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CORONA TYPE DECOMPOSITION
IN SOME BESOV SPACES

JOAQUIN M. ORTEGA and JOAN FABREGA

Abstract.

Let gy, .. .,gm be holomorphic functions on the unit ball of C* and consider the map M,:H(B) x
.. X H(B) - H(B) defined by

M,()2) = ¥ 9/2) f(2).
j=1

Let us denote by & either the usual Bloch space or the Sobolev space W}! intersection the space of

holomorphic functions.
In tnis paper we prove that necessary and sufficient conditions on g, ... ,g. such that M, maps
& X ... x & onto & are that the functions g; are multipliers of the space & and 3T, lg(2)|* 2 6 > 0.

1. Introduction.

Letg = (g4,...,9m) be a vector valued holomorphic function in the unit ball B of
C". We consider the application M,:H(B) x ... x H(B) - H(B) defined by
M,(f) =Y, g;f; It is well known that if the functions g; have not common
zeroes then the map M, is surjective. Many authors have considered this problem
replacing the space of holomorphic functions on B by other subspaces and the
unit ball for other domains. The motivating work of our subject is the so called
HP-corona problem:
Let g; be bounded functions satisfying

@R = 3l 25> 0.
=1

J
The problem consists to show that the map
M,:HP(B) x ... x H?(B) » H"(B)
is surjective. ([A], [AN], [AN-CA 1,2], [LI], [LIN]).
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Of course, the most interesting and difficult case is p = co which corresponds
to the classical corona problem, that up to now has been solved only for
dimension 1.

Our goal is to replace the Hardy spaces for some Besov spaces closely related
with them. We consider the spaces of holomorphic functions A? ,(B),1 < p < oo,
with norm

1

1flppt = <L II'+ R)f@)F(1 - IZIZ)”_‘dV(Z)>$, lsp<o

1S .01 = sup {II + R)f2I(1 — |z|*); z € B}
0

where I denotes the identity operator, R the radial derivative R = Z;=1 Z"Ez_

J
and dV(z) the normalized volume element.

We recall that if p < 2 then 4} | = H” and that if p 2 2 then H” < Af . In
particular we have H?> = A3 |.

Also, observe that for p = oo the space A , is the usual Bloch space. We will
write 8 instead A3 | and || f| g instead || f1| 0,1

Then it is natural to consider the following problem for these spaces:

PROBLEM. Find necessary and sufficient conditions on g such that M, maps
AP x ... x AF | onto A} ;.

Clearly, a necessary condition is that every function g; be a multiplier of 45 ;.
We will denote this space of multipliers by .#,. An important difference between
our case and the Hardy case is that the spaces of multipliers .#,, are different for
each p, whereas the space of multipliers of the Hardy spaces coincides with the
space of bounded holomorphic functions on Bforall 1 < p £ 0.

We have the following characterizations of the spaces .#,,.

For p = o0, i.e. the Bloch space, K. Zhu [Z] showed that a holomorphic
function g belongs to .#, if and only if it is bounded on B and satisfies |9g(z)] <
- -1 =

1—z? 1z

For 1 < p £ oo the space .#,, coincides with the space of bounded holomor-
phic functions g on B such that |dg(2)]’(1 — |z|*)*~*dV(2) is a A% ,-Carleson
measure, i.e.

log

1
(Llf @I 10g@IP (1 — |21y~ dV(Z)>p = cllfllppan

for all f€ A4 ;.
It is easy to show that these spaces of multipliers satisfy
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My My, = My, = My=H®, 1<p £p,<2
“/lwc“/{qxc“”qzc'/”Zszv 0 24q;2q; 22

Here we have three extremal cases: p=1,p=2and p = 0.

In this paper, we will obtain a solution of our problem for the extreme cases
p = oo and p = 1. The case p = 2 corresponds to the known H2-corona problem.
To be precise we will prove the following two theorems:

THEOREM A. Let g = (gy,. .. ,gm) be a vector valued holomorphic function on B.
Then the operator

M,(f)(z) = Zf,(z )9(2)

isontofrom B x ... x B to B iff the functions g; are multipliers of the Bloch space
and satisfy the condition sup,g{|g(2)|*} = & > 0.

THEOREM B. Let g = (g4, ...,9m) be a vector valued holomorphic function on B.
Then the operator

My(f)2) = Z f(2)gj2)

is onto from Af | x ... x A} to A}, iff the functions g; are multipliers of the
Besov space Ai , and satisfy the condition sup,c{lg(z)|*} 2 & > 0.

The paper is organized in the following way. In section 2 we obtain the
necessary conditions. In section 3 we recall the division formulas of B. Be-
rndtsson and we obtain the estimates that we will use in section 4 to prove the
decomposition theorems.

2. Necessary conditions.

NECESSARY CONDITIONS IN THEOREM A. By the closed graph Theorem we have
that M, is continuous and thus, every g; is a multiplier of 4.

Let us prove that |g|*> = 6 > 0. By the open map Theorem, for every function
f of # there exist functions f; of 4 such that

i) f= i:lfigi
i) |filla S clflae

Using | f,(0)] S ¢|iflalog—5 T for { € B, we obtain

I<II2
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2
SOl = Z IiOlg Ol = el flalogT—77 0 Z lg;(O-

Taking the functions f,({) = 1

we have || f,||la < 1 and

2
B 1%
lo 2 <clo ZI(Z)I

BT = Tl Ilz %

which proves the result.

REMARK. Itisclear that every holomorphic Lipschitz function on B is a multi-
plier of the Bloch space. However there exist functions in .#,, such that are not

12
log——— -
continuous on B. For example the function f(z,,z,) = ——T—— defined
log—2
Bl 2 _2

in the unit ball of C? satisfies these conditions.

NECESSARY CONDITIONS IN THEOREM B. To prove the theorem we need some
preliminary results. The first is a well known representation formula for holo-
morphic functions on B.

THEOREM 2.1. Let f be a holomorphic function on B such that
sup.p{I/(2)I(1 — |2y} < c. Then,
Rt =12y
1@ = PNE@:=c | 105 pprreaV©)

. n+s
w:ths>s0,andc,=< S )

The following estimates are also well known.

LEMMA 2.2. For 6 > 0 we have

c if s>t
-2y
——=——dV({) S {clog———  ifs=
LB TEN R o clogy—p g5 Fs=b
cl =z + 6" ifs<t
The next lemma is a kind of integration by parts formula.

LeMMA 2.3. If o((,z) is a function of class €'(B x B) and s > 0, then
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CSIB(I = 1817y o, 2)dV () = cs+1L(1 — K12 *! Ryp(C, d)dv(0)

1
where R,:= I + mR withR =3"_, C, T
Proor. The proofis a direct application of Stokes Theorem.

We can now prove the necessary conditions of theorem B.

As in the proof of theorem A, it is clear that the functions g; are multipliers of
A} ;. To prove that |g(z)* 2 6 > O for every function f of A} ,, we consider
functions f; of 4] ; such that

i) f= ';ﬁgi
i) fillia0 S clfllig

The representation formula of theorem 2.1 and the integration by parts formula
of lemma 2.3 give

(1 . |C|2)s+l _ S
/i@l s c| IRSOIT—F s 4V S cllfilliaa (1 —12%)
B 11—z

for ze B. Thus, using ii),

fOl=c i LONg; O = el fllia1 Z 1g;(O)-

(1 - ICIZ)" j=

) 1 —|z?
Finally, we can apply these inequalities to the functions f;({) = TI—:?IC)L"W to

obtain

1
T S T 5

which proves the result.

REMARK. For 1 < p <2 the condition that |dg(2)l" (1 — |z|*)*~'dV(z) be
a Ab ,-Carleson measure is equivalent to (9g(2)I” (1 — |z]2)P~* dV(z) be a Carleson
measure in the ordinary sense. ((M-S] pag. 177). In particular .4, is the space of
bounded holomorphic functions on B such that |dg(z)|dV(z) is a Carleson
measure.



98 JOAQUIN M. ORTEGA AND JOAN FABREGA
3. Division formulas and estimates.

In the proof of the decomposition theorems we will follow the scheme of M.
Andersson and H. Carlsson [AN-CA 2] based in the division formulas of B.
Berndtsson [B].

Let g = (gy,...,gm) be holomorphic functions on B satisfying the conditions
19(z)> = ¢ > 0and sup {|0g(z)|(1 — |z|*)*®; z€ B} < oo for some s, > 0. For every
j=1,...,m we consider a Hefer decomposition of g;, g;z) —g;() =
N1 (zi — $)h; (¢, 2) and the (1,0)-forms

) = 3 )

om0
062 = X 1or

Then for s > s, large enough and k, = min {n,m} we have the following
representation formula for holomorphic functions on B which satisfy an ad-
equate growth condition:

_ ko g(z)g-(C))ko+1—k(—1;‘—c‘—2—>n+l+s+k
3.1 flz) = kgo Ck Lf(C)( Pk e

() ~ ()

It is clear that the operators

hi(C, 2).

L ko g(z)é(C))ko—k g-J(C) < 1— IC|2 >n+1+s+k
62 @=L [ 0(GEE) o (T=F

() (T )

give an explicit solution of the decomposition problem

1@ =3 90 T
i=1

Note that the above formula depends of the choose of the Hefer decomposi-
tions. We need to find an adequate Hefer decomposition of the functions g; in
order to obtain good estimates of the operators Tj.

To do so, we take a positive integer s and use the representation formula of
lemma 2.1 to obtain
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_ (1 =y (1 =%y
gi(z) — gi{0) = CSJ‘Egj(U)<(1 EFETEIET - 1= ﬁC)"+1+s>dV(")

It
M

Il
-

i

_r o il — g2y
(z: CJQJ;%W%;AI_ﬁﬂ“4+r%l_ﬁoHlde)

]

: i (z: — L) hyu(C, 2).
i=1

From now on we fix the above Hefer decompositions with s large enough in the
representation formula.

To obtain precise estimates of the kernels 7; we need to consider the following
decompositions of h; ;.

DEFINITION 3.1. We write

h;ill2) = h)((,2) + Gihj (G, 2)

where )
0 . . 12 gy i — Ci v
hj,i(c’z)'_ ch‘ng(ﬂ)(l |’1| )sl=zo (1 _ ﬁz),,+1+s—1(l _ ﬁol+1 d ('1),
1 . ' _ 2 Sn+s 1 dV
hj (Ca Z)"‘ chBg](ﬂ)(l Irll ) 1;0 (1 _ ﬁz),,+1+s—l(l _ ﬁC)l+1 (")’
Note that
(3.3) ¢, 2) = BY(C, 2) + B} (G, 2)0(1 — IL1%)

with Ay, z) = Y-, h0:(¢, 2) L.

We also need the following decomposition of ( Igzgi)z )
GO\ _ e (0,0 e g 00 g
4 5(19(4’)!2) * (ac. ‘i >|g(z;|2 A= Ry 1 =11
=:0)(0) — 0;(0)
and also the identity
<5@(1 —ICI2)>" k(o =gy
I [ (=Pt
@a(1 — 0P 1 A 01 = |L1P) A a1 — I57)
_"(n ) ( IC' )n ~k+1

Using elementary computations we obtain:
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» G0 (4@F0Ve [ — IRy
69 moer=al o (405 G Lo
G0 (9@ G0 Vo (1 — [P+ 2
+ Z a1, 70 |g(<)|2< 9P ) (= LTt
x GO A G} A HS. A HY A (B0(1 — 0P)y
|K|+|l| -| ' lll k
ta g,(¢)< 2)9(0) (1 — gy 2
tLon- j FOuor\Cwor ) @ =gy

x 3 GraHg A1 =07 Ad1 =02 A @a1 =g+t

IKLIK'| =k

where Hy, i = 0,1 are (|K|, 0) forms in { which are linear combination of forms of
type A kj=1 hi »and Gy, i = 0,1 are (0, |K]|) forms in { which are linear combina-

tions of forms of type A g -k,

The next step will be to obtain estimates of these kernels and of their deriva-

tives.

It will be convenient to establish some preliminary notations and lemmas.

DErFINITION 3.2. Let d({,z) = |2(z — {)| + |{({ — z)] be the non isotropic

pseudodistance and ¢, a constant such that
d({’ Z) é cd(d(c, W) + d(W, Z))

Given {, z of B we consider the following partition of B:

d(,
Q= {neB; d(n, z) < —(2%%)}

d(,
Q, = {neB; din, ) £ %5—1}

Q, = {rle et ) <dn,2) < din, o}
Q= {rzeB; d(;:) <dn,¢) < d, Z)}

LEMMA 3.3. With the above notations we have

1 —dzl St =l Sclt —iill, ne@
H—AlScll -l <cll ~7zl, neQ,
1=z <ell =izl Scll = L], nefs
M-l <cll —All Scll —7zl, nefy
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ProoF. The results follow trivially from the definitions of ; and the fact that
1=~ 1~ [? +dC2) = 1~ |z1* + d(, 2)
for every {, z of B.

LEMMA 3.4. Assume that 0 < to,t; <s <t + t;. Then

(1 =2y K2 1 2
1 dV(n) £ 1
L TR R T I e e T L TR
Proor. Using the partition of B given in definition 3.2 we obtain

_ 2)s
Izzj (L — Inl’) logk 2 dv (n)

T T T gy
(1 — o2y . 2
< 1 dv
""Ll T ol = G + 1= 8 1=z 2V
(1 — |2y . 2
+c — lo dV(n)
L\nl =Gl + 11 —rzly* e B pr

We integrate in polar coordinates and use the usual estimates of lemma 2.2 to
obtain
L 2
a—ry 2
I |
= CL P e T ey g Tl

1 2\s—t
(1 —répn -
“L -Gl 2%

c 2
< = log"
S
and thus the lemma is proved.

LEMMA 3.5. Assume that 0 £ t; < s < ty. Then

(1 —Im%y 2 4 2
lo dvin) = - lo .
Jll—ﬁZI"“*mll—ﬁCl“ gkl—lﬂll ('1)“(1—|ZI2)‘0 11— {2 gkl—lle

Proor. The estimate follows using the pattern of the proof of the above
lemma.

We need to recall the following representation formula given by P. Charpen-
tier [CH] (see also B. Berndtsson and M. Anderson [B-AN]) and some well
known estimates.
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THEOREM 3.6. The operator

P()(2) = f f(o———')%frsdwo

defined in Theorem 2.1 verifies (I — P)(f) = K (0f) where K is an integral operator
which solves the 0-equation and K((,z) = Ko((, 2) + K1({,2) A 0(1 — |(|?) with

J IKo(§,2)ldV(() < ct,
€2 <o

J IK1({2)dV () < et
@2 <)

LEMMA 3.7. There exists a constant ¢ such that for every bounded holomorphic
function f on B we have

) 1ii=|e f e dV(ﬂ)‘ s elfl..
- oy I
?]Z"+l+s(1 dV( )’ =0 7y C ‘

Proor. First note that if we replace { by z in i) we obtain I, = | f(2)| £ || f |l «-
We point pout that if we put modulus inside the integral we would not obtain the
required estimate.

Let us consider z # {. Following the same notations of definition 3.2, we define

@, = {neB; d(n,2) < f’—“—zl} cen,
4c¢,
and we consider a ¥® function yx(n) such that (see lemma 2.3 of [BR-OR] for
a construction):
a)0=sy=s1
b) y=0in Q) and y=1in C"\Q,

C
) 10x(m) )

a1 — n*) A o;
d) lo(1 = Inl*) A nw_d@d%
where the constants which appear in the expression are independent of { and z.
Also note that
L _ 1, -2
1=40 1—nz (1 —#)01~dz)
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Therefore

X — )

(1 =y
¢ Lf ('I)(l—_"ﬁ-z)‘n"ﬁTs‘dV('?)

[T —azl" |1 — ¢

(1 = InP*yl — O
Vi =: Js.
+CL\Q;W"NII—ﬁzl"““u—ﬁad () =:Jy + 2+ J5

avn) +

I = Cf Lf ()l
2,

By lemma 3.3 we have |1 — 7z] < ¢|1 — {Z| in Q) and thusfor 0 < & < 1 we have
1 =L =y

Jl écllfllmf ' — in+s+e 1 —
|l — 7z |1 —nd]

Hence, by lemma 3.4 with k = 0, we obtain J; < ¢ || f| -
We can use theorem 3.6 to obtain

dv(n).

J2 = |f(@)x(z) - J‘B K(n,2) f(n) A 5X(n)dV(r1)‘

s ||fl|m<1 + L K o(m, 2| 10x(m)] 4V (n)

\2y

+ L K (n,2)110(1 = [nl?) A Jx(n)IdV(n))-

1\92,

Then using theorem 3.6 and properties c) and d) of the function , the result
follows.

To prove the estimate for J; observe that in B\ Q) we have d({, z) £ cd(n, 2).
Therefore, we obtain

iz = Ol < In = zllz = {| + |2z = O < cd((,2)* d(n,2)

and
(1 = |n?y
JyZcelflled,z *f — —dV(n).
s S clfledl 2} | s V0
Thus, the result follows from lemma 3.4 with k = 0.
To prove ii) note that
1 1 C—20-2+1—|z2> - (1 = 7j2)

-7 1-% (1 — a1 — 20
and therefore

/@) (AP (1 —In?y 1
I,.
= n—zg - L = =g =2
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Finally we apply lemma 3.4 and estimate i) to end the proof.

In the next lemma we will obtain some estimates of the forms defined in (3.3)
and (3.4). Similar estimates were obtained by M. Andersson and M. Carlsson in
Proposition 3.2 of [AN-CAZ2] for an analogous Hefer decomposition.

LemMa 3.8. Let g; be a bounded function on B and h?, h},0?,w! the forms
defined in (3.3) and (3.4). Then we have

. c
i) 10, 2)| S T—F
.. c

i) |hj((,2) < e

c
iii) |0 Q) < m

iv) loj (0l < I e

Moreover, if g; is a multiplier of the Bloch space we have

2
T T
. ¢ - 2
V) [0}O1 S T loe ™ T

ProoF. From the definition of h?;, (definition 3.1) we obtain

A= mi*yeE—-8)
Jﬂgl(”) ( ”z)n+1+s(l C) dV( )

M 18301 S = e los ™

[h:(C,2) S ¢

(1~ Inl?y
+ cllgjll o dv
losl Lll g

(1 = Iny
+ c||gill — —
Il L L= el — gp

Hence i) follows from lemmas 3.4 with k = 0 and 3.7. Part ii) follows in the same
way.

The estimates iii) and iv) are well known.

On the other hand the representation formula of theorem 3.1 and the integra-
tion by parts formula of lemma 3.3 give

av (n).
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0 -
I(FC._ - CiR) g;({)

8 (1 =gyt
Csrt <55 - &-R) L R.g(n) oy ies dv(n)

S PN
c — lo dV(n).
Jo S v

A

Thus, v) follows from lemma 3.4 with k = —1and { = 0.
Finally, vi) follows trivially from the characterization of the multipliers of the
Bloch space.

LEMMA 3.9. If the function g; is a multiplier of the Bloch space, then the
derivatives of the Hefer functions defined in (3.1) satisfy:

2

1z

1

. N C )
i) 10:h(C 2l = (1 =12t = {z* 8

. 2
=2
PROOF. As in the above lemma, we can use the definition 3.1 of h; and the
integration by parts formula of lemma 2.3 to obtain

(1 —Igl?y*!
11— 7z"* 21 — gt

(l _ Mz s+ 1
—a i — et 4O

1

. c B 2 c
i) 10:0 G2 S T =G T T A =g 8

10:h9:(C,2) < ¢ L IR; g;(n)l dv(n)

+ c'[ IR;g ()l M
B

Hence, from |R,g(n) < c—”ﬂ“ﬁ— -1 —Z'IF and the estimates of lemmas

A
3.4 and 3.5 we obtain the result i).
To prove ii), note that

1 . (l - l'/lz)ﬁ ! dv
10:h;(,2) = CLIng,(n)I TR T ()
(= fn?y*!
j 4
+ CLIng,(n)I Tz — A dv(n)
(1 —m?y*?
< ! av
= CLIR,Q,(n)I T T ()

C (1 —_ |n|2):+1
dV(n).
" 1- |Cl2 J;Ingj(’l)I “ — ﬁzlzu —_ r‘,'C'n+s (r’)

Thus, the estimate follows from lemmas 3.4 and 3.5.

As corollary of these results we obtain:
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COROLLARY 3.10. Assume that the functions g; are multipliers of the Bloch
space. Then, with the same notations of formula (3.5) and 0 < |K| + |I| =
IK'| +|I'| = k, 1], |I'| £ 1, we have

c 2

i) (Gg A G A Hy A HD)(C 2 ——log ™ .
A=z ==t 1 -
.o = C _ 2
i) [(Gk A Hg)(C2)l < - —log™* : .
(1 — PRI — Gaff — 1t
iti) 0,(G} A Gi A HY. A H1)(,2)
2
= - log ™ —2log™ —2—
(= [T = G T (1 = |2?) 1= 1=
+ _ C - Og—(k+1)__g_2_
(1= T2 1 = G -1
, 5 5
iv) 10.(Gx A Hy)(G,2) < . log~* log™! i
(=102 = G2 (1 = |21 1 - 1—|z
+ ¢ —(k+1) 2
k k - 2
(=[Pt =G 1=

The following results summarize some estimates that we will need to prove
theorem B.

LeMMA 3.11. Let g; be a bounded holomorphic function on B. Then we have

_ 16g(2)| !
i) 10k 2 <c n—GE T U= =&
i) [0, (C 2 < gLy :

=0 A=z = 1 - 2l

ProoF. By definition 3.1 we have

_ sn+s ﬁi _ C_:
h;)-i(c’z) =Cs J;%(ﬂ)(l - |'7|2) ';o (1 _ ﬁZ)"+1 +s—l(1 . ﬁC)I+1 dV(r’)

_z'-—f~ (1 =y i — & -
= 11_ Z'CJ g,(z) + CsJ.ng('l) - ﬁz)n+l+s ((1 — 70 - (1— EC)>dV('7)

n+s

- 2)s ﬁi - C.z
+ csjngj(n)(l |1’]' ) Z (1 _ ﬁz)n+l+s—l(1 _ ﬁ()l+l dV(rl)

1=1
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We can now differentiate under the integral sign and use the estimates of
lemmas 3.4 and 3.5 to obtain the estimates of i).
Part ii) follows in the same way.

COROLLARY 3.12. Assume that g; are bounded holomorphic functions on B. With
the same notations of formula (3.5) and |K| + |I| = |K'| + |I'| = k, |1, |I'| £ 1, we
have

1090l
(1= QT = G T+
10g(0) A 21 — 1)
(1= 11— Gl

i) Gk A Gi A Hy A HL)C,2)l S

i) [(Gk A HR)(, 2l S ¢

109(2)] 10(0)

(1= T =G
10g(Q)l

(1= |22 (1 — [E2)E | — Gof T

109(2) 199(0) A 31 — I¢1?)
(1= - Gl
109(0) A (1 — ¢
(1= [2F = T = G T+

iii) 10.(G2 A G} A HY. A H})(,2)| <

+c

iv) 10:(Gk A Hg)( 2 S ¢

+c

LemMA 3.13. If g is a multiplier of the space Aj,, then |0g(z) A
a1 — 1231 — |21~ *dV(z) is a A} ,-Carleson measure.

ProOF. First recall that if he A} |, then the coefficients of (h A d(1 — [¢|?))
belong to the weighted L'-space L, (B):= L'(B,(1 — [{|*)"*dV({)) and

j 0k A a1 = 1IN = 121772V () < cllhlly, i
B

Thus, if g is a multiplier of A] ,, we have

J If(©dg() A a1 — LI = 1517~ dV(Q)
B
éj 10g ) A o1 = I L1172V ()
B

+ IIQIIwJ [0f(0) A (1 — 1IN = 111~ HaV ()
B

Sclgfliaa +elflun S clifllge
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Hence the lemma is proved.

4. Sufficient conditions.

SUFFICIENT CONDITIONS IN THEOREM A. We will prove that the opeators T;
defined in (3.5) maps £ into 8. We need to show that

sup {1 =210, TN} < cllf lla

By differentiation under the integral sign and using the estimates of corollary

3.10, we obtain
N L 30 -k (g(z)g(o) : dV@‘

0. TG < ¢

Ig(C)I2 A=3rt=\ P
4 ICIZ)S —k 2
+r=ron o 2 [ 0 e e v

& =1 2
] )
+cé&ﬂU©Hl_&ruﬂog 1—KPdWO

We can now apply the integration by parts formula of lemma 2.3 to the first term
and use

2
sup {lf ©llog™" T:TCTZ—} sclfla

LeB

to obtain
0T < clf Ia LW—II-EJ;?;;dV(C)
W laron o | v
éCJ!E”

which proves the theorem.

SUFFICIENT CONDITIONS IN THEOREM B. The estimates of corollary 3.12 give
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Lf@ 9,0 A -Kpy (9(2)9'@)"‘1[,(0'

T < lg@F (1 =3y =\ lg@)P
Ll—_mz)s_

+I I ©Olog(Ol—— s

av(

-y

J 1fI1dg(©) A o1 — lCIz)I——C-I,,—q:—;dV(C) =l + L+ 1

and

10: T2 = ¢

62Lf(C) gi© _ a—-y (g(Z)é(C))°dV(o‘

007 =Gy \ lgQP
1__ 2

¥ cwg(z)lf OO~ av g
, =l

2ys
=gt o

2ys
g o

+ CIag(Z)|f £ ©)110g(Q) A o1 — L)

MTESTES f LS ©l1ag@)l

I ?

¢ ey (L= 1Py
T f /©1129) A 801 ~ PN 77— gprrs 4V Q)

=:J1 + J2 +J3 + J4 + JS'
To prove the theorem we need to show that each of the terms I;, J; is in LY(B).

Fubini Theorem gives

2
f L@V Q) < ¢ f f |f(0|———5~:f-'+—§—;dV(odV(z>gcnful.u.

The estimates of I, and I, follow from Fubini Theorem, the fact that |0g ({)|dV({)
is a A} ;-Carleson measure and lemma 3.13.
By integration by parts and differentiation under the integral sign we have

( — 17!
V1(@)| = ¢ldg(2)l (IRsf O+ 11 (C)ng(l)l) AL av ()

(1= !CIZ)s+l
+ | (RSO + IS QRN 77777 4V 0.
B |1 C-Z|



110 JOAQUIN M. ORTEGA AND JOAN FABREGA

Therefore we have
f [Ji(2)|dV(z) < CL (R f(OI + £ () Reg(D))
B

x (1 — ICIZ)‘“f '—I—%i-);!—de(z)dV(C)

_ |C|2)s+1
(IR fO + /) Rg(©) H__V'deV(z)dV(O

- CJ (RSO + 1f O RgON V() = ¢S l1,1.1-
B

Furthermore, the same reasoning gives

j [J2(2)ldV (z) J If ©agI1 - 1L1%) J ul gc( ?,I,ﬂ dV(z)dv ()

< CL f©Qog@laV() = cllflli1n

and

L 3(2)ldV (2) = CLIf(Oag(C) AL =IO =102V = el flliaa

Analogously, we obtain the estimates of J, and Js.
Hence the lemma is proved.

FINAL REMARKS. If we consider the problem for the intermediate cases
1 < p < o, the same reasoning used in section 2 shows that the functions g; are
multipliers of the Besov space A% ; and that |g|* = 6 > 0 are needed to solve the
problem.

For p = 2 these conditions are sufficient according to [AN-CA2].

Then we will finish with the following question:

With the above hypothesis, do the operators Tymap A? , into itselffor 1 < p < co0?

Note that the same reasoning of section 4 and Holder inequalities give

M+ L+ 13+ Jy+Ja+ Isllppr S cllfllppa

where I;, J; are the terms defined in the above proof. However, using this method we
can not obtain these estimates for the terms J, and J;.

Probably, as happen for p =2 [AN-CA2], it is necessary to obtain more
information about Hefer functions and they derivatives in terms of 4% ;-Carleson
measures in addition to the pointwise estimates already obtained.
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