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LOCALISATION OF UNSTABLE 4,-ALGEBRAS AND
SMITH THEORY*

STEVE HUTT

1. Introduction.

In [6] the Borel-Quillen localisation theorem [4, 10] is reformulated to produce
an expression for the modp cohomology of the fixed point set of a finite
Z,-complex X in terms of the mod p equivariant cohomology of X. Here Z,
denotes the cyclic group of prime order p. This result contrasts with previous
work where the localised cohomology of the fixed point set is obtained. The key
to this extension is to localise in the category of unstable A ,-algebras, where 4, is
the mod p Steenrod algebra. Many of the classical results concerning the co-
homology of fixed point sets then become statements concerning this localisation
process.

In this paper we reproduce some of these results giving proofs in the category of
unstable A4 ,-algebras. Thus we only require X to have finite mod p cohomology.
The finiteness of X as a complex is in fact only used at the final step to identify the
result of localisation with the cohomology of the fixed point set. We are moti-
vated by the study of group actions on infinite dimensional Z ,-complexes X with
finite mod p cohomology. These arise naturally in the theory of transformation
groups [2,11,12]. In this case the result of localisation of the equivariant
cohomology of X may be thought of as a kind of continuous cohomology for the
homotopy fixed point set of the Bousfield Kan p-completion of X, [5], and results
of this paper then give information concerning this continuous cohomology. In
[8] we use this to obtain finiteness properties in the form of a “generalised
Sullivan conjecture” type result for certain X.

2. Localisation of Unstable 4 ,-algebras.

Let H* denote the singular cohomology functor with coefficients in Z, Let
A" denote the category of unstable 4,-algebras and H\ ¢ the category /" under
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H, where H = H¥(BZ,;Z,)e X', [9]. Let S = H be the multiplicative subset
generated by the image of the Bockstein on elements of degree 1. For M e H\ .Y,
the localised algebras S~ ' M inherits an 4 ,-algebra structure, which has a unique
maximal unstable A ,-subalgebra denoted Un (S~ ! M), [1]. Thus we have a local-
isation functor : H\A" — H\A" defined by #(M) = Un(S™'M). Let X be
a finite Z,-complex. The Dwyer-Wilkerson localisation theorem [6] is then

THEOREM 2.1. There is an H\ X -isomorphism
H*(X?) = Z, @y L(H3 X).

Here X?» denotes the fixed point set of X and the action of H on Z,, is induced by
the augmentation. We shall also require the following theorem of Dwyer-
Wilkerson [7]. Let H denote the augmentation ideal of H.

PROPOSITION 2.2. For any M € H\X there is a natural H\A" isomorphism
Z(M) = H ®z,(£(M)/HZ(M)).

We note that the unstable A,-algebra Z, ®y £(M) is isomorphic to the
unstable A -algebra Fix M of Lannes [9] and the functor Z, ®y & is therefore
exact [9].

An augmentation for Me H\J¢" is a H\J'-map M — H. We shall assume
henceforth that M is augmented so that in particular #(M) is augmented.
Denote the augmentation ideal of M by M.

Let (X" Hy)+ € H\X denote the augmented unstable 4,-algebra, p = 2, with
algebra generators t and x e (X" Hy), in degree 1 and r + k respectively, such that

Sq'(x) = <I:> t'x. We write (' H) , for (X" Hp)+.

LEMMA 2.3. Let M e H\X'. Suppose M is freely generated as an H-module by
a single element. Then £ (M) is H\X isomorphic to (X" H)_ for some r 2 0.

PrOOF. Suppose M is generated by me M'. We shall show that M = (X" H) +
for some r, k and the result will follow by exactness of . The proof is by
induction on i. If i = 0 we easily have M = H. Suppose the lemma is true for all
M with generator in dimension j £ i — 1,i = 1. Let M € H\¥" have a generator
me M such that deg(m) = i. Suppose Sg'm = 0. Then there exists M’ € H\J" such
that £ M’ = M. The result then follows by induction. Assume then Sg'm = t'm.
We shall show that if S¢'m = t'm and S¢’m is determined, 0 Sj S r,r<i-—1,
then Sq"* 'm is determined. Since Sq°m = m it follows that the action of 4, on
M is completely determined. However in (H;), with generator x € (H;)' we have
Sq'(x) = t'x so that we must have M = (H;)..

Suppose then Sg'm = t'mand S¢’m = é;t'mis given,0 < j < r,r <i— 1. Then
we have
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The left hand side is determined as are all the terms on the right hand side except

t'Sq"*'m. Since M is free over H the element Sq"*'m is determined. This

concludes the induction step.

3. The functor .# and Smith theory.

In this section we present our main results concerning the functor .. We shall
again restrict our attention to p = 2.

THEOREM 3.1. Suppose M € H\ X is finitely generated as an H-module. Then for
alls 20

g dim(Z, ®y L(M)) < }, dim(Z, ®y M).
izs i2s

PrOOF. We may assume without loss of generality that M is free as an
H-module since . kills torsion. In particular M is an unstable 4 ,-subalgebra of
2L(M). The proof is by induction on the dimension of M as an H-module.
Suppose dimy(M) =1 then the inequality is immediate. Alternatively if
dimy(M) = 2 then, by Lemma 2.3, M ~ (' H,), and £(M) = (Z*H)., so that
the inequality holds. Now assume the lemma is true for all M with
dimy(M) £ n— 1, n = 2. Let be #(M) be non-zero of minimal degree r. Then
thereis an H\ " -map b*: #(M) — (X" H), which is onto with b*(b) non-zero. Let
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a*: M — (X" H,)+ be the onto restriction-projection of b*, and let M 'e H\XX" be
the kernel of a* Then dimy(M’)=n— 1 and there is an exact sequence
0- ZM') > £(M)— X" H - 0. Consequently

{Zi;sdim(zz ®uM)+1 s<r+k
Yizsdim(Z, ®y M) s>r+k

- {ngsdim(zz Qu LMY +1 s<r+k

= iz dimZ, ®y L(M)Y s>r+k
=Y dimZ, @y M) +1 s<r
2 dimZ, @y LM) +1 r<s<r+k
=Zi§sdim(22 ®H$(M))' r+k<s

Hence ) ;> dim(Z, @y M) 2 Y5 ,dim(Z, ®y L(M))-

Y dim(Z, ®y M) =

izs

We also have

LEMMA 3.2. Let Me H\X". Then M is free as an H-module if and only if
dim(Z, ®y M) = dim(Z, ®y L(M))

Proor. From the proof of the above lemma we see that if M is free as an
H-module then dim(Z, ®y M) = dim(Z, ®y £(M)). Suppose then this identity
holds. Let M’ be the ideal of M consisting of elements of H-torsion. Then
M/M'eH\" is free as an H-module so that dim(Z, ®y4(M/M’) =
dim(Z, ®y L(M/M")) = dim(Z, ®y £(M)) where the latter equality follows
by exactness of . Hence dim(Z, ®y M) = dim(Z, ®y(M/M’). So
dim(Z, ®4 M’) = 0 and M is free as an H-module.

For M e let iyM = Hom, (M, Z,). Suppose ¢ € 1o M. Then the component
of M containing ¢ is defined to be the unstable A4 ,-algebra M, = Z, ®,; M where
Z, is an M-module by the map ¢. We say M is connected if 1o M = Z,. Similarly
for Me H\ X" let ngM = Homy, x(M, H). Suppose ¢ € moM. Then the compo-
nent of M containing ¢ is defined to be the unstable A,-algebra under H,
M, = H ®y M. We say M is connected if moM = Z,. It follows from general
properties of . [9] that

LeEMMA 3.3. Let Me H\A" and penoM. Let ¢ € no(Z, @y L (M)) denote the
H map Z, @y L(¢). Then Z, @y (L (M,)) = (Z, ®y L (M));.

We shall require

LEMMA 3.4. Let MeH\X be free and finitely generated as an H-module.
Suppose M is connected. Then for all me M there is an integer r such that m" = 0.

PRrOOF. Let i: M ¢ P(M) = H ®,,(Z, ®4 L(M)). Let me M, necessarily of



60 STEVE HUTT

positive degree, then im?") = (Y t" ® ¢;)*" = Y, *" ® ¢f". Since Z, ®y L (M) s
finite and c; is of positive degree this latter expression is zero for large n.

We have

THEOREM 3.5. Let M be free and finitely generated as an H-module. Suppose
Z, ®y M is generated as an algebra by at most n elements. Then each component of
Z, ®y L(M) is generated as an algebra by at most n elements.

ProOOF. By the Lemma 3.3 we may assume M is connected. Let my,...,m,e M
be a minimal generating set for Z, ®y M as an algebra. Let cy,...,c,€e L(M)
generate Z, ®y £ (M) as a graded vector space. Then for some large k;, we have
timy =Y ¢ yt"c; for some ¢; €Z, and r; 2 0, where t"c;e M < £(M). Now
tc; = pi(my,...,m,,t), a polynomial in the m;’s with coefficients in H. Let
pi = l; + q; where [; is linear in the m; and g; is quadratic or higher. Thus
tim, = Y ;& ,1;. Similarly we have tm; = Y ;¢; jl; for some ¢; ;€ Z,,j = 1,...,n
Hence {I;} spans the homogeneous vector subspace {t*‘my, ..., t*"m,» of M, and
so there is a subcollection, say {l,,...,l,} after reordering which also spans.
Consequently the linear terms in {t"'cy,...,t™"c,} generate S~ 'M as S~ ' H-alge-
bra since each m; is nilpotent. It follows that {c,,...,c,} generates Z, @y L(M).

The proof of the following theorem is similar to Bredon’s proof of the analog-
ous theorem in [3]

THEOREM 3.6. Let M € H\ XX be free and finitely generated as an H-module and
suppose each component of Z, ®y M satisfies Poincaré duality. Then each compo-
nent of Z, ®y L (M) satisfies Poincaré duality.

Proor. By Lemma 3.3 we may assume M is connected so that Z, ®4 £ (M) is
connected. Let 0  beZ, ®y L (M) with deg(b) > 0. Following Proposition 2.2
we think of b as an element of #(M). Then for large k we have t*b = Y ; o t'm; for
some m;eM and m, ¢tM. If deg(my) <n then there exists me M such
mY i ot'm;¢tMsince Z, ®y M satisfies Poincaré duality. Supposem = Y ;5o t'a;
with @€ Z(M). Then 0% mY >ot'm =5 0(t'a)(t*b) = Y0t *a;b. Now
suppose a;b = 0 for all g; of positive degree, then Y ;5 o t'**a;b = t4°8™ **p Thus
(B Y otim; =mY ;5o t'm; ¢ tM, a contradiction. Thus we must have a;b # 0
for some q; of positive degree. Suppose the maximum non-zero dimension of
(Z, ®y Z(M)), isr. Choosing deg(b) = r gives a contradiction so we must have in
this case deg(mg) = n.

Now suppose b, b’'eZ, @y L (M) with deg(b) = r = deg(b’) and both b, b’
non-zero. Then as before t*b = } ;5o 'm; and ¢*b' = Y, o t'm; with mo, my, ¢ tM
and deg(m,) = n = deg(mg). Consequently m, — mj € tM so that t"(b — b')etM
where deg(m; — m;) < n, i Z 1. Cancelling t we obtain * " 1(b — b") = ¥ ;5 o t'm
with deg(b — b') =r and deg(m) <n, i = 0. This is a contradiction to the
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maximality of r so we must have b = b’ and dim(Z, ®y L(M)Y = 1. Let b be
a generator.

Suppose b’ €Z, ®y £ (M) with 0 < degh’ = g < r. Then t9b’ = Yis o t'm] with
mo¢tM. If deg(mp) <n then the result follows from above so assume
deg(mp) = n. Then my — my € tM so that t*b — 19’ = Yiz1 ti(m{). Assume m] is
the first non-zero term then ¢*~Jb — 1979b" = j(Y,, ;¢ ~I(m})). Since deg(m)) <n
there exists m such that deg(m) > Oand m Y, ;£ ~i(m)) ¢ tM. Let m = Yisota;.
Then 04 m Yo ;67%m) = (7 *iab — 1~lab) so that 04 Yipo
(t**'a;b — 1% 'a;b'). Since deg(m) > 0 and (Z, ® #(M))° is connected we may
assume that for deg(a;) = 0, q; = 0. But bis maximal so we have 0 = Yisotitiab
so that a;b’ # 0 for some a; of positive degree. The result follows.

4. Conclusion.
We conclude with a couple of typical applications of the previous results.

THEOREM 4.1. Let M e H\X" with Z, ®q M = Z,[x, y]/{x* = y* = 0}, with
deg(x) = n, deg(y) = m,n < m. Then if Z, ®y L (M) is nonzero one of the follow-
ing must occur

1. Z, @y £(M) = Z,[a,b]/{a* = b*> =0}, 0 <deg(a) <n,0<deg(b)<m
2. Z,®y LM) = Z,[a,b]/{a* =b>=ab =0}, 0<deg(a),deg(b)<n
3.2, @y L(M) = Z,[al/{a* =0}, 0<deg(a)<n

4. 2,®@y LM)=2Z, +Z,[a]/{a®> =0}, 0<deg(a)<n

5. Z, ®g L(M) = Z,[a]/{a* = 0} + Z,[b]/{b* =0}, 0 < deg(a), deg(b) < m
6. Z, ®y L(M) = Z,[al/{a® = 0}

Here the isomorphism is of Z,-algebras and the operation + is the sum in this
category.

PrOOF. By Lemma 3.1 we have dim(Z, ®y £(M)) < 4. But y(Z, ®y M) =
X2, @y L(M)) mod2. Hence if Z, ®yL(M) is nonzero we have either
Z, @y L(M) = Z,[al/{a* = 0} or dim(Z, ®y L(M)) = 4. In the latter case, by
Lemma 3.2, M is free as an H-module. Consequently Theorem 3.6 implies that
each component of Z, ®y £ (M) satisfies Poincaré duality. The cases 1-5 are
then all possible Poincaré duality algebras consistent with the inequalities of
Theorem 3.1, except for the inequalites in cases 3, 4, 5 which require further
justification. For example, in case 3 Theorem 3.5 implies deg(a) < n. To obtain
deg(a) < n suppose to the contrary deg(a) = n. Let j: M < #(M). Then there is
arepresentativeme M of x e Z, ®y M such that j(m) = a. But then x% € tM so that
a* e t.#(M) which contradicts Proposition 2.2. Case 4 is similar so consider case
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5. Suppose deg(b) > m. Let %, j € M be representatives of x,yeZ, ®y M respect-
ively, and let 1,eZ,[al/{a® = 0}, 1,€Z,[b]/{b* =0} be units. Then since
deg(b) > deg(x) we can express X as a polynomial in 1,, 1,, a with coefficients in
H. Similarly for j. But for large k, t*b is a polynomial in 1, X, j with coefficients in
H and hence in 1,, 1,, a. This is a contradiction so that deg(b) < m. Similarly
deg(a) < m.

THEOREM 4.2. Let M e H\X withZ, ®u M = Z,[x]/{x**! = 0}, deg(x) = n.
Then if Z, ®y £(M) is nonzero each component (Z, @y £(M)), is isomorphic to
a Z,-algebra Z,[a]/ {a:,“’+ 1Y with deg(a) < n. There are at most two components
and Y ,(h,+1)=k+ 1 where the sum is taken across components of
Z; ®u Z(M).

ProoF. This is an easy consequence of Lemmas 3.1, 3.2 and 3.4. To show that
there are at most two components of Z, ®y £ (M) note that Hom(Z, ®y Z(M),
Z,) = Homy (M, H) by [9]. Thus Homg, »(M, H) is dimension at most 2 since
M has 2 generators as an unstable A,-algebra under H.
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