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THE NUMBER OF RATIONAL QUARTICS ON
CALABI-YAU HYPERSURFACES IN WEIGHTED
PROJECTIVE SPACE P(2, 14

PAUL MEURER

Abstract.

We compute the number of rational quartics on a general Calabi-Yau hypersurface in weighted
projective space P(2, 1*). The result agrees with the prediction made by mirror symmetry.

1. Introduction.

In this note we will compute the number of rational quartics (see § 3) on a general
Calabi-Yau hypersurface in weighted projective space P(2, 14). The number was
asked for for the first time by Sheldon Katz [8], and David Morrison [10]
computed it using mirror symmetry methods. Our result, which agrees with the
mirror symmetry computation, is:

THEOREM 1.1. There are 6028452 rational quartics on a general Calabi-Yau
hypersurface in weighted projective space P(2, 1*).

The method used can be sketched as follows: We show that the irreducible
component 32, of the Hilbert scheme of P(2, 1) containing the rational quartics
is smooth and can be embedded into the irreducible component ¢, of the Hilbert
scheme of P# containing the elliptic quartic curves. There, it can be characterized
as one component of the fixed point scheme of a natural involution. On the other
hand, 5#, is well-known and explicitly described by Dan Avritzer and Israel
Vainsencher [1]. Together, this leads to an explicit description of Hy.

The number of rational quartics on a general Calabi-Yau hypersurface is given
as the integral of the top Chern class of a certain vector bundle on H#,. 1t will be
computed by a formula of Bott’s, which expresses the integral of a homogeneous
polynomial in the Chern classes of a bundle on a smooth, compact variety with
a C*-action in terms of data given by the induced linear actions on the fibers of
the bundle and the tangent bundle in the (isolated) fixed points of the action.
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2. Relations between the Hilbert schemes of X and X/T.

In this section, we investigate relations between the Hilbert schemes of a projec-
tive scheme X and its quotient X/I" = Y w.r.t. the action of a finite group I'". To
each irreducible component 5 of Hilby,r, we will find a subscheme Z of Hilby
mapping birationally onto #. The morphism ¢: Z — 5 is generally no isomor-
phism, but in the situation interesting us primarily (i.e. # = irreducible compo-
nent of Hilby, ;4 containing the rational quartics), it actually is an isomorphism.

We assume all schemes to be defined over an algebraically closed field k of
characteristic 0.

First, we state some nice simple properties of finite quotients p: X —» X/I' =Y
for later reference.

LemMA 2.1. (i) p, and (p, (")) are exact functors from I'-linearized quasicoher-
ent Ox-modules to quasicoherent Oy-modules.
(ii) Let V < X be I'-invariant. Then we have

Ovir = (P*COV)F, fwr = (P*fv)r-
(iii) (04(*))" commutes with cohomology, i.e.
H(X, F) = H(Y,(p,#)").

PROOF. (i) p is a finite map.

(ii) follows immediately from the definition of ¥/I" and (i).

(iii) Note that the functors H(X,*)" and H'(Y,(p,("))") are left-exact and equal
fori = 0. But the category of quasicoherent ¢x-modules has enough injectives, so
they are equal for all i.

LEMMA 2.2. Let X be a quasiprojective scheme and I a finite group acting on X.
Let

V s Sx X
1

S

be a family of subschemes of X, flat over S and invariant under the action of I
Then V/I' = S x X/I is flat over S.

ProOF. We can assume that S and X are affine, since flatness is a local
property and X —» Y is an affine map. Write S = Spec4, X = SpecR,,
R = A® Ro. On every R-module M, we define an R'-linear endomorphism
dy: M > M by
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@1 Dpr(x):=II17" 3 9().

yel
Then M" = &, (M) splits as M = M" @ ker @,,. In particular, we have 0, = M
for some A-flat R-module M, so Oy, = M",and M" is A-flat as a direct summand
of a flat A-module.

For a finite group I' acting on a quasiprojective scheme H, we can define the
fixed point scheme H' of the I'-action as follows:

If H = Spec R is affine, then H' is defined by the ideal generated by ker (®). In
general, cover H by affine invariant open sets U and let (H")y:= U".

H" can be characterized as the maximal subscheme of H all of whose sections
are invariant under I'.

Note that the group I' acts in a natural way on Hilby: if [C] e Hilby and ye T,

the action is given by y([C]):= [Y(C)].

Let now 4y be an irreducible component of Hilby with univeral family %". For
any open set U < 5y, denote by # the restriction of #  to U and let
pu:=p x idy. The lift of the family #}, to X is given by p;!'#y =
Wy XyxpX x U.

THEOREM 2.3. Suppose that there exists an open subset U < #y such that
po Wy is flat. Then there is a uniquely determined irreducible component Z of
(Hilby)" mapping birationally to 3y by the map [C]— [C/T].

ReEMARK. The existence of such an open set is guaranteed for example if #y is
reduced (cf. [11], Lect. 8: Flattening stratifications).

PROOF. p,.#" is in general not flat over /Y, but by assumption, there is an
open subset U < #, such that py ' #7 is flat. We can assume that U = Spec A4.
By the universal property of the Hilbert functor, we thus get a morphism
W: U —» #y, where #x is some irreducible component of Hilby. Moreover,
Y factors through an irreducible component Z of (#x)". Let ¥ < X x Z be the
restriction of the universal family on #x to Z.

If we denote idyx x ¥ by Yy etc., it is immediate that py Y¥F = YFpz,F for
any coherent sheaf # on X x Z. On the other hand, Oy, = (pusp¥0x,)";
a simple computation shows then that #7 is the pullback of ¥7/I" by .

By Lemma 2.2, ¥/’ € Y x Z is flat over Z, therefore we get a morphism
¢ from Z to the same component 5 such that ¥/ is the pullback of the
universal family #75.

Since pj ! #7 is flat over U, it is again easy to see that ¥, -1y is the pullback of
py ' Wy by o.

We can summarize the situation in the following commutative diagram:
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po Wy - VY 2V oy > po Wy

! ! 1
Wy = VT - W =2 Wy
i ! ! l
v % z Y. #H =2 U

Since all maps in the first and second rows are pullbacks by ¥ or ¢, it follows by
the universal property of the Hilbert functor that ¢ oy =idy and Yo @,-1y =
id,-1y. Therefore, p: Z — H#y is birational.

EXAMPLE. A simple example showing that the map ¢: Z — #% doesn’t need to
be an isomorphism is the following:

Take X = P? and I' = {id, 1}, where I' acts on P? by ixo = — X, and ix; = Xx;
fori = 1,2. Then Y = X/I' is the weighted projective space P(2, 1, 1) (cf. Defini-
tion 3.1). Let #4, , ,, be the Hilbert scheme of subschemes of length 1 in
P(2, 1, 1), which is isomorphic to P(2, 1, 1) itself, and singular in the point (1, 0, 0).
On the other hand, since the inverse image of a general point in P(2, 1, 1) is a pair
of points in P2, Z lies in the Hilbert scheme % of subschemes of length 2 in P,
which is a P2-bundle over P2, hence smooth. By Corollary 2.5, Z is smooth too,
hence Z can’t be isomorphic to P(2, 1, 1). In fact, Z is the blow up of P(2, 1, 1) in the
singular point.

The following proposition is certainly well known. Since we didn’t find a refer-
ence for it, we give a proof.

PROPOSITION 2.4. Let H be a smooth scheme and I a finite group acting on H.
(i) The fixed point scheme H' of I' is a smooth subscheme of H.
(i) The Zariski tangent space Tyr(x) to H' in a point x is equal to T y(x)".

PROOF. (i) Let pe H' be a closed point and R = (), x; consider the induced
action of I' on R. Then the ideal a, of H' in R is generated by ker ®p.

Since H is smooth, R is a regular (noetherian) local ring. We will show that also
R/ay is regular, which proves the proposition.

Let m < R be the maximal ideal. I induces a linear action on the vector space
m/m? = V.

Let %4,..., X, be a base of the subspace of V invariant under I', and complete it
by 915...,Jn-a to a base of ¥, such that the y; satisfy Pr(y;) = 0. This can be
achieved by choosing arbitrary y; and setting y; = y; — ®g(y;). By Nakayama’s
lemma, the %;, §; lift to generators x;, j; of m.

Again we can construct new ring elements by averaging: Let x;:= ®g(%)),
yj:= J; — @r(¥;). The images of x;, y;in R/m? are %,, ¥;. We conclude that also x;,
y;j generate m. We will show that a:= (y,,...,y,-,) is equal to ar; then R/a, is
a regular local ring, and H' is smooth.
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The ideal a is clearly contained in a; = (ker ®g). On the other hand, suppose
that

kerdg S a + m',
(this is trivially true for r = 1), and let b =Y, 0;x; + Y.iB;y;eker &g be an
arbitrary element. We can write
b=b— &p(b) =} (0 — Prla)x; + 2. Biy; — r(B;y)).
The first sum is contained in a + m"*! because a; — Pr(e;) lies in ker P =
a + m". The summands f;y, lie in a. Write now
Dr(B;y;) = Pr(Pr(B)y; + (B; — Pr(B))y;)
= &r((B; — Dr(B))y;)
= [[17 L 9(B; — @r(BIVY).
Y

In the last sum, both factors of the summands lie in ker @y, hence P (S ;y;) lies
ina + m"*!, too, and together we have that bea + m’*!, hence

kerdr Sa+m L,
Since (), m" = @, we get by induction on r that
ker &g < a.

Hence ar = a, and H' is smooth.
(i) is immediate.

With the notation of Theorem 2.3, we have

COROLLARY 2.5. Z is smooth if #y is smooth.

3. Rational quartics in P(2, 1*) and elliptic quartics in P*,

DEFINITION 3.1. A weighted projective n-space P(k, ..., k,) with positive integer
weights k..., k, is defined as Proj of the graded ring R:= k[yo,...,y,], the
variables y,, ..., y, having weights k, . . ., k,. We can assume that the k, ..., k, are
coprimal.

There is an isomorphism of graded rings R = k[xf’,...,x%], the x; having
weight 1, and in the following we will work with the x; rather than the y;.

We will use the abbreviation P for an arbitrary weighted projective space.

Let I', be the group of kth roots of unity, and let I':=I', x ... x I, . I" acts
on P" = Proj k[xo, ..., x,] in the obvious way, namely through the action of I',
on the i-th projective coordinate by multiplication. P can then be described as the
geometric quotient of P" by this action of I':
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P(ko, ..., k,) = P"/T.

We denote by p the quotient map P" — P, which is a finite ramified covering map,
induced by the inclusion k[x¥, ..., x¥*] < k[xo,.. ., x,]. The ramification locus of
p is the union of the fixed point sets of the non-identity elements of I'.

The singular points of P are exactly the points (0,...,0, i,O,. ..,0) such that
k;> 1.

We can define twisting sheaves in the usual way by setting Os(r): = R(r)". In
general, these sheaves need not to be invertible, but when P = P(k, 1"), then Op(k)
isa very ample line bundle and induces a Veronese type embedding of P into a big
projective space P": the image of P is the projective cone over the image v;(P" ")
of the Veronese embedding of P* ™! by Gp.- (k).

From now on we will consider only the case P = P(k, 1%).

There is a natural projection from the singular point onto P"~! induced by the
inclusion k[x,...,x,] < k[x¥,x,,...,x,]. In P", this projection is given by pro-
jecting the cone down to v,(P"~?) from the point (1,0,...,0).

We will need the following

LEMMA 3.1. The quotient map p: P" — P(k, 1") is flat away from the singular
point (1,0,...,0).

PrOOF. P" can be covered by the I'-invariant affine open sets D.(x;),
i=0,...,n, and the union ( J{_ D.(x;) is equal to P" — {(1,0,...,0)}. It suffices
to show that all the maps D, (x;) = D (x;)/I" are flat fori = 1,...,n. Let

Then the invariant ring is

k
RE—kl(Ze) XL Xio1 X X
i = ’ LR ] ’ I RRRS] 3
Xi Xi Xi X X

and we have D, (x;) = Spec R;, D ,(x;)/I" = Spec R}. Thus the ring R, is equal to

ks <ﬁ> *Rf, hence a free Rf-module, and D, (x;) is flat over D, (x;)/T.

COROLLARY 3.2. Let V <, S x P(k, 1") be a flat family over S such that no fiber
of V contains the singular point of V. Then pg 'V = S x P" is flat over S.

ProoF. Vis aflat family in P(k, 17) — {(1,0,...,0)}. The claim follows from the
lemma and by transitivity and base change stability of flatness.

There is no intrinsic notion of degree of a curve in a weighted projective space
P. In the case of a weighted projective space of type P = P(k, 1"), however, we



THE NUMBER OF RATIONAL QUARTICS ON CALABI-YAU ... 69

agree to measure the degree of curves (or, more generally, the Hilbert polynomial
of subschemes) w.r.t. the embedding described above, i.e. deg C = deg(Op(k)\c).
Let us now specialize to the case P = P(2, 1), the case we are primarily
interested in. P = Proj(k[x3,x,,...,x,]) is the quotient of P* by the group
I = {1,1} = Z,, theaction of I' being given by 1x, = —x,,1x; = x;fori = 1,...,4.
We will consider rational quartics, i.e. rational curves of degree (in the above
sense) four in P. Let C < P be a rational quartic and

Pt - C
(S, t) — (fO(S’ t)" . .,];(S, t))

a parametrization of C. The image of C under the embedding P —, P" induced
from Op(2) is parametrized as

(S»t) and (fOiflz’flea“-’ 42)

and is a degree four curve by definition. Hence f, has degree four and f,,..., f,
have degree two. Furthermore, we see that the projection of a rational quartic
from the singular point to P3 is a conic in P3.

We denote by J#, the irreducible component of Hilbg, containing the rational
quartics. (To see that the rational quartics are really contained in one irreducible
component, observe that the parameter space of rational quartic curves (without
degenerations)is fibered over the space of conics in P? (which is irreducible). Each
fiber is irreducible, too, as one can see from (3.1) by specifying a parametrization
(f1s..., f4) of a conic and letting f,, vary. Hence the space of rational quartics is
irreducible, and 5, is the irreducible component of Hilbs containing that space.)
The universal curve on 2, will be denoted by .

Let now C be a general rational quartic in 5#,. The quotient map p~!C -
p~'C/T = C exhibits p~1C as a double cover of C, and the ramification locus
consists of the four points where f;, = 0in the parametrization (3.1). By Hurwitz’s
theorem p~!C is an elliptic curve, and it is again a quartic because p~'C
intersects the hyperplane {x, = 0} in four points.

Since C doesn’t contain the singular point of P, there is an open subset U <= #,
containing [ C] such that no fiber of €, contains the singular point. By Corollary
3.2, @y lifts to a flat family py '€y in P*.

Denote by s#, the component of Hilby. parametrizing the smooth elliptic
quartic curves in P# and their degenerations. According to Theorem 2.3, there is
an irreducible subscheme Z, of #, mapping birationally to X#, by [C']—
[p(C)]. Since A, is smooth (see below), it follows by Corollary 2.5 that Z, is
smooth, too.

(3.1

REMARK. Itis clear that the above considerations are valid as well for rational
quartics in P(2, 1) instead of P(2, 1). Thus, if we denote by #’; the irreducible
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component of Hilb,s parametrizing the elliptic quartic curves in P3, there is
a smooth irreducible subscheme Z; of #; mapping birationally to 5; by

[CT—[a(C)].

In order to obtain the explicit description of Z, that we need for the calcula-
tions, and particularly to prove the claimed isomorphy of Z, and #,, we will
have to look at the description of 5, given by Dan Avritzer and Israel Vainsen-
cher:

Let G:= Grass,(H%(0ps(2))) be the Grassmannian of pencils of quadric surfa-
ces in P3, and denote by G’ the image of the (well-defined) map

3 — Grassg(H%(0ps(3))

(3.2) [C] — [H%#3)]

On G, we have a canonical family of subschemes of P3: the fiber in a point g€ G is
the base locus of the pencil represented by g. In the same way, G’ gives rise to
a family of subschemes of P*: the fiber in a point g’ is the base locus of the linear
system of cubic surfaces represented by g'.

Denote by B the subscheme of G where the family on G is not flat, and denote
by D the subscheme of G’ where the family defined by G’ is not flat (B consists of
pencils with a fixed component, and D is the scheme of planes in P? with an
embedded subscheme of length 2). Then we have:

THEOREM 3.3. (i) (Avritzer, Vainsencher [1]). 5#; is isomorphic to a two-fold
blow up of G. More precisely, G’ is isomorphic to the blow up of G along B and 3, is
isomorphic to the blow up of G’ along D. The ideal of every (degenerated) curve in
H; is generated in degree < 4. In particular, #; is smooth of dimension 16.

(i) J#, is fibered locally trivially over P* in a natural way with fiber #5; i.e., the
restriction of the universal curve over X, to the fiber over a hyperplane h =~ P3 in P*
is the universal elliptic quartic curve in h = P3.

ProoF. (ii) Wehave toshow that all degenerations of elliptic quartic curves in
P*span exactly a P*. Then the fibration is given by projecting a point [C] € 5, to
the hyperplane it spans.

It is clear that no degeneration can possibly span less than a P3, for then this
degeneration would already be contained in ;. On the other hand, for a general
elliptic curve, dim(H%(#(1))) = 1; if a degeneration C, spanned all of P*, then
dim (H%(#¢(1))) would drop to 0 in C = C,, in contradiction to upper semicon-
tinuity of dim (H°(F¢(1))).

The fibration is locally trivial because PGL(4) acts transitively on P* and this
action lifts to an action on J,.
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As a corollary of this theorem we are now able to derive an analogous
description of Z3 and Z,. Consider therefore the inclusion of grassmannians

G:= Grass,(H%(Op(2, 15(2)) = G = Grass,(H(ps(2)))
induced by the natural inclusion
(33) it HYOp2, 13(2)) = HO(Opo(2)).

PROPOSITION 3.4. Z; is smooth of dimension 10 and isomorphic to the proper
transform of G under the twofold blow up map b: #; — G.

PRrROOF. I acts on G. If Z' is an irreducible component of G' not contained in
the blow up locus B, then the proper transform of Z’ is an irreducible component
of #3. On the other hand, it is easy to see that G < G is a component of G.
Furthermore, curves in G — B map to rational quartics; this proves that the
proper transform of G in #; is the right component, i.e. equal to Z5.

We turn to the explicit description of Z as a twofold blow up of G.

A pencil in B = G n Bis a pencil generated by two quadratic polynomials F,
F, in H%Op,,13(2)) with a common linear factor, thus we have F; = f,g,
F, = f,g, and they must be independent of x,. It follows that the scheme
described by such a pencil projects to the union of a line and a point in
P2 = {x, = 0} (or a degeneration thereof) under projection from the singular
point. The image is described by the same equations F; = fig, F, = f,9. We
conclude that B is isomorphic to P x P? and has dimension 4.

According to [1], a plane in P3 with an embedded subscheme of length 2 has
ideal

(e1(0cy — X4)x3, X2X3, x%) or (xfx3, X2X3, x§)

up to projective equivalence, depending on whether the subscheme has support
in two points or one point. Consequently, ideals in D, the intersection of D with
the proper transform G’ of G, have, up to I'-invariant projective equivalence, the
form

(x3(ax(§ + bxf), X3X2, X%)’ (as b)E Pl-

Geometrically, D parametrizes hyperplanes through (1, 0,0,0) with an embedded
I-invariant subscheme of length 2. By projecting the hyperplane down to
P2 = {x, = 0}, we see that D is fibered over P2 If we denote by F the fiber over

the point {x3 = 0}, then F can be covered by two smooth open sets isomorphic to
P! x Al

Plx Al 5 F

(a,b) x s > (x3(ax3 — b(x; + 5x2)%), x3(sx1 — X3), x3)
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and
P!xA! > F
(@,b) x t > (x3(@xq — b(tx; + x;)%), X3(xy — tx3), X3).

The coordinate transformations on the overlap st = 1, ta — sa’ =0and b = b’
show that F is isomorphic to P(0Op: @ Opi(1)). So D, too, is smooth of dimension 4.

ReMARK. This is another proof of the smoothness of Z ;.
PROPOSITION 3.5. The map @: Z3 — 5 is an isomorphism.

PROOF. Since ¢ is birational and J, is irreducible, it is enough to show that
the tangent map do: 7;,([C]) = 7 %,([C/I"]) is injective in every point.

Consider a C*-action on P3 acting diagonally w.r.t. the coordinates x,, ..., X3
and having isolated fixed points. We can choose the action in such a way that the
induced action on J#; has isolated fixed points, the fixed points being given by
monomial ideals. Furthermore, the action leaves Z 5 invariant, hence descends to
an action on J%, (more about torus actions in §5).

Suppose now that [C] € Z; is a point where d¢ is not injective. Then d¢ is not
injective in any point of C*-[C]. Let [Cy]1€C*-[C] be a fixed point in the
closure. d cannot be injective in [C, ] neither, because then it would be injective
on a whole neighborhood of [C,] which would contain also points of C*-[C].

Therefore it suffices to show that de is injective in all points of Z; defined by
monomial ideals. A sufficient condition for this to happen is given by the
following.

LEMMA 3.6. Let [C] € Z 5 be a point whose homogeneous ideal I is generated by
invariant monomials. Assume that there is no invariant monomial m of degree 3 not
contained in I¢ such that all monomials x,m, x,m, xym lie in Ic. Then dg is injective

in [C].

We can check explicitly by looking at all types of monomial ideals, which we
will determine in §5, that the assumption of the lemma is always met. This is
a boring but simple exercise, and we will only point out the reasoning for one
case.

Take for example the fixed curve C with ideal Ic = (x,x,,x X3, x3Xx,), and let
m be a monomial of degree 3 not contained in I.. Since m is invariant, there are
two possibilities:

(i) x2dividesm. Thenwehavem = x2x;,i = 1or3,and x;m = x2x?is certainly
not contained in I.

(ii) x2 does not divide m. We have either x, /' m, then x,m or xsm¢ I, because
not both can be multiples of x2x; or x; |m, then m = x3, and x mé¢ I..
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All other cases can be treated in a similar way. Thus d¢ is injective everywhere
and the proposition is proved.

It remains to prove the lemma.

Let [C] € Z; be a point with homogeneous ideal I = (hy,...,h,), the h; being
I'-invariant monomials of degree d; (i.e., they contain x, in even power).

There is a natural injection

(3-4) 7 #,([C]) = Hom (4, Oc).

Y

The resolution of #¢ defined by I gives rise to a diagram

@i Ops(—dy) e Je -0

(3.5) ¥
f >0
for every fe Hom (%, O¢), and hence to an injective map
(3.6) Hom(4, Oc) Cj—) @ Hom(Ops(—d), O¢) = @ H(Oc(d;))

which sends f to f. Now let I = (K,...,h,) be a homogeneous ideal of C gener-
ated by monomials h; of even degree. In concrete terms, construct I from I by
retaining the generators of even degree and replacing each generator h; of odd
degree by generators xoh;, ..., x3h;. Itis clear that I and I¢ both define the same
scheme C. Let

(3.7) ® Ops(—d; ;) —<> Jc =0
i,
be the corresponding surjection, where d; ; =d; + 1and A = 0,...,3 if d; is odd

andd; ; = d;and 4 = — 1 (say)if d; is even. By applying the exact functor (px(*))"
to (3.7), we get a surjective map

@ 05( - dl/' ;.) (O(hi, A))i, A jC/[' — 0.
i,A
But when d; is odd, then ®(h; ,) = P(xoh;) = 0, and we don’t lose anything if we

let the sum run only over indices (i, A) with 4 & 0.
The diagram

;2 Ops(—dj, ;) —%> I =0
(3.8) ln ) [
®;Ops(—d) —> Ic—0

includes a diagram
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Hom (4, 0c) < @; HOc(d;)
(39) n , Lx
Hom(4, O¢) = @iz HO(@c(df. D)
The map x sends an element (0, . . ., nic, ...,0)t0 (0,..., (i'n_1“, ...,0)if d;is even and

(i,0) (i,3) .
to (0,...,xom,...,x3m,...,0) otherwise.

The tangent space to Z in [C] is equal to (7 ,fa([C]))’ , and there is a com-
mutative diagram

TAC) <=  Hom (S, 0c)
(3.10) Ldo e
T#,[C/T]) = Hom((p4H)", (pxOc)")

(recall that £, = (p,Ic)" etc.). o is induced from the functor (py,(*))".
The last two diagrams fit together into a big dagram

TAC) <  Hom(F,0) & @ HAOL)"

I
(G.11 Ldo le \ @i, HOc(d; )

lt
T#([C/T]) = Hom((p,5c)', (p40c)') = @ii  HUOL(;,y).

The map t simply forgets the components with indices (i,0) and is an isomor-
phism on the complement.

Now, in order to prove that d¢ is injective, it suffices to show that the
composition 7o k is injective.

By computing resolutions of all the ideals 4 (in Macaulay, for example), we see
that they all are at least 3-regular, which means that H?(4(m — p)) = O for all
p > 0,m = 3;thus H'(#(d)) = Oford = 2. Therefore H((0(d;))" is generated by
the invariant monomials of H%(Ops(d;)) not contained in H%(Sc(d;))".

Thus it is enough to check that no such monomial is contained in ker(z o k).
For monomials of even degree this is clear. because 7o x is the identity on the
direct summands H%(O¢(d;))" for d; even. An invariant monomial m (which for
short will stand for (0,...,m,...,0)) of odd degree d; (d; = 3 in our case for all
ideals) is mapped to [(0,...,x,m,x,m, x3m,...,0)] by 7o k. Thus 70 x(m) is zero
exactly when x,;m, x,m, x3m all lie in H%(#c(d; + 1))’ (or, what amounts to the
same, in I¢).

Now we are able to deduce the analogue to Theorem 3.3 (ii).

PROPOSITION 3.7. Z, is isomorphic to H#,, and #, is a locally trivial fibration
over P3 with fibers isomorphic to #;. Thus S, is smooth of dimension 13.
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PrOOF. We can proceed as in the proof of Theorem 3.3 (ii).

A smoothrational quartic Cin P(2, 14) spans exactly a hyperplane H =~ P(2,13)
(i.e. a hypersurface with a linear equation I(x,, ..., x,); use the fact that the lift of
C to P*is an invariant elliptic quartic). Thus, the projection of C to P? < P(2, 13)
from the singular point spans a hyperplane in P3, i.e. is a point in P2,

Again, no degeneration can possibly span less than a hyperplane because it
then would already be contained in /#;. But every degeneration in 7, spans the
whole P(2, 1%). A semicontinuity argument shows again that no degeneration can
span more than a hyperplane. Thus the map

H, - P?
[C] + [span(pr(C))]
is welldefined, and clearly a locally trivial fibration.
Consider now the map
Zy— (7?4 - P3

which exhibits Z, as a locally trivial fibration over P2, with fiber Z. But Z, is
isomorphic to #;, so Z, is isomorphic to /.

4. Rational quartics on Calabi-Yau hypersurfaces.

From now on, we work over the ground field C.
A hypersurface in P = P(2, 1*) given by a polynomial of weighted degree 6 has
trivial canonical bundle, i.e., is Calabi-Yau (the following is the only point where

the Calabi-Yau comes into play). -
Consider the ideal sequence of the universal family p: € — #, of rational

quartics in P:
02> 0z,x3—0s—0.
By twisting with ((6) and taking direct images under p, we get the sequence
0 o Fe(6) > Py Uz, #(6) = P4 04 (6) > R'p, (6.

If we assume for a moment that R'p,,.#.(6) vanishes and that the (zeroth) direct
images are locally free, this sequence reduces to

0= pyFI¢(6) > HAU5(6)) 2, = Px0Us(6) = 0.
Now take a section of H%(03(6)) 7, which is induced from a generic iection F of
0%, x#(6) and so represents a Calabi-Yau hypersurface Xp. If [C] € 5, is a given
curve, then the induced section p(F) of p, 0 (6) restricted to the fiber H(C, 0(6))
over [C] e #, is equal to the restriction of F to C. Hence, p(F) vanishes exactly
when C is contained in Xp.
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Since the rank of p,04(6) equals the dimension of #,, Kleiman’s Bertini
theorem (cf. [9], Remark 6) implies that the zero scheme of the section p(F) is
finite and nonsingular; hence the length of this scheme is equal to the number of
rational quartics on a generic Calabi-Yau hypersurface in P. This number is
given by the integral

.1 L ¢13(P4 0« (6)),
#q

¢y3 being the top Chern class.
It remains to prove the claimed facts about the direct image sheaves.

PROPOSITION 4.1. p,%(6) and p, 0«(6) are locally free sheaves, and R'p,, I¢(6)
vanishes.

PrOOF. We show first that H'(#(6)) = O for all curves [C]e #,, i = 1, and
that dim H(#.(6)) is constant on J%,.

Since dim H(P, #(6)) is an upper semicontinuous function on #,, we have to
show the vanishing of H'(P,.#¢(6)) only for all degenerations with monomial
ideals, and the constantness of dim H(.#.(6)) for those and a generic curve.

Namely, let [C] € 5, and suppose dim H'(#-(6)) = d. Take a one-dimensional
torus action on P such that the monomial curves are the fixed points of the action.
For all te C*, the schemes C,:= tC are projectively equivalent, hence the co-
homology groups have all the same dimension d, =d. But the limit
Co = lim,_,, C, is a monomial curve, and by semicontinuity, dim H'(4 (6)) =
dim HY(#(6)).

As mentioned before, all the ideals of monomial degenerations of elliptic
quartics C' < P* are at least 3-regular, thus H(P*, #..(6)) = O for all i > 0. By
Lemma 2.1, it follows that H(P,.#.(6)) = 0 for all i >0 and all monomial
degenerations of rational quartics. The constantness of dim H%(.#.(6)) can also be
verified by an explicit computation.

Since 0 (6) is flat over #,, .#¢(6) is a flat sheaf, too. By the previous result and
cohomology and base change theorems ([7], III 12.11, 12.9) we conclude that
R'p,F¢(6) = 0 and that p, #(6) and p, 0«(6) are locally free.

3. The calculation.

We will calculate the integral (4.1) by Bott’s formula, as follows (cf. [3] and [5];
these ideas are largely due to Geir Ellingsrud and Stein Arild Stromme):
Suppose we are given a C*-action on P which induces a C*-action with isolated
fixed points on #%,. This action in turn induces an equivariant C*-action on the
tangent bundle 7 %, and on p, 0«(6). Therefore, in a fixed point x = [C] of the
action, the respective fibers 7 3 (x) and p, 04(6) ® C(x) are C*-representations.
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As torus representations, they decompose into a direct sum of one-dimensional
representations. Let wy(x),...,w,(x) resp. t,(x),...,7,(x) be the corresponding
weights.

Then Bott’s formula says in our context:

_ T3(%) ... T,(x)
(5.1) fiy €13(p4 04 (6)) = xeéf‘ wix) ... w(x)

Let T < GL(5) be a maximal torus which acts diagonally on P w.r.t. the
coordinates x, ..., x4 of P*. There are characters 4, . . ., A, on T'such that for any
te T, we have t-x; = J,(t)* x;, and these characters generate the representation
ring of T, i.e., if W is a finite representation of T, we can write cum granum salis:

W=3a, M. 25

The action of T descends to an action on P = P4/T.

In the following, we will compute the torus representations of the induced
T-action on J#, in the fibers of P+ 04(6)and J 4, in all fixed points. It is easy to see
that a point x € #, is fixed exactly when the graded ideal of the corresponding
curve is generated by monomials.

Then we choose a one-parameter subgroup C* = T with no non-trivial
C*-weight in the tangent space of any fixed point. Such a one-parameter sub-
group is given by a point (wy, ..., w,) in the weight lattice Hom (C*, T) = Z5; the
corresponding characters on C* are given by A,(t) = ¢". If A5°-...- A%* is the
character of the C*-representation on an invariant one-dimensional subspace of
the tangent space in a fixed point, the corresponding weight is given by

(52) W = poWg + ... + DaW4.

All these weights are nonzero if the weight vector (wo, ..., w,) is chosen to avoid
simultaneously all the (finitely many) hyperplanes in the weight lattice defined by
the linear forms (5.2). Such a choice is clearly possible. In the concrete calculation
of the integral (5.1) we try randomly chosen weights; if none of the denominators
in the summands of (5.1) is zero — which would result in a “division by zero” error
— the choice is valid.

Our choice of the weights guarantees that the C*-action on 5, has isolated
fixed points (in fact, the same fixed points as the action of T), hence we will be able
to apply Bott’s formula.

We will first calculate the fixed points and tangent space representations for
9?3 and afterwards use the fact that &, is a locally trivial fibration over P3 with
fiber ;.
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This is being done by calculating the fixed points of the T-action and the
T-representation on the tangent spaces in each successive step of the blow up, i.e.
on G, on G, and finally on /75 (Note that there are induced T-actions on those
spaces and that fixed points lie over fixed points).

To compute the data of a blow up, say, of X with center B, we have to get hold
of the fiber A4(x) of the normal bundle A" = A x to the subvariety B to blow up
in each fixed point x € B. We can achieve this by computing T-semiinvariant base
vectors of A"(x). Every such vector £ gives rise to a fixed point x; in the proper
transform B’ of B: x, is the inverse image of x in the proper transform of a curve
tangent to £ in x.

The tangent space at x, in the blow up X’ = Bl X is then given as

(5.3) Tx (X)) = Le ® Tp(x) D T pav (X,

where L, is the span of ¢ in the normal space .4#'(x). The isomorphism is
equivariant. (Recall that the exceptional divisor of the blow up with center B is
isomorphic to the projective bundle P(4/p)x), with normal space in x, isomorphic
to L,; cf. for instance [6], B. 6.)

Let us now look at the concrete calculations. We denote by B (resp. D’) the
proper transform of B in G (resp. of D in 57;).

PROPOSITION 5.1. There are 126 fixed points in 55, and they are projectively
equivalent to one of the following 25 types listed below. (To each fixed point type, we
give the permutations of the variables which generate the remaining fixed points of
that type.)

lies in fixed point type permutations number of
fixed points
P ;
(x5, x7) cyclic 3
G- B (x2, x1x2) permutations 3
- 2 .2
(x1, x3) of 3
2
(xyx32, x3) X1, X2, X3 3
(xy %2, X1 X3, f), X1 Xy
fe{xdxa, x3x3, X3, x3x3, x,x3, x3} and x; < x 64
§,_l—)~ 02y AQA3y A2y AQA3, A2A3, A3 1 3
) (x}, x1x3, 9), all permutations 1% 6
2 2 2 2
ge{x3, x3x3, X%3, X3X2, X1X3, X,1X3} of X1, X2, X3
2
(x3, x1x2, x,x3, f), all 6x6
3 .22 -4 4 3 2.2 .
5 fe{x2x3, x3x3, x3, x3, x3x3, x2x3} permutations
2 2
o b xaxa, x1X0, 9), of 6x6
2.2 4 4 3 2.2
g € {xgx3X3, X3X3, X3, X3, X3%3, X3 x3} X1s X35 X3




THE NUMBER OF RATIONAL QUARTICS ON CALABI-YAU ... 79

The tangent space in a fixpoint x in G is given by Tg(x) = ¥, 4,454, 145 1, where «,
B (a0 = P) run over the pairs of indices of the monomialsin I, whereas 7, 5 (y £ 0)run
over all except these indices. The tangent space in each fixed point x, lying over
a fixed point x in B resp. D is calculated by formula (5.3), where the tangent spaces
and normal spaces to B resp. D are given by:

I, tangent and normal spaces

¢

Tilx) =7+ A+ A+ Al
(x1%2, X1 X3, f) Nggx) = AT A5+ A3AT AT + A0 +
Tede 4 a2 s 4 a2
Tox) = AAT 4 Ayt 4 pA] 1+13r
(x2, x1x5, g) N6(x) —12 DAY A2AT T+ AZAL A
Bi +lzl3l +m :

To) = dadi o dahi !+ kg 4 A
(x}, x1x3, x1%3, f) Apie(x) = AsAT  + ABATAS + 34T A +
BATUT  dydet 4 13 ‘,13

Tp(x) =AA7 + LA+ /13/1; + Ag/lg

(x}, x1x2, X1X3, 9) Npig(x) = AA7H + AZAT 145! +A3l gt +
MBA3Ag 20 + lzl + 1212/1 20t

PRrOOF. The fixed points x in the grassmannian G are readily determined, their
ideals have the form I, = (x;x;, x;x;) with the obvious restrictions on the indices.
Let V,:= H(03s(2)), Vi := C- x;x; ® C-x.x;. The tangent space in a fixed point
x is given by

Te() = Hom(Vy, V2/V,) = L A, " A5 ' 2y,
the indices being as specified in the proposition.

First blow up. The subvariety B < G to blow up consists of pencils with a fixed
component, and the fixed points in B are of type (xx,, x;x3) and (x}, x;x2).
Consider the fixed point x with ideal I, = (x;X,, x;x3). The tangent space to
G in x is given by
(5.4)  Ta(x) = AT 22 + A7 A5 AE 4+ A5 A + A3 A+ 240 A +
227 A + AL MAZ AR+ AT A5 1AL

First, we will determine a semiinvariant basis for the fiber 47,¢(x) of the normal
bundle of B in G. Let & € 7¢(x) be a semiinvariant tangent vector in X, given as

5=<§1> w.r.t. the basis {x;x,x,x3} of Vi (e, &ax;xz,bx,x;)=
2

(a&1x,x;,b&,x,x3)). Since & is semiinvariant, ¢; and &, are scalar multiples of
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acommon Laurent monomial y; in x,, ..., X3 of degree 0. Furthermore, the torus
representation on the subspace spanned by £ is obtained by formally substituting
Aifor x;,i=0,...,3 in p,. Clearly this monomial in the 4; has to be one of the
summands in (5.4).

Now I(t) = (x;x; + t&;%1X3,X1x3 + t&,X;x3) is a curve through x with tan-
gent direction £ in x. We see that the semiinvariant tangent vectors

¢ x1x5 ! 0 N\ [xpx7Y\ [xaxi!
0 )7 \oxx3')” \xaxg?)” \xaxp?

are tangent to B; the curves given by I «(t) are even contained in B. The vectors

Xax7 ! x3xy xoxi'xg bV [x3xytxgt
—xox7 1) \=x3x7 1)’ 0 ’ 0 ’
( Y ) ( : )

2,-1.-1 )\ ,2,-1_-1

XoXy X3 X2X1 X3

complete the previous ones to a semiinvariant basis of 7g(x), thus they represent
(modulo (x)) a semiinvariant basis of A,a(x).

In order to compute the fixed points of G’ lying over x, we consider the curves
I¢(t)for £ in that basis. Each of them defines a flat family of curves over A' — {0}.
We can extend this family in a unique way to a flat family over A'. That flat family
induces a map A' — , such that the image x; of 0 A' maps onto a fixed point
xg of G’ under the blow up map ##; — G'. The ideal I, corresponding to x. is the
subideal generated in degree 3 of the ideal corresponding to x; (cf. (3.2)).

To actually compute the ideal I,,, we use a flattening algorithm described by
Bayer and Mumford ([2], Ch. 1)

PROPOSITION 5.2. Let I(t) = (my(t),...,m,(t)) be the ideal of a family of schemes
over A' and suppose that all m;: = m;(0) are monomials. Let I = (m,,...,m,) be the
ideal of the central fiber. Consider the following algorithm:

(i) Take a minimal syzygy of two generators m;, m; of the ideal 1, i.e., a relation

h,mi + hjmj = 0,

with h; and h; coprime monomials, which does not lift to a syzygy in I,(t). This means
that we get a relation

withg % Oandt } g. Add the polynomial g to the generators of I(t) to get new ideals
I't)and I' = I'(0).
(i) Repeat this process finitely often until all syzygies lift to syzygies in I'(t).
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Then the resulting ideal I'(t) defines a family of schemes which is flatint = 0, and
the ideal of the central fiber is equal to I'.

In our case, all g’s are monomials and s is equal to 1 in the first step.
Furthermore, we are only interested in generators of degree 3, so we can stop the
iteration when we have added all monomials of degree 3, and that is the case
already after the first step, as can easily be seen.

In concrete terms, the only syzygy x; - (x;x2) — x5 (x;x3) = 0 lifts to I«(t) as

X3 (x1X + 181x1%5) — X3 (X1 X3 + t&rx1X3) = £+ (x3&1%1X; — X283%,X3)
=:tf
All together, the fixed points in the blow up G’ lying over x are:
I = (x1x2, X1 %3, fo),  fe€{x§x2, x3X3, X3, x]x3, x,x3, x3},

plus the ideals obtained by the permutations x,; <> x, and x, < x5. The calcula-
tion for points x of type I, = (x3, x,x,) is exactly analogous.

Second blow up. In G', we have to blow up the non-flat locus D < G'. The fixed
points x of G’ contained in D are of type I, = (x2,x,x,,x,x2) and I, =
(xf,xlxz,xlx(z)).

The tangent space to G’ in the first fixed point is given by (cf. (5.3)):

(5.5)  Te(x) =2A7"23 + 247 A + A3 MAs + 43223 + AT A 1A +
ATMAT2A3 + ATMA3 042 + AT A5 24,42,

We will determine (the torus representation of) the normal space A/(x) to D in x.
A curve in G’ through x tangent to £ € 75(x) is given modulo t? as

It) = (x} + téx}, xyx5 + tE3x1 X2, X1 X3 + tE3x1x3),

where & = (¢,,. .., &;), and if £ is semiinvariant, then the ¢; are scalar multiples of
a common Laurent monomial y, of degree zero.

Again, by lifting a syzygy relation from I, to I,(t) (this can be done modulo ¢2,
too), we calculate the monomial f; we have to add to I, in order to get the fixed
point in the blow up #; corresponding to ¢. Since the syzygies of all pairs of
monomials in I, generate the whole syzygy module, we only need to consider
such pairs.

Suppose that lifting the syzygy of the pair (m;, m,) results in the right monomial
f¢ then f; is equal to lem(m,, m;) - ;. This monomial is supposed to have degree
four. The two syzygies which can possibly yield a monomial of degree four are
those between x, and x,x2 and between x,x, and x,x3. Consider the first pair.
We have f; = x2x2- u,. But from (5.5) it is apparent that the Laurent monomials
Ke contain x, to the power —1 or higher, that means that f; contains x,; as



82 PAUL MEURER

afactor. Hence the resulting ideal I, = (x3,x1%5,x,x3, f¢) is contained in the ideal
(x,) and certainly doesn’t correspond to a flat degeneration.

So we only have to consider the pair x,x,, x;x3. We claim that the monomials
U corresponding to a semiinvariant basis of A7(x) are

-1 -1 ~1,-1,2 —-1,-2.3 _—1_.-1,2 —-1_-2_ .2
(5.6)  {x1'x3, X1 "xg, X1 x5 X3, X7 X3 2x3, X1 Txy X3, xp Ty 2xpxG )

The two other possibilities for u,, namely x; x; and x3 ?x3, are excluded because
they again lead to ideals contained in the ideal (x,). On the other hand, .4#7(x) has
dimension 6; together this proves the claim.

So, the fixed points in the blow up #; lying over L, = (x2,x,X,, xx3) are

—_ 2 2 3 2.2 4 4 3 2.2
I = (X1, X1 X3, X1X3, fi),  fe€{x2x3, x3x3, X3, X3, X3x3, X5x3}.

The torus representation of A4"(x) is gotten by formally summing up the mono-
mials in (5.6) and substituting A for x. To get all fixed points, we have to add the
fixed points generated by all permutations of the variables x,, x, and x;. The
calculation for points x of type I, = (x2,x,X,,Xx,x2) is again analogous.

Now we have determined all fixed points of the torus action on J#;: they are the
fixed points of all stages of the blow up process minus the fixed points lying in the
blow up loci.

Fixed points and tangent spaces in #,. A fixed curve in P spans a T-invariant
hyperplane (= P(2,1%) in P, which is given by an equation x; = 0, ie {1,...,4}.
Thus, if for instance i = 4, we get the ideals of all fixed curves lying in {x, = 0} by
adjoining the monomial x,4 to the ideals previously determined. The ideals of the
remaining fixed points are obtained by cyclically permuting the variables
X1,..., X4 in these ideals. Thus, 5, containes 504 fixed points all together.

According to Proposition 3.7, #, is fibered over P as

. i‘; g P3
[C] > [projection of span(C) to P* < P].

The tangent space of J#, in a fixed point x = [C] therefore decomposes
equivariantly as a direct sum

T #,(x) @ T ps(n(x)).

Let C be an invariant curve spanning the singular hyperplane {x; = 0} and let
Vi=Cx;, V=C-x;®... ®C-x4. Then the torus representation of the tan-
gent space to P? is equal to
Ts(a(x)) = Hom(V,, V/V) = ¥, 1,47
iti
Finally, the torus representations on the fibers H%(0(6)) of p, 0(6) are easily
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determined: H%(O(6)) is spanned by those monomials of degree 6 that don’t lie in
the ideal .#.

The MAPLE-program which implements these computations is available from

the author upon request.

10.

11.
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