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ADJOINTS AND DUALS OF MATROIDS
LINEARLY REPRESENTABLE OVER A SKEWFIELD

W. HOCHSTATTLER and S. KROMBERG

Abstract.

Following an approach suggested by B. Lindstr6m we prove that the dual of a matroid representable
over a skewfield is itself representable over the same field. Along the same line we show that any
matroid within this class has an adjoint. As an application we derive an adjoint for the dual of the
Non-Pappus-Matroid. Furthermore, we reprove a result by Alfter and Hochstittler concerning the
existence of an adjoint for a certain eight point configuration and show that this configuration is
linearly representable over a field if and only if the field is skew.

1. Introduction.

There is a well understood “set-theoretical” concept of duality in matroid theory
derived by a combinatorial abstraction of orthocomplementary pairs of vector
spaces. A different “lattice-theoretical” concept, modelling the point-hyperplane
duality of classical geometry — we will call it polarity — was first introduced into
matroid theory by A.L.C. Cheung in [Che74]. He observed that this concept
generalizes polarity in the linear case but does not work for arbitrary matroids. In
oriented matroid theory which is closer to a geometric situation in Euclidean
space polarity was introduced and studied by Bachem and coworkers
([BaKe86], [BaWag9]). Since an oriented adjoint induces an adjoint for the
underlying matroid a standard technique to prove non-existence of an oriented
adjoint is to study the underlying matroid.

The two concepts of duality are somewhat incompatible. In [AKW90] M.
Alfter, W. Kern and A. Wanka showed that the dual of the Non-Desargues
configuration does not admit an adjoint whereas the Non-Desargues configur-
ation itself — as a rank 3 matroid — does. This raises the question about an adjoint
for the dual of the Non-Pappus configuration.

In [AIH095] M. Alfter and the first author showed that any pseudomodular
matroid of rank four has an adjoint and presented a non-linear eight point torus
as an example. The starting point for the study of that configuration was
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a question of J. Richter-Gebert who actually was interested in an adjoint for
a corresponding oriented matroid. Reexamining the proof of nonlinearity of this
torus we observed that commutativity of the field plays an essential role. In fact,
the configuration is linearly representable over any skew field. It took an article
by Lindstrom [L88] to remind us of the fact that orthogonality works fine for
vectorspaces over skew fields. Since both duality and polarity are abstraction of
orthogonality this suggests to transcribe the standard constructions of the dual
and the adjoint from commutative to skew fields. This is what we are going to do
here. As applications we get an adjoint of the Non-Pappus dual and a new proof
for the existence of an adjoint for the eight point torus.

We assume familiarity with matroid theory. A standard reference is [W76],
Good sources for linear algebra over skewfields are [B52] and [AS7].

2. Definitions and Notation.

Throughout the paper M = (E, %) denotes a matroid where |E| = n and & de-
notes the set of bases. We denote the closure operator by cl, the rank function by
p and the (geometric) lattice of flats associated with M by L. The set of hyper-
planes of M, i.e. the set of coatoms of L, is denoted by #. We first recall the two
notions of duality in matroid theory.

DEFINITION 1. (i) The dual of M is the matroid M* on E whose set of bases is
given by #* = {E\B|Be #}.

(ii) A geometric lattice L? is called an adjoint of L if rank (L) = rank (L) and
there exists an order-reversing injective map &: L — L4, taking the coatoms of
L bijectively onto the atoms of L4,

DEFINITION 2. Let K denote a (not necessarily commutative) field. The mat-
roid M of rank s is linearly representable over K, if there exists a map 1 E — K*
into the (right) K-vectorspace K*® such that

Be % <> i(B) is a basis of K*.

As the linear algebra of vectorspaces over skewfields may be not as familiar as
that over commutative fields, we now collect the relevant facts from skew linear
algebra. Proofs of these results may be found in [A57] and [B52]. In the
following the term “field” refers to a not necessarily commutative field while
“skewfield” refers to a non-commutative field. For a subset S of a K-vectorspace
V we let (S) denote the subspace of V spanned by the vectors contained in S.

Amap ¢: V — V' between two right K-vectorspaces V, V' is linear, if it satisfies
d(va + v'a’) = p(v)a + ¢(v')a’ for all a,a’eK and v,v'e V. As usual, the set
Hom(V, V') becomes an Abelian group dy defining (¢ + ¥)(v): = ¢(v) + Y(v) for
¢,¥ e Hom(V, V"). Furthermore, the usual dimension formula holds, i.e.
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dim(ker(¢)) + dim(im(¢)) = dim(V),

and one has Yo ¢ e Hom(V, V"), for ¢ e Hom(¥, V') and ¢ e Hom(V', V"). The
abelian group V*:= Hom(¥, K) then becomes a left K-vectorspace by defining
(ap)(v):= ap(v) for ae K, ve V and ¢ e Hom(V, K). For ¢ e Hom(V, V') the dual
map ¢*e Hom(V'*, V*) is given by ¢*(¢):= ¢o ¢ for ¢ e V'*. For each basis
{ey,...,e,} of a vectorspace V of finite dimension n there exists the dual basis
{e},...,ef} of V* characterized by e}(e;) = d;;. In particular one has that
dim(V) = dim(V'*).
For subspaces U < V and U* < V* one defines the orthogonal subspaces

Ut:={peV*|VueU: o(u) = 0} < V*,
U*t:= {veV|VpeU* @(v) =0} c V.
Notice that in the finite-dimensional spaces we are considering the inconsistency

of this notation vanishes due to the fact that there exists a canonical isomorphism
between V and V** given by

{v**: V* > K }
v .
¢ — o)
For a subspace U < V one has
(n dim(U) 4+ dim(U*) = dim(V).
If U’ < V is another subspace of ¥, the following equalities hold:
(U + U/).L — Ulm U/L
UnU)Y =U+ U™t
For the rest of the paper let K denote some (skew-)field and M = (E, %) some
matroid of rank s that is linearly represented over K. Before giving the proof that

M admits an adjoint itself linearly representable over K and that the dual of M is
itself linearly representable over K, we state a lemma which is going to be useful.

LeEMMA 1. For the linearly represented matroid M and the corresponding geo-
metric lattice L the following holds:

VXeL: () (H>=<(X)
x

<Hes
PrOOF. It is clear that

X>c () <Hy=:U.

X<HeX

Suppose (X # U. Pick some maximal independent subset I of X and some
ve U\(X). Then I u {v} is a linearly independent subset of V. Extend this set to
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abasis of V by some J < E. Thencl(i U J)is a hyperplane of M containing X and
vécl(I uJ). Contradiction.

3. Existence of a linearly representable Adjoint.

After these preparations it is clear how to mimic point-hyperplane duality in
vectorspaces over skewfields.

For every hyperplane H € # the subspace (H)* = V*is one-dimensional. Let
@u be a generator of (H)* and consider the matroid M4 on E:= {¢py|He #'}
defined via linear independence in the left K-vectorspace V*;p? denotes its
rank-function and [ the corresponding geometric lattice.

THEOREM 1. L2 is an adjoint of L.
PROOF. Let
d: L b
X\ {ou}

X<HexX

From the above Lemma we deduce

pAP(X) = dim({py| X S HeH)) = dim( ) <<pu>>
X r4

- dim( Y <H>l) = dim ( ( <H)>l)
XSHeX¥ \\X<SHex¥
=s—dim( N (H))==s—p(X).

XSHeX¥

It follows that {$(X)) = (XD and in particular that L has the same rank as L.
Furthermore, it is clear that & is order-reversing, Since (H)* = (H) and
H = (H) n Eforall H e ¥ we get that ¢4 + ¢4., whenever H & H' e #. Hence
& maps J# bijectively onto E4.

Finally, for X, X’ € L such that $(X) = &(X’), we have

XD = (PXP* =<HXN =<X")
and hence X = (XD nE =<{X')nE = X', i.e. dis injective.

4. Representability of the Dual.

The following proof of the representability of the dual follows the lines of the
proof given in [W76] for the representability of the dual of a matroid representa-
ble over a commutative field. The recipe of that proof is as follows: Let M be



ADJOINTS AND DUALS OF MATROIDS LINEARLY REPRESENTABLE OVER . .. 9

represented by an (s x n)-matrix A of full rank s. Construct an ((n — s) x n)-
matrix B of full rank such that ker(4) = im(BT). Then B provides a representa-
tion of M*. The possibility of transcribing this construction to the non-com-
mutative case has already been observed in [L88]. We now give the details.

Suppose the ground set of our matroid M is [n] = {1,...,n}, the rank of M is
s and M is represented via 1 in some (right) K-vectorspace V. Let 1(i) =:v; for
1 £ i £ n. Fix some n-dimensional right K-vectorspace V, a basis {e,,...,e,} of
V and let ¢: V — V' be the linear map given by

dleay + ... + e,a,) =viay + ... + v,a, (ay,...,a,€K).

Then V”:= ker(¢) is an (n — s)-dimensional right K-vectorspace. Denote the
inclusion map by y: V" — V. Let {e},...,e¥} denote the basis of the left
K-vectorspace V* that is dual to the basis {ey,...,e,} of V.

THEOREM 2. Themapi — y*(e}) (1 < i < n) provides a linear representation of
M* in the left K-vectorspace V"*.

Proor. It suffices to show that for any subset I of [n] of cardinality s we have
dim{¢(e;)|iel) < s<dimYP*(ef)|ie[n]\I) <n —s.
But
{#(e;)|ie I} is linearly dependent
<3yeK\{0}: D e;y;eker(¢)

iel
o Iwe VN {O)Vie[n\l: eF(w) =
< IweV\{0}: we [) <Y*eHt

ie[ln\I
< Iwe V\{0}: wey*e!)lie[nI\*
& {y*(e)|ie[n]\I} is linearly dependent.

1-2-3-4-1
[ R B
5-6-7-8-5
[ R N VA
3-4-1-2-3

Figure 1: The matroid T.
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5. Applications.

Combining Theorems 1 and 2 we have the following Corollary 1 which implies
that the dual of the Non-Pappus-Matroid admits an adjoint, as it is well-known
that the Non-Pappus-Matroid is linearly representable over (all) skewfields.

COROLLARY 1. If a matroid is linearly representable over a (skew-)field K then
its dual admits an adjoint linearly representable over K.

In [AIH093] the authors considered the matroid Ton E = {e,,...,eg} of rank
4 whose set of bases consists of all 4-element subsets of E with the exception of

{91, €y, €5, 36}, {ez, €3, €¢, 97}, {6’3, €4, €7, es}, {eh €4, es,es},
{6’3, €4, €5, 36}, {31, €4, ¢, 37}, {61, €z, €7, es}~

A representation of T is shown in Figure 1. Being a pseudomodular matroid of
rank 4 it follows from the main result of that paper that it admits an adjoint. We
reprove that T admits an adjoint by showing that T is linearly representable over
any skewfield. The reason for the non-linearity of T over commutative fields is
the independence of {e,, e, es, eg} in T. We restate this in the following condition
which is a reduced version of the sixteen-point theorem of projective geometry as
observed by J. Richter-Gebert (see [RG92]).

DEFINITION 3. A projective geometry of rank not less than 4 is said to satisfy
the Torus-Condition if the following holds:

If{p,,..., pg} are any eight points spanning a flat of dimension 4, any 3-element
subset of {p,,..., pg} is independent and the 4-element sets

{pl,pZ’p55p6}’ {pZ’p35p6’p7}9 {PJ,PMP%PS}, {Pl,PmPs,Ps},

{Pa,P4,P5,P6}, {Px’PmPﬁaP'f} and {Pl,Pz,P%PB}
are dependent then {p,, p3, ps, ps} is dependent.

THEOREM 3. The Torus Condition is satisfied by a projective geometry of rank
not less than 4 if and only if the coordinatizing field K is commutative.

Proor. It was shown in [AIH093] that for point configurations in vector-
spaces over commutative fields the Torus-Condition is always satisfied. Thus
from the fundamental theorem of projective geometry (see e.g. [T69] Kap. V)one
direction of the claim follows.

Thus, it suffices to show that the existence of some «, f€ K such that af + Pa
yields an eight point configuration in K* (regarded as a right K-vectorspace)
violating the Torus-Condition. Let ¢; (1 < i < 4) denote any basis of K*. Then
pi=¢ for (1Si<4), ps:=) e, pe:=e, + e, +(e3 + eg)a, pyi= e+
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e; + e300 + e aff and pg:= e fo + e, + 330 + eyaff yield an eight point con-
figuration violating the Torus-Condition.

The result from [AIH095] suggested that T is a not too weird perturbation of
a matroid linear over Q and thus its oriented version should admit an adjoint.
Here we proved that, more directly, an adjoint can be derived from the skewlinear
structure of T. This does not seem to give any hint concerning the question about
an oriented adjoint. More generally speaking the following is unclear. Does there
exist an orientable matroid which is linearly representable over a skew-field but
does not admit an oriented adjoint?

NOTE ADDED IN PROOF. While the present paper was in proof we realized that
the standard construction of an oriented matroid from a linear subspace V' < RE
(see [BLSWZ93], pp. 105) can easily be transcribed to a subspace of a vector-
space over any ordered field. Note that ordered skewfields exist ([A57], ch. 9).
We were able to prove that the oriented analogues of Theorems 1 and 2 of the
present paper hold for oriented matroids the orientation of which is induced from
arepresentation over an ordered field. Furthermore, the oriented 8-point torus of
Richter-Gebert with underlying matroid T is representable over the ordered
skewfield described in [A57], ch. 9. Thus, the oriented 8-point torus does admit
an adjoint and Richter-Gebert’s original question is finally answered in the
affirmative. The interested reader may consult [HK95] or [K95].
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