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APPROXIMATELY FINITE C*-ALGEBRAS AND
PARTIAL AUTOMORPHISMS

RUY EXEL

Abstract.

We prove that every AF-algebra is isomorphic to a crossed product of a commutative AF-algebra by
a partial automorphism.

1. Introduction.

A partial automorphism of a C*-algebra A4 is, by definition, a triple ® = (0,1, J)
where I and J are closed two-sided ideals in 4 and 0: I — J is a *-isomorphism.
Given such a partial automorphism, we constructed in [4] a crossed product
C*-algebra A xqZ, generalizing the well known construction of crossed prod-
ucts by automorphisms.

The purpose of the present work is to show that the AF-algebras introduced by
Bratteli [1] can be obtained, non-trivially, as the crossed product of a com-
mutative AF-algebra (i.e., the algebra of continuous functions on a totally
disconnected space) by a partial automorphism.

To achieve this goal we first show that AF-algebras admit somewhat canonical
actions of the circle group, whose fixed points are exactly the elements of the
standard diagonal subalgebra. In addition we need to prove that this action
satisfies the technical hypothesis of being semi-saturated and regular (see below).
Our main result, Theorem 2.5, then comes as a consequence of Theorem 4.21 in
[4], which states that any C*-algebra admitting a semi-saturated regular circle
action is isomorphic to a crossed product of the fixed point subalgebra by
a partial automorphism. As an example, we consider UHF-algebras, obtaining
aresult closely related to Putnam’s [12] study of crossed products of the Cantor
set by “odometer” maps.

Our result holds in full generality, applying to all AF-algebras, without further
restrictions. This illustrates the power of the concept of partial crossed products
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and suggests that there may be large classes of C*-algebras which profitably fit
into that description.

We should mention that some of the techniques used here, including the study
of circle actions on AF-algebras, have already been employed by others. Also,
special cases of our main theorem have appeared in the literature. Perhaps the
first result in that direction is Theorem 7.9 in [5], where circle actions on
AF-algebras, satisfying certain maximal properties, are shown to give rise to
a description of the AF-algebra as a subalgebra of a (full) crossed product.
Although the concept of partial crossed products was not known at the time, that
subalgebra is precisely the partial crossed product by a suitable restriction of the
automorphism involved. In addition, at the end of section 7 in [5], the circle
action we discuss below is shown to exist without the essential simplicity of the
ordered Bratteli diagram, thus hinting that Theorem 7.9, mentioned above,
survives in a more general seting. See also [9].

A strong relationship also exists between circle actions and integer valued
cocycles on the associated AF-groupoid. These have been extensively studied in
connection with the theory of triangular AF-algebras (see [7], [10] and [11]). In
section 10.20 of [11] it is shown how to construct a one parameter group of
automorphisms on an AF-algebra from a real valued cocycle on its
AF-groupoid. In the special case of integer valued cocycles, the automorphism
group turns out to be periodic, thus yielding an action of S*. Moreover, when the
cocycle is constructed from standard embeddings of the upper triangular matrix
algebras, as in section 2 of [7], the action obtained in the process turns out to be
the one we use here.

The idea of partial homeomorphisms, the commutative version of partial
automorphisms, is also very much present in the recent literature on AF-alge-
bras. For example, in 2.8 of [ 7], a partial homeomorphism is constructed from an
integer valued cocycle. Interestingly enough, that partial homeomorphism is the
same one we obtain from the circle action which, in turn, arises from the cocycle.
See also section 4 in [10] and section 3 of [5] for alternative descriptions of that
partial homeomorphism.

Our main result should also be interpreted as establishing a new link between
the class of AF-algebras on one hand and crossed products on the other,
arelationship which has been recognized long ago and which has one of its most
interesting examples in the famous embedding of the irrational rotation
C*-algebras into AF-algebras, obtained by Pimsner and Voiculescu [8].

The work of Loring [6] as well as that of Elliott and Loring [3] on
AF-embeddings of the algebra of continuous functions on the two-torus, and the
Theorem of Elliott and Evans [2] showing that the irrational rotation C*-alge-
bras can be described as inductive limits of circle algebras, give some more
striking examples of that relationship.
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The notation and terminology used below is taken from [4] where the reader
will find the main definitions and results on generalized crossed products, as well
as the facts on actions of the circle that we shall need here. As far as notation is
concerned, we should warn the reader of a slightly non-standard convention
from [4] used here: if X and Y are subsets of a C*-algebra, then XY denotes the
closed linear span of the set of products xy with xe X and ye Y.

This work was done while I was visiting the Mathematics Department at the
University of New Mexico. I would like to express my thanks to the members of
the Operator Algebras group there for the warm hospitality received.

3. The Main Result.

Let A and B be C*-algebras and let a and B be actions of S! on A4 and B,
respectively. If ¢: A — B is a covariant homomorphism (always assumed to be
star preserving), then it is clear that ¢(4,) < B,, where A4, and B, are the
corresponding spectral subspaces. This obviously implies that ¢(4*A,) = B¥B,
for each n.

Let us now suppose that both « and f are regular actions in the sense of 4.4 in
[4]. That is, there are maps

(i) ¢ ATA; > A1 AT

(i) A4 AY > A AT

(iii) 05: B¥B; — B,B%}

(iv) Ag: B¥ - B,B¥
satisfying the conditions described in [4].

2.1. DEFINITION. A covariant homomorphism ¢: A — B is said to be regular
(with respect to a given choice of 6, 1,, 05 and Ap) if for any x* in A} and a in
A% A, one has

(i) P(Aa(x*)) = Ap(P(x*))

(i) ¢(64(a)) = Op(¢(a)).

Let us now analyse, in detail, an example of a regular homomorphism in finite
dimensions, which will prove to be crucial in our study of AF-algebras.

Denote by M,, the algebra of k x k complex matrices. Let A be a finite
dimensional C*-algebra, so that A is isomorphic to a direct sum 4 = @7, M.
In order to define a circle action on 4, let for each k, «* denote the action of S* on
M, given by

ak(a) = . a
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for any a in M, and z in S'. Define an action a, of S! on 4 by a, =
@7_, a". This action will be called the standard action of S* on A. It should be
noted that the standard action depends on the choice of matrix units for A.

One can easily check that o, is semi-saturated (see 4.1 in [4]). Let us show that
it is also regular. For each k let s, be the partial isometry in M, given by

and put s, = @}, s,. The maps
Agx*e AY — syx*e A AF
0 aeATA, — sqast e A AY

satisfy the conditions of 4.4 in [4] as the reder may easily verify, which therefore
implies the regularity of o ,.

Now let B = &L, M, be another finite dimensional C*-algebra and let o, sp,
Ag and 65 be defined as above.

A standard homomorphism is any homomorphism ¢: A — B of the form

¢(a1’--~’an) = (¢l(a1’---’an)a-'-’ ¢m(a1a-~~;an))
where, foreach k= 1,2,....m

a;,

a,~2

dilay, a;,...,a,) = a;,

0

where r may vary with k, the indices iy, i, ... i, are chosen from the set {1,2,...,n}
while each a; is in M,,. Standard homomorphisms are well known to play an
important role in the theory of AF-algebras [1].

2.2. PROPOSITION. A standard homomorphism is covariant and regular with
respect to the respective standard actions.

PrOOF. Let ¢: A — Bbe a standard homomorphism where 4 and B are direct
sum of matrix algebras, as above. That ¢ is covariant follows from the easy fact
that spectral subspaces are mapped accordingly. In order to verify regularity, let
x€A;. Then
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D(AA(X*) = Pls4x*) = Pls.4)p(x*).

Note that sp(s4)*@(s4) = ¢P(s4), since ¢(s,) can be thought of as a “restriction” of
sp to a subspace of the initial space of sz. Thus

D(A4(x*)) = spP(s)* D5 )P(x*) = spp(sKsax*) = spP(x*) = Ap(P(x*).

On the other hand, for ain A} A, of the form a = x*y, with x, y € 4,, we have, by
the same reasons given above

?(0.4(@)) = d(s4x*ysk) = spP(x*y)s5 = Op(¢(a)).
This completes the proof.

2.3. THEOREM. Let (A")cn be a sequence of C*-algebras and ¢*: A* — A**! be
injective homomorphisms. Suppose each A* carry a semi-saturated regular action «*
of S*. Suppose, in addition, that each ¢* is covariant and regular with respect to
a fixed choice of maps A* and 6%, at each level, as in 2.1). Then the inductive limit
C*-algebra A = lim, A* admits a semi-saturated regular action o of S*. Moreover
the canonical inclusions y*: A* — A are covariant and regular.

PRrOOF. Let A’ be the union of all y*(4*)in A. For each k and each a € A* define
a,(Y*a) = Y¥aXa) for zeS'.

Since the ¢* are covariant, it follows that «, is well defined as an automorphism of
A’ and that it extends to an action of S! on A, with respect to which, each y* is
covariant. So it is clear that y/*(4¥) = A,, where the subscript n indicates spectral
subspace. The fact that « is semi-saturated, thus follows immediately.

We now claim that each A4, is indeed the closure of | )i, y*(4%). In fact, let
P¥and P, be the nth spectral projections corresponding to 4* and 4, respectively.
Given a in A,, choose d* in A4* such that a = lim,y*d"). Note that
a = P,(a) = lim, y*(P¥(a")) which proves our claim. We then clearly have that, for
any integer n, A¥A, is the closure of | )i, y*(4k'A%). For each ke N, xe 4} and
ae A% A% define

M) = YHA (%)
0y (@) = V0(@).
Invoking the regularity of ¢*, we see that both 1 and 6 are well defined, the
domain of 4 being | ) , y¥(4%) and that of 6 being | ), y*(A% A%). The hypoth-
esis clearly imply that y*, 6* and A* are isometries, so both 1 and 6 extend to the

closure of their current domains, that is, A% in the case of A and AT A, in case of 6.
One now needs to show that for any x,ye 4,, ac ATA, and be A, A}
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i) Ax*b) = A(x*)b

(i) Aax*) = O(a)A(x*)

(iii) A(x*)*A(y*) = xy*

(iv) A*)A(y*)* = 6(x*y)
which are the axioms for regular actions (see 4.4 in [4]). These identities hold on
dense sets, by regularity of the ¢*, and hence everywhere by continuity. A few
remaining details are left to the reader.

A simple, yet crucial consequence of 2.2 and 2.3 is the existence of certain
somewhat canonical circular symmetries on AF-algebras. More precisely we
have:

2.4. THEOREM. Every AF-algebra posseses a semi-saturated regular action of
the circle group, such that the fixed point subalgebra is an AF-massa.

Proor. For theexistence of the action it is enough to note that any AF-algebra
can be written as a direct limit of direct sums of matrix algebras, in which the
connecting maps are standard homomorphisms in the above sense [ 1]. The fixed
point subalgebra is the inductive limit of the direct sum of the diagonal subalgeb-
ras at each stage, hence it is commutative and AF. The maximality follows from
(I.1.3)in [13].

Of course the action described in 2.4 is not unique as it depends on the choice of
a particular chain of finite dimensional subalgebras, as well as on the choice of
matrix units at each stage. Nevertheless, the isomorphism class of the fixed point
algebra will always be the same [ 11]. We shall, nevertheless, refer to this action as
the standard action.

Combining the existence of standard actions with Theorem 4.21 in [4], brings
us to our main result.

2.5. THEOREM. Let A be an AF-algebra. Then there exists a totally discon-
nected, locally compact topological space X, a pair of open subsets U,V < X and
a homeomorphism ¢: V — U such that the covariance algebra for the induced
partial automorphism 6. Co(U) = Cy(V) is isomorphic to A.

PrOOF. Apply Theorem 4.21 in [4] to the action of S* on A4 provided by 2.4.

3. UHF Algebras.

As an example, let us briefly mention the case of UHF-algebras. For that purpose
it is covenient to use the language of ordered Bratteli diagrams [5].

Given a UHF-algebra A, consider its Bratteli diagram, which consists of
a single vertex at each stage and edges joining vertex v; _, to v; (the product of the
n; giving the supernatural number which characterizes 4). Now, given that there
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is only one vertex at each stage, there is essentially only one way to order such
a diagram.

The fixed point subalgebra for the circle action constructed above is then the
standard diagonal, which can be identified with the continuous functions on the
set X of all infinite paths in the Bratteli diagram.

The order in the Bratteli diagram induces an order on X as follows: two paths
are comparable if and only if they agree after some point and then the decision of
which is greater is based on the comparison of the last edge where they differ.

This said we can now describe the sets U and V of 2.5 as well as the map ¢. Let
Pmin and Pa, be the unique minimal and maximal paths in X, respectively. Then
U is given by X\{Bmax} While V = X\{Bmin}. @: U > V is the map sending each
path to its successor. Note that f,,,,, which does not belong to the domain of ¢, is
the only infinite path not possessing a successor.

With this in hand we can easily see that ¢ can also be described as an odometer
map (see [12]). More explicitly, identify X with the infinite product

X = I—I{O,l,...,ni - 1}.

Then Bpin = (0,0,...) and B« = (n; — 1,n, — 1,...) while ¢ is given by formal
addition with (1,0,0,...) with carry over to the right.
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