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HIGHER ORDER COMMUTATORS
IN INTERPOLATION THEORY

MARIA J. CARRO, JOAN CERDA and JAVIER SORIA!

Abstract.

Recently, estimates for higher order commutators of interpolation theory have been obtained for the
complex and for the real method (cf. [Ro] and [CCMS], and [Mi], respectively). The analysis of
cancellation properties allows us to obtain a new commutator theorem which extends the previous
results. An application to the boundedness of higher order commutators for singular operators
between weighted L spaces is also given.

1. Introduction.

In [RW], R. Rochberg and G. Weiss extended the proof of the Riesz-Thorin
theorem on complex interpolation of bounded linear operators to give some
interesting estimates for non-linear commutators of bounded linear operators
and certain operator Q, generally unbounded and nonlinear, and in [JRW], B.
Jawerth, R. Rochberg and G. Weiss obtained the corresponding commutator
theorem for the real interpolation theory.

Both kinds of results can be derived from a general simple construction based
on the abstract method of V. Williams [Wi], as it was shown in [CCS] by the
authors. This construction applies also to other interpolation methods, like the
Lions-Schechter complex method and the real methods with function parameters.

Recently, R. Rochberg in [Ro], M. Milman in [Mi], and the authors with M.
Milman in [CCMS], have obtained higher order commutator estimates for the
complex method and the real method.

In this paper we present these type of results in the frame of [CCS] giving the
precise role that cancellation plays in the boundedness of higher order commuta-
tors, with the use of twisted direct sums and we show how new estimates can be
derived.

! This work has been partially supported by DGICYT, Grant PB94-0879.
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We start by recalling very briefly the above mentioned construction.

DErFINITION 1.1. By an interpolator @ over H we mean a functor Hy = H from
compatible couples A = (4,, 4,) of Banach spaces to normed spaces H(A) with
the property that there exists a bounded linear operator

&1 HA) - Z(A) = Ag + A4,
for every couple 4, such that
(1 To®; = P50 H(T),

for every interpolation operator T: A — B, i.e., a linear operator T: Ag + A, —
By + B, which is bounded from 4; to B; (j =0, 1).

We usually set Ay = ®5(H(A)), with the norm

lalle = inf{ll f |y P2(f) = a},

so that Ay = Z(A), with norm £ ||®z||. If H(A) is complete, A4 is a Banach
space.
Property (1) implies that A ~ A is an interpolation method such that

1T 25,5, < IH(D ), )

for any interpolation operator T* 4 — B.

Many interesting examples in interpolation theory, say the real J and
K methods and the complex methods (cf. [BL]), are constructed under this
scheme:

(a) The J-method is associated to the interpolator

&, i) = j “u) L e 54)

0
on the spaces
Hy(A) = {u: R* - A(A) measurable; &, ,(J(t, u()) < oo},

with the norm |ull gz = Do, ,(J(¢, u(t))), where J(t,a) = max(|lall 4,,¢ lall4,), if

ae A(A) and
@ 1/p
By, ,(1(1)) = <J (70 iitf') ,
0

0<f<1,1<p=< . ForeveryT:A— B, H(T)u= Tou.
Then

A-O = (AO,AI)O,p;J-
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(b) In the case of the K-method, Hy(A) is the vector space of all measurable
functions (ao, a,): R* — 4, x A, such that ao(t) + a,(t) is constant and

® p 1/p
I(@0s @)l aed) = (L <"ao(t)||o +t ||a1(t)||l) ﬂ) o

t° t

withO <6 <1land 1 < p < 0. Now Hg(T)(ag,a,) = (T e aq, Toay).

Itiseasily seen thatif &y 3(ao,a,) = ao + a; then Ay = A, ,. x, withequality of
norms.

(c) The first complex method of Calderon A, = [A4,, A, ], is associated to

Pc,a(f) = de(f) = f(6),

with Hc(A) = #(A), the Banach space of vector-valued analytic functions on the
strip S considered by Calderon [Ca], and H(T)f = To f.

(d) The Schechter complex interpolation methods of derivatives arise also in
this way, with Ho(4) = #(A) and HA(T)f = T f, but now &¢ 5(f) = f™(). In
this case we write

Asmgy = [Ao> A1]smie)-

The paper is organized as follows. In Section 2 we define the notion of
compatible system of interpolators. With this definition we isolate the cancella-
tion properties that, together with conditions (2), are needed to prove the higher
order commutator theorem (Theorem 2.6), which is the main result of this paper.
Section 3 is devoted to showing that the commutator theorems for classical
examples, i.e. the complex method considered in [Ro] and the real method
studied in [Mi], follow easily from Theorem 2.6. In Section 4 we see how new
results can be derived by obtaining the higher order version of a result contained
in [CCMS], about the boundedness of commutators of linear operators with
multiplication by a BMO function, in the case of weighted I’ spaces and
Schechter interpolation method.

2. Higher order commutators.

When dealing with commutators of order n for the complex method, as in [Ro],
the system of derivatives

PN =G /O (eHA),

with k = 1,...,n, appears in a natural way. For the real K-method, in the
computations of [Mi] for the n-commutator, the use of the system of ninterpola-
tors
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1 d ©
Py(ao, a;) = ¢ (L (log t)"_zao(t)—ti - L (log t)"‘zal(t)%> ,

with suitable factors c,, on Hg(A) is implicit.

The properties of these interpolators in connection with the commutator
theorem suggest the following definition, where we omit the use of the subscript
A

DErFINITION 2.1. We say that a system of n interpolators, = (P, 92,..., 9",
defined in the same spaces H(A), is compatible if the following condition holds:
Forevery k = 2,...,n,

P(Kerd! n---nKerd ') = Im &,
in the sense that there exists a constant C = C(4) > 0 such that
(@) if geKer @' n--- nKer @~ !, then d%(g) = ®'(f), for some f € H(A) such

that || f a4 é_c g1l a1y, and
(b) if f € H(A), then ®(f) = P*(g), for some ge Ker ! n - n Ker & ! such

that |lgllgs < C Il flaa).
Set Ag; = ®/(H(A)) and let us consider
é’k = {5 = (al9""ak); aj = @(f)a fEH(/I)}
with the quotient norm
1@ lls, = inf{ll f Il nca; (f) =a}.

Let ¢ > 1,a fixed constant, and foreveryd = 5( f)eé&,_,let ustake an almost
optimal election hz, which is an element hz € H(A) such that &(hz) = a and
Ihallge < clidlle,_,-

Now we define, for any @ = (®X(f),..., 9" H(f)e&m_1,

Qn— 1a = Qn— 1(¢1(f)9 LS ¢n— l(f)) = d)"(h‘.{),

with ®i(hz) = ®(f),j=1,...,(n — 1) and |kl g < C I fla. We shall write
Q = Ql'

DErFINITION 2.2. We define the twisted direct sum of order n, é/ﬂ,, to be the set
of all elements d = (ay,...,a,)€(4o + A;)" such that

”a”é;w = “1(01-, “’a_"—l)”éjo + "'Qn~1(a1" '-’an—l) — a, "Zd, <+ 0,
where,ifn =1, ® Ay = Ao
In the case jt = 2, with the notation of [CCS] we have = (D,¥), Ap: = Ao,
Q =Qand @Ay = Ap Do Ap.
THEOREM 2.3. If & = (@%,...,8") is compatible, then ® Ap = &, with equiva-
lent norms.
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PRrOOF. In the case n = 2, choose (a,b)e Ay @ Ap. Then Qa = d*(h,) with
®'(hs) = a, |hallus < Cllallz,, b — Qa = d'(g) = *(h) with &'(h)=0 and
Il < C b — Qall5,.

Therefore, a = ®'(h, + h), b = b — Qa + Qa = ®*(h, + h); that is, (a,b)e &,
and

(@, blls, = llha + hlin = Clllalz, + 1b — Qal z,) = C (@, b)ll 1,044,

Let now (a,b)e &, and set a = ®'(h), b = ®*(h) and ||h||uz) < C [(a,b)lls,-
Thenae Ay, Qa = ®*(h,) and Qa — b = ®*(h, — h), with ¢'(h, — h) = 0. There-
fore, Qa — be Ag and

(@, D)l Fp@0ds = llallz, + 2a — bl 5, < C(lhllaa) + Iha — hlluc)
= Clhllag = Cli(a, b)ls,

Now let us assume that the equality holds for n—1 and let us prove it for n.

Leta = (ay,.. a,,)e@ Agp. Then (ay,...,a,_{)€ (—B Ag and, by induction hy-
pothesis, (ay,...,a,_ )€ &,_,. That is, for any & > 0 there exists f e H(A) such
that

Pi(f)=a;(1 <j<n—1)and |flun S Cl@s-ran-oln gty
Moreover,

Q,-1(ay,...,a,-1) = P"(h) and () = P/(f) (1<j<n-1)

Then Qn— l(aI’ cees Qp— 1) —ap = djn(") —ay = Q"(g) WIth djl(g) = =9" l(g)
=0, and

”h“H(;) é ”Qn—l(ala""an‘l) - a"”"éli.,
Therefore, a, = ¢"(h — g) and a; = ¢/(f) = ®/(h — g). Thatis a € £, and
Idlls, < 1h—gllun < Clldll ol

Conversely,ifa = (ay,...,a,) € &,, for any ¢ > 0 there exists f eH(Al§uch that
a; = ®(f)and || f g < (1 +¢))|d s, Then(ay,...,an—1)€E,—y = ® Apand
Q- 1(ay, ..., @y—1) — ay = P"(h) — P*(f) = P"(h — f)

with
Ph—f)=0 (1=j=n-1

Therefore Q,_,(ay,...,8,—1) — an€ Ap and
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“Qn——l(al"-'aan-—l) — Gy ”1, s C ”h - f"H(I) = C "(al:' . -’an—l)“"éljo
SCIflan=C(l+e ||a||e,,~
As a consequence, Q, is well defined on é/?o and Q,: éfiq, — Agn+1 is

bounded. Now, if we define T,(a;,...,a,) = (Tay,..., Ta,), where T A - B is
a given interpolation operator, we get the following result.

THEOREM 2.4. If (D1,...,d", &"*1) is compatible and
[T, 2] =TQ i — 25T,
then
[T @.]: & Ao — Bos
is bounded.

PROOF. Let 2 = (al,...,a,,)eéfiw. Then, there exists f e H(A) such that
®(f)y=a; j=1,...,n and !|f||H(;,§C|IZi||éj‘ By definition, we have
<

Q,(@) = ¢"*!(h) with &(h) = () (1 <j < m)and ||hllgx < C llallézo- Then,
TQ,@) = T®"*'(h) = &"* {(H(T)h).
On the other hand,
Q.(Tay,..., Ta,) = Q(TO'(f),..., TP"(f))
= Q,(P'(H(T)f),..., P"(H(T)f)) = " " (),
with &(g) = S(H(T)f), llglln < Gll fllucp- Hence,
[T, 2,)(@) = &"* {(H(T)h — g),
with ®/(H(T)h — g) =0, j = 1,...,n. Therefore, [T,, 2,](@)€ By and
LT, 2u1@)5: < CIH(DA ~ gllug < C I flua = C ||5|léjw-

Let us now consider the following subset of é Ay
R = {(a,2,a,2,(a,92,0),...,2,_1(a,2,a,..));a€ Ag1}.
Then, # is isometric to Ag: since, if J,(a) = (a,Q,a,...,2,-(a,...), then
I Ja(@)ll oy = lall z5:-
Hence, we can define, for ae Ay,

Qua = 2,(J(a)).

With this notation the elements of £ can be written as (a, 2,4, ...,Q,_ ;a) and we
can consider the commutator
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['I;Qn]a =TQa — Qn Ta = TQn(Jn(a)) - Qn(Jn(Ta»
Now, by Theorem 2.4, we get that, for every ae Ag:
ILT5, 2, 1(n(@)I 5,1 < C llall 4,1,
from which we will obtain Theorem 2.6, which in particular gives the estimates
for higher order commutators of [Ro], [CCMS] and [Mi].
First we set some notation, similar to that of [Ro] and [Mi] for the higher
order commutator estimates in the case of the complex and the real method,

respectively.

If T: A - B is an interpolation operator, in order to study now the bounded-
ness of

[T ], if n=1

C. = [TQ,] — [T Q,], if n=2

[T;'Qn] - Z:;igkcn~ka if n> 2,

we say that the compati®le system of interpolators (@!,. .., &"*!) satisfies the
condition

2@ (@,...,""HYKerd'n---nKerd' 1) < Im(P?,..., o+ V-U-1)
for every index j = 2,...,n + 1, when ®!(f)=--- = &~ !(f) = 0 implies that
there exists he H(A) such that
®*(h) = PPTITN(f), p=1,....(n + ) = (j - 1),
and ||hllgegy < C | fllaa).

To give by induction a complete proof of our theorem we first prove a lemma.

LEMMA 2.5. If (P!, % ®3) is compatible and (@2, ®*)(Ker ¢') = Im(d?, d?),
then, for every interpolation operator T: A — B,

Q,(Ta,Q,Ta) — Q,(Ta, TQ,a) = —[T,2,]a + Sa (ae Ag1)
with |Sal 5,1 < C llal 7.

PRrROOF. Let B = Q,(Ta,Q,Ta) — Q,(Ta, TQ,a). We have that Q,(Ta, TQ,a) =
@3(f) with ®'(f) = Ta, ®*(f) = T2a and | flag < Clall i, Similarly,
Q,(Ta. Q, Ta) = $3(g) with ®'(g) = Ta, P*(g) = ,Ta and ||g|lx) = C llal 1,1
Then, B = (g — f) = ®3(h), with '(h) = 0, #*(h) = —[T,Q,Ja and ||h|lz <
Cllall z,

Therefore, we have that B = ®(h*) with ®'(h*) = —[T,2,]a and ||h*|| 4 <
Cllall z,:.
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Now, Q,8'(h*) = () with &'(h*) = &'(k), and ||fl|ua < C llal 4,:. Hence,
B= —Q[T,Q,]a + ®*(h* — h)with ®'(h* — h) = Oand thus, B = —Q,[T,Q,]a
+ Sa with ||Sa| 5, = | ®*(h* — h)|5,: < Clall 5,

THEOREM 2.6. Let (®°,...,9"*!) be compatible with property (2), for every
indexj=2,...,n+ 1,and T: A — B an interpolation operator.
Then C, = [T,Q,] — Y721 %Cp—4 (Cy = [T, 2,]) is a bounded operator
C": IZQI - B-Ql.
ProOOF. We know that [T, 2,](J,(a)) € Bg:. Now,
[T, 2,](J(a) = TQ,a — Q,(Ta, TQya,...,TQ,_,a)

=TQua — Q,Ta+ Q,Ta — Q,(Ta, TQ,a,..., TQ,_a)
=[TQ]Ja+ R,

where %, = Q,Ta — Q,(Ta, TQa,...,TQ,_,a). The following step is to show
that

n—1

9?71 = - Z chn—ka + Snaa
k

=1

where S,: Ay — By is a bounded operator.
If 4* = Q,_,Cya,

n—2
R, =[Q,Ta — Q,,(Ta,...,!)

n—2Ta, TQn—la'— Z Alr:—l):'
k=1
n—2
+ [Q,,(Ta,...,QH_ZTa, TQ,_ya— Y, Aﬁ_l)

k=1

n—3 n-3
—Q,,(Ta,...,Q,,-3Ta, TQ,_a— Y A% ,,TQ,_ja— Y Aﬁ_,>:|
k=1 k=1

n—3
+ [Q"<Ta,...,9,,_3Ta, TQ, ,a— Y, Ak
k=1

n—3
n—2s TQn—la - Z As-—l>

k=1

n—4 n—4

—Q,,(Ta,“.,Q,,_‘;Ta, TQ_3a— ) Ak _5,...,TQ_ja— Y, A’;_l>]
k=1

+-o.

k=1

+ [Q,(Ta,2,Ta, TQya — 2,Cya,...,TQ,_1a — 2,-,C1a)
—Q,(Ta, TQa,...,TQ,_,a)]

n
= Z B:,
k=2
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where

k-1 k-1
B; = Q,,(Jk(Ta), TQka — z Qk_pcpa,..., TQ,,_la — Z Qn_l_pcpa>

p=1 p=1
k-2 k-2
- Qn<Jk_1(Ta), TQk_la - Z Qk~1_pCpa,..., TQ.,,_1a — Z Qn_l_pcl,a)
p=1 p=1
We now prove by induction in k and n that, if 2 < k < n,
(i) By is well defined, in the sense that

k-1 k-1 no_
= (Jk(Ta), TQa— ) _,Cpha,...,TQ_ja— Y, Q,,_l_,,c,,a>e@ By,
p=1 p=1
and
(i) By = —Q,_4x+1Cir-1a + T, where 7; Ag1 = Bg: is bounded.
Ifn = 2thenk = 2and b? = (Ta, TQla)eEl-) Bo, b2 = (Ta,Q, Ta)e@Boland

Bz = Qz(Ta,Ql Ta) - 2(Ta, TQla).

By Lemma 2.5, B3 satisfies (ii). Let us assume now that (i) and (i) hold for B} ~* for
.,(n—1), and prove that they also hold for B (k=2,...,n). Let
k=2,...,(n — 1). Then,

k-1
= (bz—l, TQ,,_Ia - Z Q,,..l._pcpa>.

p=1

To show that b} e é—) Ay we have to see that

n—1 _
(@) b e @ By, which is true by induction, and
(b) A = TQ,,_la - z’;;ll Q,,_l_pcpa - Qn_lbz—l EBol.
Now, as we did for 4#,,, one can show that

A= [TQ,,_la - Q"_I(Ta, TQla,..., TQn_za)]

+ [Q,,_ (Ta, TQa,..., TQ,-,0a)

k-1
—Q,,-1<Ta,QlTa,...,Qk_1Ta, TQa— Y Qk_pC,,a,...):l
p=1
k-1
— Y 2,-1-,Cpa
p=1
k-1

k
=[T,-1,Q2,-1]a — Z B;ﬂ - Z Q,._l_,,C,,a
= =1

= [7:1—1,9..—1]“ Z (Bp+l + Qn 1- pc a)
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Since, by induction,
B".-;l _Qn 1- pC a+ T"+1a’

with T, s A1 — Bg: bounded, we get that A€Bg: and ||A||5,: < C lall 4,1
Now, if k = n, we have that b}, = (J,(Ta)) e @ By and

n-2
b: 1 _<b: },TQ,, 18 — Z Qn 1-p pa>e®B¢,,

p=
since, by induction, b'Zle @ B, and TQ,-ya—3¥32%2Q, ,_,Coa—
Qu_1b"~1 = C,_,a€ By:. Finally, B} = &"*'(f) with ®(f) = --- =~ 1(f) =
0, ¢(f) = —Cy-1a, ®**'(f) = —2,C_14,...,P"(f) = —Q,_«C,_1a. Then,
using (2), we get that there exists he H(B) such that ®i(h) = &/**~1(f) =
—Q;_1Ccqa,j=1,...,n—k + 1,and ||h|lg@ < C| fllag. On the other hand,
Q,_1+1Ci-1a = &""**¥(g), with ®'(g) = C,_,a, and ®/(g) = Q;_,C;_,a for
j=2,...,n—k+1.Thus,®(h +g)=0(j=1,...,n— k + 1) and therefore

&2 h+ g)= D" b)) + Q1 1Ciora = D"N(Sf) + Qu_i41Ch-1a€ By,

with norm less than or equal to C ||al| 7,:. Hence, B} = —Q,_4+,Cy-1a + Ta,
with T;: A1 — Bg: bounded.

3. The classical interpolation methods.

We shall now show that the complex method and the real J and K methods are
associated to systems of interpolators @* which satisfy the compatibility condi-
tions 2.1 and property (2). We have to see that, for everyj =2,...,n + 1,

3) Im @' « ¢/(Kerd' n---nKerd' 1),
and,
@ (@, 0" Y Ker®' A ~Ker &) < Im(@,. .., 0+ D-G-1),

(I) Complex method.
For simplicity, we shall work in the unit disk D and 8 = 0 (see [FK]). Let us
define

f"‘ )

P =

on Hc(A).

Then, if a = f(0)€ o1 and g(z) =2~ f(2), we get that llgllact) = I.f luc
Pg) =0,k = 1,. ‘o j — 1 and ®/(g) = f(0) = a; that is, (3) holds.

Now, if f(0) =+ = fU~1(0) = 0 and we consider g(z) = z~/* f(z), we have
that (Igllucs) = “f”H(A) and @%(f) = ®¢"7(g) for any p=j,...,n + 1 and we
obtain (4).
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(IT) Real J-method.
Set

1 © d -
0 = Gy f (log o~ 'u() S (we H,(A).

® dt
Leta = f u(t)T and let us define, forp=1,...,k — 1

0
vo(t) = ul?),
vp(t) =Up- l(t) — Up- l(te)'
L1 [
ProrosITION 3.1. (i) Fj (log t)"vj_,(t)%t— = 0, for every k <j — 1; that is,
*Jo
@4 (v;—,) = 0, for every k < j.

(i) Pj(w) = T _1 m J’: (log t)"“lvj_l(t)% . Lw u(t)% =a.

PrOOF. We prove it by induction in k and j. If j = 2,

o] d a0
f 00 = J (o) — ute) & = 0
0 0

J‘w (lOg t)vl(t)_‘lt_ = J‘w (log t)ll(t)ﬂ — J‘w (logi> u(t)ﬁ =a.
0o t 0 t ) e t

If j > 2, let us assume (i) and (ii) for j — 1 and prove them for j. Now

and

f " (log o0 2L = j " log oo, 02 - j " log oo, () 2
0 t 0 t 0 t

© . dt © AN dt
L (log t)'v;- l(t)—t— - L (log?> vj- 1(07

B

Now, using the induction hypothesis,we get that, if k < j, all the terms in the
above sum are zero, while for k = j

o] X o o} . d o0
f (log v ()2 = j j (logt)’“v;—l(t)—t—="'=j!J uy 2.
0 t 0 t t

0

To show now that (4) holds, let us consider ue H (A) such that
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) J‘wU(t)% = fwlogt u(t)—‘-it—t- —e0 = J:D (lOgt)j_lu(t)% =0,

0 0

and let us define

vo() = u(t)
v(t) = — Jtvp_l(s)—‘li.
0 S

Then we know that v, e H,(4) and |v, || 1,4 = Cllull g, (see [JRW]). More-
over, for every k,

471w = B0, )

To show this, we use integration by parts and the two following lemmae.

u(t) % = 0 then, for every ke N,

LEMMA 3.2. Ifue H,(A) satisfies that f
0

t
lim (logt)* J u(s)if— =0,
) N

t—0, ©
in the Ay + A,-norm.

PrOOF. We have that

t
é Ilogtl"‘[ ”u(sz"O saﬁ
0 S N

(log 1) f )%

0 Ag+ A,
< llogtf* ||u"H,(Z)t0,

where the last estimate follows by Holder’s inequality. Hence, the above express-

ion goes to zero when t tends to zero.

Now,
t ©
(log ¥ f w9 Sl =[laogey f uls) S
0 S ||ao+4, t S ||4o+4,
© Jus)l, o ds
< k LA SCAIR T Bt
< |logt| f, g S

. s s

= [logtl* |l ull,cat® ",

which tends to zero when t tends to infinity.
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LeMMA 3.3. If (5) holds, then, for every p <j — 1, f v,,(t)ﬁtt— =0.
0

Proor. This follows by using integration by parts, induction and the previous
lemma, since

® dt
J;) vp(t)T
. t d . t d o]
= lim (log t)f vp_l(s)—s — lim (log t)J v,,_l(s)——s + J vp-1(2) logtﬂ
-0 0 5 oo 0 s 0 t

© dt @ dt
= f v,,_l(t)logt—t— = j vp-2(t)(log t)ZT =
0

0

= f " u(o) log t)”% =0.

0

(ITT) Real K-method.
Let (ao,a,) € Hx(A) and set

Bx(ao, a;) = ao(t) + ay(t)

1 ) d
®i(a,ay) = — (L ao(t)‘dt_t - L a,(t) “})

([} doe a4 - | "ot a0 ).

Fklao,a) = (—1"' G

Then, to show that (3) holds, we just have to observe that Im @ = Im @} and if

0 1
i ® o dt
ue H;(A) with u(t)—;— = 0 then,
0

(bolt) by(0) = ( f oS J " uls) is_)eHK(,;),
o s ], s

with [[(bo, by)ll ki) = llullm,ca, Px(bo,by) = 0 and, forj 2 2,
®(bo, b1) = (— 1Y P(w).

Now, to see that (4) holds, we proceed as in the J-method. Let (ao, ;)€ H(A)
such that aq(t) + a,(t) = 0 and, for every k = 0,...,j — 3,

j 1 (log t)"ao(t)iii - jw (log t)"al(t)ﬁ =0.
0 t 1 t

Let us define
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b(o)(t) = aO(t)’ bé(t) = al(t),

BO(t) = j B0 ,9%, b= - f )
0 s

t

ds
b;—l(s)_s—'
.Then, one can show that
0 1 “ 0 dt )
bp + bp = 0 bp—l(t)T =0, p= 1’,(] - 2),

and, using integration by parts and Lemma 3.2, we get that, for k > 1,
¢k(b?— 25 b}— 2) = Pt 1(ao, aj).

Finally, we want to remark that, if we define &% without the factor (— 1), then
condition (4) does not hold and we have to reformulate Theorem 2.6 as it is done
in [Mi].

4. One example.

Let be BMO(R") and let M, be the operator defined by M, f = bf, which will also
be denoted by b, and T a Calderon-Zygmund operator. In [CCMS], the authors
together with M. Milman gave a proof of the boundedness of the first order
operator

1 ’ 1
[’I}b]:L’(1 _Hbl)—»L (1 +|b|> (1 <p< ).

In this section we use Theorem 2.6 to show that the same happens for the
second order commutator

p 1 p 1
© [L7),5): (1 +|b|>*L (1 +|b|)'

Similar results can be obtained for the n-order commutator and for the space
I*(1/(1 + |b})*), for any a > 0.

To prove (6) we shall use the following results about interpolation of I? spaces
with change of measures:

p 1/p
[L2(wo), LX(1)]smie) = {f; (ﬂ /) ]w(‘,“’w‘i dx> < oo}

(1 + llog(wo/wy)l)"
(cf. [CC1]), and that for the “upper” Schechter method (cf. [CC2]), defined by
[LP(@o), (@)@ = {a = f(6), /() = = f*(0) = 0, f e F}

and endowed with the natural quotient norm,
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[LP(wo), LP()]*"® = {f; (Jlf )P (1 + )ﬂp g 0l dx)llp < oo}.

Now we first show that, for the Banach couples 4 = (I?(w,), [P(w,)), over the
usual Banach space Hc(A) = #(A) of analytic functions on the strip S of the
complex interpolation method, the system of interpolators

U(f) = f'6), P(f)=["0), P(f)=131"(6)

is compatible and satisfies conditions (3) and (4), i.e.,
(i) Im @' = &*(Ker ),
(i) Im & = 3 (Ker &' N Ker ?),
(iii) @3(Ker @! nKer #?) c Im ¢!, and
(iv) (92, @) (Ker ¢') = Im(D!, D?).
We will use the notation

log 20
w

1

Efa) = (Z) 1@, b=log %,

and ¢ will denote a suitable analytic function on S such that ¢ ~*(0) = 6
(i) To see that Im @' c &*(Ker ®'), for a given f € F(A) we define

f—E;
@
with @(0) = ¢"(6) = 0 and ¢'(0) = 1. Then f = ¢G + E, and

J'(6) = (¢G)(0) + bf (6).

G =

If
_ sgnb + ¢(2) _
Hy(e) = E @)=y — fo)
an easy calculation shows that H{(6) = 0,
_bf(6)
H - 2f'(9),
H{(0) = b0 + T b f(6)

and
1) = ( f 0 - ((PG)'(9)> — Hj(6) = H3(6) — H{(6)

with H,(0) =0, since it follows from ¢(f) =0, (pG)Y(f)ed, and
(b1 + b (B) € Aps that ——— f (6) — (9G)'(0)€ 4. Thus,
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f(©)=(H, — Hy)'(6), (H,—H)0)=0
and

IHz — Hills = C1fO)ls-

(ii) To show that Im &' = &3 (Ker & n Ker &?) we write, as before,

f(6) = (¢G)(0) + bf ()
and let ¢, and ¢, be as ¢, but with the conditions
¢1(0) = 01(6) = ¢7(0) =0, ¢1(6) =1
and
¢2(0) = ¢3(0) = 03(0) =0, ¢3(0) = 1.
If we define

b0 p@E) | b
e A A (T L T RN

then H3(0) = H3(0) = 0 and

bl

HO) = T i

oz (=261 (0) + 37(0)).

Now, if we let
Hy(z, x) = H3(2, X))ix;b00> 0y — H3(2, X)X(x; by < 05
we obtain H,(0) = H4(0) = 0 and

L

i [260(0) + 37(6)),

with

—2bf(6) + 3'(6)
(1 + b))

(1 +21b)) = g(0) € 45.

Hence, there exists Hse%(A) such that HZ(f) = g(f) and Hs(0) =

HZ(6) = 0 and we find that
—2bf(6) + 3f'(6) = HZ(6) + H5(6) = Hg(6)
with H4(6) = HZ(6) = 0. It follows that
f6) = (#G)(6) + 31'(0) — 3H(6)
and f'(0) = H4(6) with H;(0) = H3(0) =

Hy(0) =
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(i) Let f"(0)e®®(Ker®' nKer®?) with f(6) = f"(0) =0, thus
f(0)e A% (6) and hence b f(0) e Ay and b>f(6) e Im P
We define
_ f - Ef + (pEfb
P

with @(0) = ¢"(6) = ¢"(0) =0 and ¢'(0) = 1. Then f"(6) = (¢*G)"(6) +
b*f(6) — 3b3f(6) e Im &'

(iv) To prove that (@2 @3 (Ker ®') c Im(d!,P?), let f(f) =0, so that
bf (6) = g(0) € Ap. We define

G

H=lZ2r 1 %%

(¢ as before),
®

and an easy calculation shows that
*(f) = f"(6) = (p*H)'(6) — b*f(6)
and
P3(f) = 3/"(0) = 3(*H)"(6) — b*f(6)
with (92H)"(0) e Im . Thus,
P(f) = G'(0) — b>f(6) = F'(0) — b>f(0) = (F — E,)'(6) (F(6)=0)
and
P*(f) = (F — E,)(6) + (¢9*H)"(6) — F'(6),

where (p2H)"(0) — F'(0) € A,.
Now we use the following
Claim. Ay = {x = f'(0); fe F(A), f"(6) = 0}.
Thus there exists F, € #(A) such that F5(0) = 0 and

®%(f) = (F — E, + F,)() = ®'(F — E, + F,).
Moreover, ®*(f) = ®*(F — E, + F,).
To prove the claim, for any f(0) e A, let us consider g(6) = f(6)/(1 + |b]) and

b -
h=30E; — E,(sgnb + @) + (pzf—l—+—|bl-ef(A),
with () = ¢"(6) = ¢,(6) = ¢3(0) = 0 and ¢'(6) = ¢5(6) = 1.
Then |||l & < Cllf(O)lle, H(0) = —(1/2)f(6) and

h'(6) = —bf (6) + b |bl g(6) + 2bg(6) — f(6) 0

1+
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For every ue(L?(w,), L”(w,))5, = Im @', the function

-6
_ (@0 \* 7" sgnb + ¢(2)
hll(z) - <w1> 1 + Ibl u’

with @(0) = ¢"(6) = ¢"(6) = 0 and ¢’(f) = 1 has the following properties:
@) Ikl < C llully,
(b) hy(6) = u.

2 + |b|
h// 0 — ,
© HO) = bu
3+ b
d) h!(6) = bu——.
(@ hO = bru
Hence, h, is almost optimal, the associated Q-operators are defined by
. 2+1b
Qlu = bu I Ibl
and
3+ b
112
Qzu—zb u 1 +|b|,
and an easy computation shows that
(T.Q] - @ [T.Q = [[Tb]bJu + ——Tu— —2 (-2,
e R (1 + |b)? 1+b “\1+bl

b b

We have seen that [T,Q,] — Q,[T, Q2,] is a bounded operator in “i% and it is
known that the same is true for [T, b] [cf. [CCMS]) and for T. Since

b b
T
1+ bl <1+|b|“)

< Clull,
)

and

=C ||“||6;,,

b2
l(l B Y,

it follows that [[T,b], b] is a bounded operator in Z,,a. Therefore, by taking
0 =1/2, wy = exp(—b/2) and w, = exp(b/2),

1 1
[L7.5],b: U(l T |b|>"L (1 T |b|>'
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