(C(X,, )Py is X,.; are finite connected CW complexes,
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[n,i], s, are positive integers and P, ;€ My, 4(C(X,,;)) are projections such that:
For any given ¢ > 0and any given positive integer n, there ismy, > nsuch that any
partial homomorphism

¢:l’"l Pn,iM[n.i](C(Xn,i))Pn,i - Pm.jM[m.j](C(Xm.j))Pm,j
of D, m: A, = A, With m = my satisfies

&

ij T RS
SPV(®47,) < dim(X,, ;) + 1

b) A has real rank zero and A = li_rg(A;,, ¥..m) Where
A, = O 1 QniMp o (C(Y,,:))Q,i

Y, ; are connected CW complexes of dimension <3, H*(Y, ;) are finite, {n, i}, t, are
positive integers and Q, ;€ M, (C(Y,.;)) are projections.

PrOOF. a)=>b). Asin the proof of [11, Corollary 2.25] it follows that 4 has
real rank zero. Now, the proof goes as in the proof of Theorem 3.2 in [6] (the case
when sup, ;(dim(X, ;)) < + co) using the hypothesis and Theorem 2.1 (i.e. [11,
Lemma 2.3 and Remark 2.4]) instead of the fact that the real rank of A is zero, of
Theorem 2.2 (i.e. [22, Theorem 2.5]) and [11, Remark 1.4.6] and of [11, Lemma
2.3] (to get m-large *-homomorphisms in the sense of [7] or *-homomorphisms
with finite dimensional image) and observing that the appropriate variants of
[11, Theorem 2.29 and Remark 2.30] hold if we replace the conditions that 4 has
real rank zero and sup, ;(dim(X, ;)) < + oo by our hypothesis.

b)=a). Let ¢ > 0 and let a positive integer n be fixed. Then, by Theorem 2.2
and[11, Remark 1.4.6], there is my > nsuch that for any partial homomorphism
PiJ we have:

4

SPV(¥;2) <

forany m = my.

On the other hand, the hypothesis obviously implies that:

& &

4= dim(Y, )+ 1"

IIA

Hence:

€
dim(¥,, ) + 1

for all the partial homomorphisms Y57, with m = my.

SPV(¥ii) <

ReMARK. We would like to point out that until now most of the known results
about inductive limit C*-algebras (concerning real rank, stable rank, exponential
rank, cancellation, (SC), classification etc.) have been obtained for C*-algebras
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defined by inductive systems with slow dimension growth in one sense or another
(exceptions are above, in [ 12], [ 18] and eventually in other few places). Note also
that the system satisfying the condition a) in the above theorem generally has NO
slow dimension growth in any sense, in contrast with the system in Theorem 3.3
b) which defines the same algebra.

20.

21.

22.
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