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SHEAVES ON FIXED POINT SETS AND
EQUIVARIANT COHOMOLOGY

HANNU HONKASALO

Abstract.

Let G be a finite group. In this paper we interprete the ordinary equivariant cohomology groups of
a paracompact G-space X with coefficients in a contravariant coefficient system in terms of the
cohomology of a suitable Grothendieck topos. The objects of this topos are certain families of sheaves
on the fixed point sets X* for all subgroups K of G. As an application we obtain a spectral sequence
associated to an equivariant map f: X — Y, relating the equivariant cohomology of X to that of Y.

Introduction.

Let G be a finite group. The most natural choice for an ordinary equivariant
cohomology theory to be used on a paracompact G-space is the equivariant
Alexander-Spanier cohomology, constructed in [9] for all G-spaces. The useful-
ness of this theory is due to its close connection with sheaf cohomology: If X is
a paracompact G-space and m is a contravariant coefficient system, the
equivariant cohomology groups H&(X;m) are isomorphic to the ordinary co-
homology groups of the orbit space X/G, with coefficients in a (non-constant)
sheaf. If the G-space X is locally sufficiently nice, the groups HZ(X;m) are
isomorphic to the equivariant singular cohomology groups of X, constructed by
Illman in [12]. The construction of H2(X; m) and the above results were general-
ized to the case of a compact Lie group G in [10].

In this paper we consider, instead of sheaves on X/G, families of sheaves on all
fixed point sets XX for subgroups K of G, equipped with suitable structure
morphisms (the precise formulation is given in section 1 below). To a con-
travariant coefficient system m we associate a particularly simple example of such
a family, denoted m/X: On X* we take all constant sheaves with stalks m(G/H),
for H subconjugate to K.

One of the basic constructions in [ 14, ch. I], implies that the families of sheaves
described in the preceding paragraph form a Grothendieck topos. Our main
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result, therem 1.3, then states that the cohomology groups of this topos with
coefficients m/X are isomorphic to the equivariant cohomology groups HL(X;m),
provided that the G-space X is paracompact. The proof of this result is rather
algebraic in nature, and it occupies the sections 2—6 of the paper.

In the final section 7 we apply the cohomology theory of topoi (see [16]) to
obtain a spectral sequence associated to a G-map f: X — Y. In case Y is a point
this gives a spectral sequence whose E,-term depends on the non-equivariant
cohomology groups HYXX; m(G/H)), converging to the equivariant cohomology
H2(X;m). In particular, if G acts freely on X, this spectral sequence reduces to the
Cartan-Leray spectral sequence of the covering space X — X\G.

If f is a G-fibration and Y is a G — CW-complex, we note that the E,-term of
the spectral sequence of f is the cohomology of the topos associated to Y with
coefficients in a family of locally constant sheaves whose stalks are isomorphic to
the cohomology of the fixed point setsof the fiber of f. Thus the spectral sequence
can be regarded as an equivariant Serre spectral sequence. Another construction,
using singular cohomology, of such a spectral sequence is given in [13].

As for possible generalizations to the case of a compact Lie group G, a direct
description of the relevant topos in terms of families of ordinary sheaves as in this
paper, does not seem sufficient.

Some results of this paper are used in [11], which also contains an application
of equivariant Alexander-Spanier cohomology.

Finally, I am grateful to Kalevi Suominen for explaining [14] to me, as well as
for many suggestions to improvements on an earlier version of this paper.

1. Formulation of main result.

Let G be a finite group. We denote by Or(G) the orbit category of G, with the
G-sets G/H for all subgroups H < G as objects and all G-maps between them as
morphisms. Fundamental to this paper is the following category 2: The objects
of @ are the morphisms u: G/H — G/K of Or(G), and a morphism u — v’ in 2 is
a pair (a, f) of morphisms of Or(G) making the square

G/H «*— G/H’

(L.1) ul 1.4'

G/K —— G/K'

commutative.

. Weremark that in the notation of [7, p. 228], our category 2 is Sub(Or (G)), the
subdivision of Or(G). This subdivision construction is of interest in the
homotopy theory of categories, in particular in Quillen’s higher algebraic
K-theory. In the terminology of [1], 2 is the category of factorizations in Or(G).
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Let X be a (Hausdorff) G-space. It determines the functor X: Or(G)°® — Top
(= category of topological spaces) given by G/H— X =~ Map4(G/H, X) on
objects. We compose this with the “target” functor T: 2°° — Or(G)°?, u— G/K,
(o, B)—= & (u, &, B as in 1.1) to obtain the functor

X o T:9° - Top; u— XX, (a, f)— [X(a): XX — XX].

Now we start to use the terminology of [14, ch. I]. Let & — Top be the category
bifibred in duals of topoi over Top consisting of sheaves on various spaces. To be .
more precise, the objects of & are the pairs (R, #), where R is a space and & is
a sheaf on R, and a morphism (R, #) — (S, %) is a pair (f, @), where f: R — S is
continuous and ¢: ¥ — f, % is a morphism of sheaves on S.

The fibre product of X o T: 2°° —» Top and & — Top.

X=X:-T=(& X Top D°P)°P,

is a Z-topos, and its sections form the topos I'(X). Explicitly, the objects of I'(X)
are the families # = (% (u)),con(2), Where for each u: G/H — G/K, % (u) is a sheaf
on XX such that each morphism (, ) of 2, as in 1.1, induces a morphism

F (o, P F(u) > X(0), F (W);

these morphisms are functorial in the following sense: Firstly, #(id,) is the
identity of % (u) for every ue Ob(2), and for (a, f): u = u', («, f): ' = u", the
morphism Z((o, f') o (a, f)) = F(a' o, f o ) is the composite

F(u) > X(0), F ) = X(@) (X (o) F ")) = X(o' 0 ) F(u")

of #(a, ) followed by X(«),.Z (¢, f'). Those objects & for which % (u) is a sheaf of
abelian groups for all u and #(a, f) is a homomorphism for all («, ), form the
category Mod (I'(X)).

An abelian group valued functor F: 2 — Ab determines an object F/X of
Mod (I'(X)) in the following way: For any u: G/H — G/K, (F/X)(u)is the constant
sheaf F(u)/ XX with stalks F(u) on X*; the morphism (F/X)(«, ) induced by (a, f)
of 1.1 is the composite

F(u)/X* 228, Fu')/ XX - X (o) (FW)/ XX,

where the second arrow is induced by the identity between the corresponding
constant presheaves.

In particular, if m: Or(G)°® — Abis a contravariant coefficient system, we apply
the preceding construction to the functor moS, where S: 2 — O_r}G)"" is the
“source” functor u+— G/H. The result is an object m/X of Mod(I'(X)) such that
(m/X)(u) is the constant sheaf m(G/H)/X* on X*.

Let P: 2°° - Top, u point, be the constant functor. The evident natural
transformation X o T — P determines a morphism
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c=(Cpc*) X=XoT—>2 x Set

of 9-topoi. We note that Mod(I'(P)) = Hom(2, Ab) is the category of functors
2 — Ab. We consider the global section functor I': Mod (I" (X)) » Ab, which is
the composite

(1.2) I: Mod(I'(X)) 22 Mod (I'(P)) = Hom(2, Ab) —*— Ab;
here
I'(c,): F — [u—T(X* Fw)]

ey Folim F.
]

If # is an object of Mod (I'(X)), then the nth cohomology group of the topos I' (X)
with coefficients & is by definition

HY(I'(X), #) = R'[(F),

where R"T is the nth derived functor of the functor I' of 1.2.
We can now state our main result, whose proof will occupy sections 2—-6 below:

THEOREM 1.3. Let X be a paracompact G-space and m: Or(G)°® — Ab a con-
travariant coefficient system. For any ne N, there is a natural isomorphism

H'(I(X); m/X) = Hg(X; m),
where HZ(X;m) is the nth equivariant Alexander-Spanier cohomology group of
X with coefficients m, see [9].
2. The Alexander-Spanier resolution.

For a topological space Y, an abelian group M and ne N, let €*(Y; M) be the sheaf
on Y associated to the presheaf

Vi CY(ViM), V <Y open,

where C"(V: M) is the abelian group of all functions ¥"*! » M. Then the se-
quence of sheaves on Y,

2.1) 0-M->E(:M) — %‘(Y M) —— ¥ (Y;M) -
is exact, the sheaves €*(Y; M) are fine and, for paracompact (and Hausdorff) Y,
2.2) (Y, 6"(Y, M)) = C'(Y; M)/Cy(Y; M) = C"(Y; M),

where the second identity is the definition of the nth Alexander-Spanier cochain
group of Y with coefficients M (cf. [15, p. 307]). These facts are well-known, see
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for example [2, I,7]. We recall one consequence: if Y is paracompact, then the
sheaf cohomology H"(Y; M)is isomorphic to the Alexander-Spanier cohomology
H"(Y: M).

We remark that the sheaves ¢"(Y; M) are functorial in both M and Y. Namely,
a homomorphism ¢: M; - M, obviously induces a morphism

04 €(Y; My) > €°(Y: My),
while a continuous map f: Y; - Y, induces homomorphisms
C(V;M) - C"(f ~'V;M), V < Y, open,
which in turn determine a morphism of sheaves
[XE (Vs M) > £,8°(Y;; M).

Let now X be a G-space and m: Or(G)°® — Ab a contravariant coefficient
system. For each ne N we define an object "(m/X) of Mod(I'(X)) as follows: If
u: G/H — G/K, we set

€"(m/X)(u) = €"(X*; m(G/H)),
and for the morphism («, f) of 1.1 we define €"(m/X)(«, ) to be the composite
X(a)*

@"(X*; m(G/H)) 2L @ (X5 m(G/H) 225 X(x), €"(X¥; m(G/H')).

The exact sequences 2.1 for M = m(G/H), Y = X* combine to give the exact
sequence

(2.3) 0 - m/X — €°(m/X) — € (m/X) —— €*(m/X) —> -+

in Mod(I'(X)). We call %' (m/X) the Alexander-Spanier resolution of m/X.
Now we begin the computation of RI'(m/X). First of all, by 2.3,

2.4 RI'(m/X) —— RI'(¥¢ (m/X)),

an isomorphism in the derived category D *(Ab). Secondly, because I' = ¢, o I'(c,),
where ¢, and I'(c,) are induced by morphisms of Z-topoi, we have

(2.5) Rl = Re, o RI(c,),

see [16, 5.4]. Furthermore, if the G-space X is paracompact, so are the closed
subspaces XX (K < G); because the sheaves €"(X K- m(G/H)) on XX are fine, we see
that in this case the objects €"(m/X) of Mod(I'(X)) are I'(c,)-acyclic. Thus

(2.6) RI(c,)(# (m/X)) = I'(c,)(€¢ (m/X)), X paracompact.
Let us consider the cochain complex A" = 4'(X; m) in Hom(2, Ab) defined by
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2.7 A"(u) = C(X*; m(G/H)),
Ao, By CUXS; m(G/H)) ™ C(X*; m(G/H'))
X, Cr(X ™ m(G/H))
foru: G/H — G/K and (a, f) asin 1.1. By 1.2, 2.2 and the definition of ¢ '(m/X) we
have
(2.8) I'(c, )€ (m/X)) = A(X;m), X paracompact.

The formulae 2.4, 2.5, 2.6 and 2.8 together show that for a paracompact
G-space X,

RI'(m/X) = Re, (A(X;m)).
Hence, to prove theorem 1.3, it is enough to prove the following two results:
PROPOSITION 2.9. For any G-space X we have a natural isomorphism
ex(A(X; m) = Co(X;m),
where the right hand side is the equivariant Alexander-Spanier cochain complex of
X with coefficients m, see [9].
PRroPOsSITION 2.10. If X is a paracompact G-space, then the canonical morphism
ex(A(X;m)) > Re, (A (X;m))
is an isomorphism in D*(Ab).

Proposition 2.9 will be proved in the next section, while the more difficult proof
of proposition 2.10 is given sections 4-6.

We note that in the terminology of [1], R"¢,(A'(X; m)) is the nth cohomology
group of the category Or(G) with coefficients in the complex A'(X;m) of natural
systems.

3. The projective limit.

Let F: 2 — Ab be a functor. Then ¢, (F), the projective limit of F, consists of all
families

x=(w)e [ Fw),

uesOb(2)

such that, for any morphism (a, f): u — v’ of 2, the identity
(3.1 F(o, B)(x(u)) = x(u')

holds. In fact the elements x4 = x (idg,x), H < G, determine x(u) for arbitrary
u: G/H - G/K. Namely, the commutative squares
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G/H «*— G/H G/K «*— G/H
I
G/H - G/K G/K —4 G/K

give the morphisms (u,id): idgy — u and (id,u): idgx - u of @, and by 3.1,
x(u) = F(u,id)(xg) = F(id, u)(xg). It follows easily that we can identify

F(u,id)(xg) = F(id, u)(xk)
for u: G/H - G/K

(3-2) ex(F) = {(Xﬂ)e [1 Fldgn)

H=G
Let us now return to the functors A" = A"(X;m): 2 — Abof 2.7 (ne N). We also
consider the analogous functors A" = 4"(X;m). 2 — Ab with
A"(u) = C(XX; m(G/H))

foru: G/H — G/K; here the locally zero cochains have not been factored out. The
canonical surjections C(XX;m(G/H)) - C"(X¥;m(G/H)) induce natural mor-
phisms A" — A". By 3.2, ¢,(A4") and &,(A") consist of all families ¢ = (cy)y < and
y = (yn)u < such that cy e C"(X"; m(G/H)), yz € C"(X™; m(G/H)) and

Xw*(cu) = m(u)y(ck), XW*(yn) = m()y(vk)

for u: G/H — G/K. Comparing this with the definition of the equivariant cochain
group C%(X;m) in [9, section 1], we see that we can identify

(3.3) ChX;m) = £,(A")
Our objective is to prove proposition 2.9, that is
Ch(X;m) = g, (A").
Here C(X; m) = C(X;m)/C% o(X;m), i.e., we factor out those cochains which

are locally zero with respect to an open G-covering of X in the sense of [9]. Hence,
to prove 2.9, it is enough to verify

LEMMA 3.4. The canonical morphism ¢, (A") — ¢,(A") is surjective with kernel
G,0(X;m).

For the proof of 3.4 we need another lemma concerning the coverings of X and
X% H<G:

LEMMA 3.5. Suppose for every H < G we are given a finite number of open
coverings of X®. Then there exists an open G-covering U of X such that the covering
UNXT={UnX"|\Ue@} of X" is arefinement of each of the given coverings of
XH forallH < G.
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PRrOOF. Let x € X. We can find an open G,-invariant neighbourhood U, of xin
X with the following properties:
1) If gx ¢ X¥ for some H £ G, g€ G, then gU, = X\X".
2) If gxe X¥ for some H £ G, geG, then gU, n X" is contained in a set from
each of the given coverings of X*#.

These requirements impose only a finite number of conditions on U,; in 1) we
also need the fact that the fixed point sets are closed in X. Thenifx’ = gx(ge G)is
in the orbit of x, let U,. = gU,. Now % = {U, | x€ X} is the required G-covering
of X.

PROOF OF 3.4. We show first that Cf o(X;m) = ker[e,(4") — £,(A™]. The
inclusion c is clear. For the converse, let ¢ = (cy) € ¢,(4") map to Oin g, (4"). This
means that ¢y € C"(X"; m(G/H)) is locally zero with respect to an open covering
¥y of XH, forevery H £ G. Choose, by 3.5, an open G-covering % of X such that
% ~n X" is a refinement of ¥ for each H < G. Then c is locally zero with respect
to%.

To prove the surjectivity of ¢,(4") — ¢,(A"), take y = (yy) € ¢,(4"), and a repre-
sentative ¢y € C(X*™; m(G/H)) of yy e C(X™; m(G/H)) for each H < G. Then the
cochain

X(u)*(cy) — m(u),(cx) € C(X*; m(G/H))

is locally zero with respect to an open covering ¥ x(u) of XX, for every
u: G/H - G/K. By 3.5 we find an open G-covering % of X such that for K < G,
« n XX is a refinement of each of the coverings ¥ x(u), u: G/H — G/K. We remark
that because % is a G-covering, X(u) " '(U n X")e¥ n XX for Ue ¥, u: G/H —
G/K.
PutZ = (J U"*! < X"*! and define ¢ € C"(X"; m(G/H)) by
Ue¥
Cu(Xos-- s Xn)y I (Xgs..0sXp)EZ A (XHYHL

Cl(Xgy.rny X,) = .
(o ” {0 otherwise.

Then ¢’ = (c}y) € €,(4") and ¢’ > y e g, (A").

To end this section, we note that there is a relative version of proposition 2.9: If
X’ is a G-subspace of X, then

(3.6) ex(A X, X'sm) = Co(X, X'; m),

where A"(X, X';m)(u) = C"(X*, X", m(G/H)) for u: G/H — G/K. This follows
from the definition of the relative cochain groups, 2.9 applied to X and X', and
the left exactness of ¢,.
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4. The derived functor of the projective limit, first reductions.

In this section we begin the proof of proposition 2.10, i.e., that the natural
morphism ¢,(4'(X;m)) - Re(A(X;m)) is an isomorphism in D*(Ab), if the
G-space X is paracompact, which we henceforth assume. By section 3, we already
know that ¢, (A'(X;m)) = Cy(X;m).

Let (H,), (H,),...,(H,) be the distinct conjugacy classes of subgroups of G,
ordered in such a way that

(H) <(H)=i>j;
then H, = G and H, = {e}, the trivial subgroup. For i€ {1,2,...,r} we set
XH) = GXM = {xe X |(H) £ (G,)}
X, = X"y xHI oy XHD,
Now
=XocX,c...cX,.1cX,=X

are closed G-subsets of X, and x € X;\ X;_ { implies(G,) = (H;),i.e., (H;)is the only
isotropy type in X;\X;_,. Because we have the exact sequences

0 - Co(Xi,X;_;;m) - Co(Xym) - Co(Xi-;m) - 0

0 > AX,X;i—y;m) — AXzm) - AXi_;m) - 0,
ie{l,2,...,r}, a five-lemma argument shows that for 2.10 it is enough to prove
that &,(4'(X;, X;-1;m)) - Re, (A (X;, X;—1;m)) is an isomorphism in D*(Ab) for
ie{l1,2,...,r}. Thus we are reduced to proving

PROPOSITION 4.1. Let Y be a closed G-subspace of the paracompact G-space

X and K £ G a subgroup. If every orbit in X\Y has type (K), then the natural
morphism

e (A(X, Y;m) - Rey (A", (X, Y:m))
is an isomorphism in D*(Ab).

In the rest of this section, as well as in sections 5 and 6 below, K, X and Y are as
in 4.1. Let W be the group Mapg(G/K, G/K). Recall that W is isomorphic to
NK/K in such a way that an element ae NK corresponds to the G-map
gK — ga K. Consider the twisted product

G/K xwX¥ =(G/K x X*)/W,
where W acts on G/K x X¥ via (o, (gK,2))— («(gK), X(a™')(2) (xe W, g€G,
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ze XX). The group G acts on G/K xy X* by left translations on the factor G/K,
and we have a G-map

[ G/K xw (X5, Y®) > (X,Y), [9K,z]+gz

Clearly f is closed, and because all the orbits of X\ Y are of type (K), f gives
a bijection G/K x y (X¥\Y¥) — X\Y, see [3, I 5.11].

LEMMA 4.2. The G-map f induces quasi-isomorphisms

AX,Yim) - A(G/K xw(XX, YE);m)
ex(AX, Y;m) — e, (A(G/K xw (XX, YE)m)).

ProoF. The first assertion follows immediately from the strong excision prop-
erty of Alexander-Spanier cohomology, [15, 6.6.5]. The second assertion is
aconsequence of 3.6 and the equivariant analogue of [ 15, 6.6.5], which can easily
be proved with the aid of the equivariant tautness property, [9, 5.1].

Hence we may assume in 4.1 that (X, Y) = G/K xy (XX, YX).

Let £y be the full subcategory of 2 whose only object is idg;x. We have an
evident restriction functor Hom(2, Ab) - Hom(#, Ab), F — F| #¢. The for-
mula a (¢, 2" ") defines an isomorphism W —~ Homy(idgx,idg), and
therefore we may identify

@.3) Hom(#x, Ab) = ZW-Mod,

the category of left ZW-modules. In this identification the projective limit functor
¢X: Hom(Fx, Ab) > Ab becomes simply (-)— (-)%. For any F in Hom(2, Ab),
there is an obvious natural transformation &, (F) — eX(F | ).

In the situation of 4.1 we obtain the commutative square

ed) 2o XA |5
(4.4)
(

J |

(
Re (A) —— ReK(A'| H)

inD*(Ab), where &' = A" = A'(X, Y;m). Thus, to prove 4.1, it suffices to show the
arrows 1, 2 and 3 in 4.4 are isomorphisms. We treat the arrow 1 in this section,
leaving 2 and 3 to sections 5 and 6 below, respectively.

It follows from 4.3 that A'| # is identified with the complex C'(XX, YX;
m(G/K)) of ZW-modules, where a € W acts on (X*, Y*) via the homeomorphism
X(ay: X* —= X*, and on m(G/K) via m(a~"). Also, eX(A'|.#x) = C(XX, YX,
m(G/K))¥ and

R'e((A'| Sx) = H'(W; C(X¥, Y, m(G/K))),
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the group cohomology of W with coefficients in the complex C'(X¥, YX; m(G/K)).
The fact that 1 in 4.4 is an isomorphism therefore follows from

LEMMA 4.5. HY(W; C"(XX, Y ; m(G/K))) = 0 for neN, i > 0.
PrOOF. In the notation of [15, p. 311], we have
(4.6) (XX, Y*; m(G/K)) = lim Hom (C,,(%)/C,(%'), m(G/K)),

where the limit can be taken over open W-coverings % of XX. Because YX is
closed in X*, we may also assumethat U e #\%' implies U = X*\ YX. To prove
that C"(X%, YX; m(G/K)) is W-acyclic, it suffices, by [4, VII (4.6)], to show that the
Hom-modules in 4.6 are W-acyclic. But since W acts freely on X¥\YX
C.(W)/C(#') is a free ZW-module. Therefore Hom(C,(%)/C,(%'), (G/K)) is
isomorphic to a product of coinduced ZW-modules Hom (ZW, m(G/K)) (see [4, I11
(5.7), (5.9)]), and hence is W-acyclic.

5. Some properties of equivariant Alexander-Spanier cohomology.

In this section we prove that the map 2 in 4.4 is an isomorphism. By 3.6 and 4.3 it
is enough to show that

(5.1) Co(X, Y;m) — C(X*, Y m(G/K)"

is an isomorphism, where (X,Y) = G/K xu (XX, Y¥) = G x yx (XX, YX) and
W = Mapg(G/K, G/K) =~ NK/K. For the proof of 5.1 we present three elemen-
tary properties of equivariant Alexander-Spanier cohomology, which were not
covered in [9].

Let now H < G be a subgroup and Z an H-space. To the G-coefficient system
m: Or(G)°® - Ab we associate the H-coefficient system mpy: Or(H)°® — Ab,
my(H/H') = m(G/H'); note that G/H' = G xy H/H' for H' < H.

PROPOSITION 5.2. There is a natural isomorphism
Co(G x g Z;m) —— Cy(Z;mpy).
ProOOF. We have

GxyZ= |] gH xuZ,
gHeG/H

and the sets gH xy Z, gH € G/H, form an open G-covering %, of G x y Z. Every
open H-covering of Z =~ eH xy Z < G xyZ extends in an evident way to an
open G-covering of G x y Z, and every open G-covering of G xy Z, which is
a refinement of %,, is obtained in this way from an open H-covering of Z.

Now, it is enough to consider cochains of G x 4 Z subordinate to %, (see p. 183
in[97). Such a G-equivariant cochain y e Cg(G x 4 Z; m) determines by restriction
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an H-equivariant cochain in C}(Z; my), and by G-equivariance, y is determined
by its restriction. This proves the assertion.

Applying the relative version of 5.2, we obtain
(5.3 ColX, Yim) = Co(G xx (X5, YX)m) — Ciyp(X*; myg).
Here the normal subgroup K of NK acts trivially on XX.

PROPOSITION 5.4. Suppose Z is a G-space, where a normal subgroup N of G acts
trivially. Then there is a natural isomorphism

Co(Z;m) —— C—.G/N(Z; mgN)
with mgy: Or(G/N)® — Ab  defined by mgn:(G/N)/(H/N)—m(G/H) for
N=SHZG

Proor. Clearly, an open G-covering of Z is the same thing as an open
G/N-covering of Z. On the other hand, a cochain ¢ = (cy)u<c € Ce(Z; m) is
determined by those cy:(Z¥)'*! - m(G/H'), where N < H' £ G; namely, if
H £ G is arbitrary and we let H' = HN < G, then the diagram

¥yt —SH ., m(G/H)

I

@yt —SH . m(G/H)

(ZHMNP*T men(G/N)/(H'/N))

commutes. Hence the natural map CG(Z;m)— Cgn(Z;mgy) is an injec-
tion. For surjectivity, let the functions cy: (Z#'y"*! - m(G/H) (N < H' £ G)
represent an element of C, y(Z; mg,y). Then we can define cy: (Z¥)"*! — m(G/H)
for all H < G by requiring the above diagram to commute, and in fact
(cu)u<c € Ce(Z;m) is a G-equivariant cochain. Here we need to observe that
every G-map G/H — G/L, given by gH — gaL witha™'Ha < L,induces a G-map
G/H' - G/L,where H' = HN, L' = LN, by gH' — gaL; namely, the normality of
N implies thata " 'H'a =a 'Ha-a " 'Na < L.

The relative version of this result applied to the right hand side of 5.3 gives
(5.5) Car(X5, Y5 myg) —= Cy(X5, Y™, my).
Here the group W =~ NK/K acts freely on XX\ YX,

PROPOSITION 5.6. Suppose Z is a G-space, Z' = Z is a G-subspace and G acts
freely on Z\Z'. Then there is an isomorphism
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ColZ,Z';m) — C(Z, Z';m(G))°.

PrROOF. By assumption, Z¥ =Z" for {¢} <H<G. By 3.6 we have
Co(Z,Z';m) = ¢,(A(Z,Z';m)), and now

AZ,Z';m): ur— C(Z,Z;m(G)) for u:G —5G
0 for other u.

Thus it is clear that &,(A(Z, Z';m)) — [A(Z, Z'; m)(id g)]* ™40,
This result applied to the right hand side of 5.5 gives

5.7 Cw( XX, Y&, my) — C(XX, Y&, m(G/K)¥.

5.1 now follows from 5.3, 5.5 and 5.7.

6. The derived functor of the projective limit, conclusion.

In this section we prove that the arrow 3 in 4.4, that is
Re,(A'(X, Y;m) — Ref(A'(X, Y; m)| Fx),

is an isomorphism in D*(Ab), for (X, Y) = G/K xu (XX, YX).

At this point we must recall, how the derived functors of projective limit
functors &, can be computed. Let ¥ be a (small) category and consider
&4: Hom(%, Ab) —» Ab. For F' e D*(Hom(%, Ab)) we have

Rey(F) = &,(E),

where F' — E'is a resolution of F" (i.e., a quasi-isomorphism) such that each E" is
a product of elementary objects of Hom(%,Ab);, the elementary object
A,eHom(%, Ab) determined by an abelian group 4 and an object x e Ob(%) is
defined by

Ay ATm0:D) -y e Ob(6).

Then the functor (*),: Ab —» Hom(%, Ab) defined by A — A, is right adjoint to the
evaluation functor e,: Hom(%, Ab) — Ab, ¢,(F) = F(x). This method of comput-
ing Re,,, based on the e,-acyclicity of elementary objects, is well-known,; see for
example [6], where € is assumed to be the category associated to an ordered set.
Let 9 be the full subcategory of 2 with Ob(%x) = {u: G/H - G/K |H £ G},

and 11 2x =, 2 the inclusion functor. By [14, 1.2.10], the restriction functor 1*:
Hom(2, Ab) - Hom(Zx, Ab), 1*F = F | 9k, has aright adjoint 1,: Hom(2x, Ab)
— Hom (2, Ab), whose explicit construction is the following: If F € Hom (2, Ab),
and u: G/H — G/L is an object of 9, then
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(6.1) 1 (F)w) = lim F,

u\@K

the projective limit taken over the category u\%2y with objects (v, (, f)), where vis
an object of P and (a, B): u — v is a morphism of &; a morphism (v, («, f)) —
(v, (@, B)) in u\Px is a morphism (¢,¥):v—v of Dx such that («,f) =
(@, ¥) (2 B).

Let o/ be the full subcategory of u\Zx with objects (aou,(x,idg/y)),
«: G/L - G/K. Every morphism of o/ has the form

(y,idgm): (@0 u, (o, idG/H)) — (yoaou,(yoa,idgy)),

where ye W = Mapg(G/K, G/K). Suppose (v, (o, §)) is an object of u\Zx. Then
(idgx, ) is a morphism (x o u,(a,idg/x)) = (v,(a, B)). On the other hand, every
morphism from an object of &/ to (v,(a,B)) can be written as (y, f): (& o u,
(', idgn)) = (v, (a, B)) for some y € W, so(y, B) = (idg/k, B) < (y,idg,n). Therefore it is
enough to take the projective limit in 6.1 over the subcategory 7, and we can
identify

w
(6.2) (l*F)(u);[ I1 F(ocou):l ,
«: GIL~G/K

the fixed point set for the right action of the group W = Mapg;(G/K, G/K) on the
product [ F(a o u) such that, if ye W and a = (a,) €[] F(xo u), then

ay=(b), b, =F@ ' id)(a,..).

LEMMA 6.3. The functor 1, is exact, preserves products and maps the elementary
object of Hom(Zx, Ab) determined by an abelian group A and object v of D to the
elementary object of Hom(2, Ab) determined by the same A and v.

ProoF. The exactness of 1, is clear by 6.2, because W acts freely on
Mapg(G/L, G/K). Being a right adjoint functor, 1, trivially preserves products.
Finally, the last assertion follows from the fact that, given an object v of @, the
composite of the functors (-),: Ab - Hom(Z2, Ab) and i1,: Hom(2, Ab) -
Hom(2, Ab) is right adjoint to the composite

Hom (2, Ab) —— Hom (Zy, Ab) — Ab,
which equls e,: Hom(2, Ab) — Ab.

The significance of the functor z, for the computation of Re (4'(X, Y;m)) is
shown by

LEMMA 6.4. A'(X, Y;m) is quasi-isomorphic to L(A(X, Y;m)| Dy).
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PROOF. Recall that we may take (X, Y) = G/K xu (XX, YX). We consider the
values of the functors on an object u: G/H — G/L of 2. We have an obvious
closed map

6.5 (G/K)* x w (X%, Y®) 5 [G/K x (XK, YX)]-.

Because W acts freely on X*\YX, we see that (G\K)* xy (X*¥\ Y¥) is mapped
bijectively to [G\K xw (X*\Y¥)]*. Note further that (G/K)" 2 Mapg(G/L,
G/K). By lemma 6.6 below, there is a natural isomorphism

C(G/KY" xw (XX, Y¥);m(G/H)) 2[ [1 C&x* Y";M(G/H))}W
(G/K)*

Thus the strong excision property of Alexander-Spanier cohomology, which was
already used in the proof of 4.2, implies that the maps 6.5 induce the required
quasi-isomorphism.

LEMMA 6.6. Suppose S is afree G-set, Z a G-space and M an abelian group. Then
there is a natural isomorphism

G
C(S xgZ; M) —" [l—[ C(z, M):l
S

PROOF. A suitable natural homomorphism is defined by the composite

CS x6Z;M)— C(S x Z;M) = [[C({s} x ZzM) = [[C(Z; M),
S

seS

where the first map is induced by the canonical surjection § x Z - S x Z and
the second map is the isomorphism of [15, 6.4.8]. Choose a set So = § of
representatives for the G-orbits of S. Because

SxgZ=]] {s} x 2,

seSo

both sides of the claim of the lemma become isomorphic to [ C(Z; M), and in
So
this identification the above natural homomorphism becomes the identity.

Take now a resolution 4'(X, Y;m)| 2x — E of A(X, Y;m)| Zx such that each
E" is a product of elementary objects of Hom(Zx, Ab). By 6.2 and 6.4,

AX, Y;m) > 1,(A(X, Y;m)| D) - 14(E)
is a resolution of 4'(X, Y;m) and each 1,(E" is a product of elementary objects of
Hom(2, Ab). Thus we can compute.
6.7) Re (A(X,Y;m)) = &,(1,(E))
= £4(E) = Re,(A(X, Y;m)| Zg).
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On the second line here, ¢, means the projective limit functor Hom(Zx, Ab) —
Ab; the equality ¢, (1,(E)) = &,(E) follows from the fact that for an elementary
object A,, there is the identity &,(A4,) = 4.

Next we consider the restriction functor Hom(Z%x, Ab) » Hom(#, Ab). Clear-
ly this functor is exact, preserves products and carries an elementary object of
Hom (%, Ab) to a product of elementary objects of Hom(#, Ab). This last claim
is due to the fact that the group Homg(idgk,idgx) = W acts freely on
Homyg(idgx,v) for any object v of %%, and thus, for an abelian group A4,
A, | Fx = AHomid9) splits as a product of factors isomorphic to AHom6did), Fyr-
thermore we have

LEMMA 6.8. For any F e Hom(%, Ab), the natural map ¢,(F) — eX(F | I) is an
isomorphism.

ProoF. If u: G/H — G/K is an object of Py, then (idgk,u) is a morphism
idg,x — u; if (&, f): idg,x — u is an arbitrary morphism, i.e., the square

G/K <2 G/H

.

G/K —*— G/K

commutes, then (a, B) = (idgx,u)o (0, a™ '), where (x,a”?!) lies in the group
Homy(idg/x,idg,x) = W. The assertion follows from this observation.

Let A(X,Y;m)|2¢x — E be the above resolution. Then A'(X,Y;m)|#x —
E'| £x is a resolution of A'(X, Y;m)| £ and each E"| # is a product of elemen-
tary objects of Hom(#, Ab). Thus

(6.9) Re (A'(X, Y;m)| Zx) = &,(E)
= ey(E'| Fx) = Re{(A(X, Y;m)| Fy).
The identities 6.7 and 6.9 together show that the arrow 3 in 4.4 is an isomor-
phism.
7. The spectral sequence of an equivariant map.

Let f: X — Y be a G-map between paracompact G-spaces. The map f induces
a natural transformation X o T — Y T (notation as in section 1); for an object
u: G/H - G/K of 2, the map (X o T)(u) — (Y o T)(u) is simply f%: X¥X — YX. This
natural transformation determines a morphism

[ =/ TX) -1
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of topoi. Explicitly, if # = (% (4)),cona) iS an object of r(X), then S #F) =
(9(4))ucob(@), Where

Yu) = (f(F W), w: G/H- G/K;

the functor f* has a similar description.

Let % be an object of Mod (I'(X)). Associated to the morphism f: I'(X) - I'(Y)
there is, by [16, 5.3], a spectral sequence, called the Cartan-Leray spectral
sequence, with

(7.1) ' E3" = H(I(Y); R/ (%)),

converging to H?*4I'(X); #). This is in fact a special case of the Grothendieck
spectral sequence of composite functors, [8, 2.5.4]. In 7.1 the object
Rif (F)eMod(I'( Y)) can be described as follows: if u: G/H — G/K is an object of
92, then

R (F)(u) = RY¥)((F (),
and RY(f*),(Z (u)) is the sheaf associated to the presheaf
(7.2) Vi HY((f5) YV, F (), V < YX open,

on YX
Taking & = m/X and combining 1.3 with 7.1, we obtain

PROPOSITION 7.3. For a G-map f: X — Y between paracompact G-spaces and
any coefficient system m: Or(G)°® — Ab there is a spectral sequence with

E% = HA(I'(Y); Ry (m/ X)),
converging to H?*9(X; m).

Now we attempt to give a more concrete interpretation of the E,-term of the
spectral sequence of 7.3 in some simple cases. First of all, let Y be a point. Then
I'(Y) = Hom(2, Ab), H*(I'(Y);-) = RPe, and Rf,(m/X) is

[u: G/H — G/K]+— HY(X*; m(G/H)).

If we use the more suggestive notation RPe, = liE”, we have
2

COROLLARY 7.4. For a paracompact G-space X and any coefficient system
m: Or(G)°® — Ab there is a spectral sequence with

EY = 1i£11’ HYXX, m(G/H)),
2

converging to HZ* (X ; m).
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To get a special case of this special case, assume now further that G acts freely
on the paracompact space X. Then X* = &, unless K = {e}, so the functor
Rf,(m/X) vanishes on the object u: G/H — G/K of 2, unless u is a G-map
G —=» G. Now, if F:2 — Ab is any functor such that F(u) =0 unless
u: G —— G, it can be seen as in 6.8 and 6.9 that

lim F = F(idg)%, lim? F =~ H"(G; F(idg)).
‘7 ‘g

2

In particular,

lim? AYX*; m(G/H)) = HY(G; H(X; m(G)));
2

in the ZG-module H%X; m(G)) the action of g € G is induced by the action of g !
on X and m(r,) on m(G). Furthermore, by [9, 6.4], the freeness of the G-action on
X implies that H2"9(X;m) =~ H?*%(X/G;.#), where .# is the locally constant
sheafon X/G with stalks m(G) described in [9, 6.5]. In fact .# only depends on the
ZG-module M = m(G). Altogether we have obtained the classical Cartan-Leray
spectral sequence of the covering space X — X/G (see [5, p. 355]):

COROLLARY 7.5. Ifthe group G acts freely on the paracompact space X and M is
a ZG-module, then 7.4 gives a spectral sequence with

E% = H?(G; HY(X; M)),
converging to H?*(X /G; #).

For another application of 7.3, let now f: X — Y be a G-fibration. Then for
each K < G, the map f%: XX — YXis an ordinary fibration. Assume further that
the spaces YX are localy contractible; this is the case if, for example, Y is
a G — CW-complex. If V is a neighbourhood of ye YX such that V —, YX is
homotopic to the constant map V — {y}, then over V the fibration fX is fibre
homotopy equivalent to the trivial fibration ¥V x FX - V, where F = f ~'(y).
Therefore it follows from 7.2 and the homotopy invariance of sheaf cohomology
with constant coefficients that the sheaf R?f, (m(G/H)) is constant with stalks
HYFX;m(G/H)) on V for H £ G. Thus we have proved

PROPOSITION 7.6. Suppose that in 7.3 f is a G-fibration and the fixed point
spaces YX are locally contractible. Then Rf,(m/X) is a family of locall 'y constant
sheaves.

If, in the situation of 7.6, we regard H?(I'(Y); R¢ f«(m/X)) as equivariant Alexan-
der-Spanier cohomology of Y with local coefficients Rf, (m/X), 7.3 and 7.6 give
an equivariant version of the Serre spectral sequence for the G-fibration f. We
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note that if all fixed point sets of Y are non-empty and simply connected, then the
above coefficient system is essentially a functor 2 — Ab. However, it does not
factor through an ordinary contravariant coefficient system Or(G)°® — Ab.
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