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A BEST COVERING PROBLEM*

FINN F. KNUDSEN, KRISTIAN SEIP and ALEXANDER M. ULANOVSKII

1. The problem and the main theorem.

The problem to be studied in this paper originates from Beurling’s notion of
lower uniform density, which is defined for uniformly discrete (u.d.) sets of real
numbers, i.e., for sets A satisfying

inf{|A — pl: A+ pw; 4, ue A} > 0.

Ifn™(r) denotes the smallest number of points from A to be found in an interval of
length r, the lower uniform density of A is

D~(A4) = lim "T(’)
where the limit exists because n™(r; + r,) = n~(ry) + n~(r,). The lower uniform
density is a key concept for understanding exponential frames on an interval and
sampling of bandlimited functions [4, 5, 3, 6], and it provides a particularly
elegant solution to the original problem considered by Beurling in [1].

Previous discussions involving this lower uniform density have focused mainly
on function theoretic problems. In this paper we formulate a combinatorial
problem, for which the primary issue is to calculate a certain minimal density.
Thus our problem is only loosely connected to Beurling’s work. Nevertheless,
some of the ideas developed in [1] have provided us with powerful tools which
are crucial for proving our main result.

We begin by fixing a nonempty set 4 = R. Then a u.d. set 4 = R is said to be
an A-covering if

ZcA—A={a—AaecA, e}
We define
d(A) = inf{D~(A): A an A-covering}
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and say that an A-covering A is a solution to the A-covering problem provided
D™ (A) = d(A). In other words, we wish to find a set 4 of minimal density which
meets all the integer translates of A. If 4 is an unbounded set, it is readily seen that
d(A) = 0, and this trivial case is therefore excluded from our discussion.

We say that A < R is periodic if there exists a real number « + 0 such that
A = A + a. The main result of this paper is the existence of periodic solutions to
the A-covering problem for bounded sets A:

THEOREM 1.1. For every nonempty, bounded set A = R the A-covering problem
has a periodic solution.

The period will turn out to be an integer, and it follows as a corollary that d(A)
is a rational number for every nonempty 4 = R.

To clarify the problem and to explain what makes it interesting, we introduce
the following notions and transform A into a certain standard form. Any set
K < Ziscalled a blanket. Two blankets K and L are said to be equivalent if there
exists an integer k such that L = K + k. The equivalence classes of blankets are
called blanket types. For a real number aeZ + A we let

A, =A—-)nZ

We say that A4, is an A-blanket located at a. The blanket types to which the
A-blankets belong, are the blanket types of A.

We may now deduce the following lemma (its proof is best left to the reader),
showing the relevance of our notion of blankets and blanket types.

LEMMA 1.2. Ifthe set of blanket types of B contains the set of blanket types of A,
then d(B) < d(A). In particular, if the blanket types of A coincide with the blanket
types of B, then d(A) = d(B).

If A is bounded, there is only a finite number of blanket types of A. Hence, the
following is true.

COROLLARY 1.3. For every bounded set A = R thereis afinite set A’ = A so that
d(A’) = d(A).

The above remarks lead to a visualization of the A-covering problem as the
problem of covering the integers by blankets from a finite set of blanket types,
using as “few” blankets as possible.

Without loss of generality, we assume from now on that A is a finite set and that

A = U Aj,
j=1

where the sets 4; — min A; are blankets belonging to distinct blanket types. We
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assume also that min A; are distinct numbers on the interval [0,1) and that
min A = 0. We shall refer to such a set A as standard.

We see that if a = sup; # A; < 2, then trivially d(4) = 1/a. However, the
problem withn = 1and # A = 3is nontrivial and difficult, as we will show in our
detailed discussion of this case in Section 3. It is a major challenge to obtain good
estimates on d(A) for n = 1 and arbitrary # A.

It has been brought to our attention that our problem is closely related to
certain density problems studied in additive number theory [2], but we have
found little in this field directly applicable to the A-covering problem.

We turn now to the main part of the paper, which is the proof of Theorem 1.1.

2. Construction of a periodic solution.

We assume that A4 is standard. Let A% denote the set of functions f: Z — A. For
every f € A* we put

Ap=1{k + f(k): keZ},

which is then an 4-covering. Conversely, if A is an A-covering, we associate with
it an element f, € A% defined by

fak) =min(a: ac A, k + ae A}

for every k. Since A,, = A for every A-covering A and every A is an A-covering,
we have

d(A) = inf{D~(Ay): fe A%}.

Wessay that a function f € A%is a solution to the 4-covering problem provided A,
is a solution. Note that A is periodic if and only if f, is periodic, so proving
Theorem 1.1 is equivalent to proving existence of periodic solutions pe A%
Sometimes we find it natural to work with elements in A% rather than with
A-coverings.

We begin by noting two simple and important properties of A% Let us define

T'f(k) = f(k — 1)

for every leZ and observe that f € A% implies T'f € A%, i.e., A% is invariant under
integer translations. We note that 4% is compact in the sense that every sequence
f; of functions in A% contains a subsequence f;, converging pointwise to some
fediie.,

' lim f; (k) = f(k)

for every k. We say that f; converges weakly to f, or briefly f;, — f.
Of particular importance are sequences in A% obtained by translating one
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element f € A% Accordingly, we denote by W(f) the collection of all weak limits
of translates of f.

It should be noted that this notion of weak limits is a simple adaption to our
setting of the same notion used by Beurling in [1].

Before starting the construction of a periodic solution we note the following
property of the lower uniform density.

LEMMA 2.1. For every finite interval I = [x,x + M), M an integer, there exists
an f € A® such that

#(A; A1) < dAM.
ProOF. In what follows, let
|x|=sup{keZ:k < x}.

Let us assume the lemma is false. Then there exist x and M such for every f € A%
and every interval I; = [x + j, x + j + M) we have

#A;n L) 2 |dAM ]|+ 1,
because of the translation invariance of A% This may be written as
#(Arn L) Z d(AM + ¢,

where ¢ > 0. It follows that for any interval of the form L= [x + j,x + j + NM)
we have

#(A; N L) = N(d(AM + ¢).
This inequality implies that
D™ (Ay) 2 d(A) + ¢/M
for every f e A% which is absurd taking into account the definition of d(A).

We introduce next a sequence of functions needed in our construction. For
every positive integer N let fy be a function in A% for which

#(A,, A [—N,N)) = min #(4; A [—N, N)).
feAZ

The functions fy are important because of the following lemma.

LEMMA 2.2. For every positive integer N and every interval [x,x + M) <
[— N, N), M an integer, we have

#(A;, N [x,x + M)) S d(AM + 2 diam(A).
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PRrOOF. Let us assume the lemmais false. From Lemma 2.1 we know that there
exists an f € A% such that
#(A;n[x,x + M)) £ d(AM,
which we use to define

otk = {f(k), ke[max(—N,x — diam(A4)), x + M)
(k) = fu(k), ké[max(—N,x — diam(4)),x + M).

It follows that
#(N2) A [=N,N)) < #(fs@) n[-N,N)),
which is a contradiction by the definition of fy.

By the compactness of 4% we may now find a sequence N, of integers and
a function f,, € A% such that

ka - foo .
An immediate consequence of Lemma 2.2 is the following.
LEMMA 2.3. We have D™ (A,) = d(A) for every fe W(f,).

We shall seek a solution in W(f,), and for that purpose, we introduce the
following notion. For every positive integer n we define

H(n) = {A; " [O,n): f € A%},

which is a finite set since A is finite. The elements = of II(n) are referred to as
patterns of length n.
For a given patern = of length n and f € A% we put

Z(n, f)y=1{keZ: A;n[k,k + n) =7 + k}.

This set can be thought of as the set of “appearances” of win A,. The following
quantity is then the “maximal distance” between two consecutive “appearances”
of min Aj:

In, ) = sup{M: (k,k + M) Z(=, f) = @ for some k}.
The following simple fact is important for us.

LEMMA 2.4. For every f € A* and every positive integer n there exists at least one
pattern &t of length n and a corresponding function ge W(f) such that

I(m,g) < o0.

ProOF. Let 7, € II(n) be such that I(n,, f) = co. Then we can find a sequence
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m; of integers and a function f; € F such that T™ f — f, and Z(n, f;) = @. This
procedure may be iterated so that if I(m,, f, ;) = oo, we can find a sequence m;
and a function f, € F such that T™f,_, — f, and Z(m, f;) = 0. Since I(n) is
a finite set, the iteration must eventually stop so that for some k we have
I(m, fi) < oo for at least one pattern =.

As a final preparation for our construction, it is convenient to note the
following fact.

LEMMA 2.5. Let A be a periodic set of integer period | > 0. Suppose that Q is an
A-covering and that A N1 = QI for some interval I = [m,m + M) of length
M > | + diam(A). Then A is an A-covering.

We are now in position to construct a periodic solution and thus prove the
theorem. According to Lemma 2.4, we may pick a ge W(f,,) and a pattern
ne II([diam(A4)] + 1) such that

lo = l(n,g) < 0.

The definition of I(r, g) implies that we can find an increasing sequence {o;} 7% _
of distinct integers such that

Ujpy — 0 S lo
and
Agf'\ [ocj, & + |_dlam(A)_]+ 1) =n+ o

for every j.
Consider the sequence of “local densities”,

_ Ay [apa)

i
Hj+1 = %)

Since I, < o0, the numbers p; constitute a finite set, and the infimum

p =infp;
j
is obtained for some j, which without loss of generality is ssumed to be j = 0, i.e.,

Po = p.
We put | = a; — a and let A be the [-periodic set which satisfies

A [, 1) = Ay 0 [000, %)
It follows from Lemma 2.5 that A is an A-covering. Since

D~(4) = p < D (4,) = d(A),
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we have D~ (A) = d(A), and we conclude that A is a solution to the A-covering
problem.

3. Estimates on the minimal density.

We assume again that A is standard. We begin by noting two general and
“rough” estimates on d(A).

PROPOSITION 3.1. Let A = | )], A; be standard. Then

1 logM
—_ < < —_—

where M = max, <<y # Aj and C > 0 is an absolute constant.

Proor. By Theorem 1.1, d(A4) = 1/M holds if and only if some of the blankets
A; — min; A satisfying # A; = M can cover Z completely without overlap. The
right inequality follows from a more general result in additive number theory due
to Lorentz (see [2, p. 14]).

In what follows we shall restrict ourselves to A = Z. Let us observe, however,
that the presence of several blankets makes the problem more involved. For
instance, there exist finite sets 4 = A, U A for which

d(A4) < min{d(A,),d(4,)}:

Put 4 ={0,1,3,n,7n + 2,7 + 3}; then Ay = {0,1,3} and A4, = {0,2,3}. The set
A={2+kn + k: keZ} satisfies D" (A) =1/3 and A — A > Z. This and the
right inequality in Proposition 3.1 yield d(4) = 1/3. On the other hand, some
calculations show that d(4,) = d(A4,) = 2/5.

We assume from now on that A < Z. We define

[x]=min{keZ k = x},

and let (a, b) denote the greatest common divisor of the integers a and b. With this
notation, the main result of this section can be stated as follows.

PROPOSITION 3.2. Let A = {0, ax, ba}, where a,b,0€Z,0 < a < b, and (a,b) = 1.
Then

d(A4) < min {r(a + b)/31 [(2b — a)/ﬂ}_

a+b > 2b—a

It is strongly felt that, in fact,

[(a + by31 [(2b— a)/ﬂ}
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but we have not been able to prove this equality.

The estimate in Proposition 3.2 is based on some general observations related
to our main theorem.

Let Z,, denote the group {0,...,m — 1} with addition law n + k (mod m). For
any blanket Q we denote by Q,, its projection onto Z,: Q,, = {gmod m): g € Q}.
For a given blanket A we consider the density

#Om
m

dm(Am) = mln{ : Qm cZy Ap — Qm = Zm} .

LEMMA 3.3. Let A = Z be a finite set. Then
(1) d(A) = mind,,(4),

) dn(An) < d(A) (1 t 31‘;@)

PrROOF. Let Q be any subset of Z,, satisfying A,, — Q.. = Z,,. Then the set
0=0,+mZ={q+mk:qeQ,, keZ}
is m-periodic and satisfies 4 — Q = Z. Since D™ (Q) = # Q,,/m, we have
d4) < m'jn d,(Ap)-

Theorem 1.1 shows that there exist an integer m and an m-periodic set

A satisfying A — A = Z. We have A4,, — 4,, = Z,, and therefore
d(A) = D™(A) = #Ap/m 2 dp(Ap).
Similar arguments prove (2).

Let A = Zand ¢, re Z. We denote by ¢ + rA the blanket {c + ra: ae A} and by
(c + rA,,) its projection onto Z,,.

LEMMA 3.4. Let (r,m) = 1. Then for any c and A,, we have
dp(Ay) = dnlc + rAp).
PROOF. The lemma follows from the fact that 4,, — Q,, = Z,, implies
(c+1dy) —(c+1Qn) =2,
whenever (r,m) = 1.

PROOF OF PROPOSITION 3.2. Lemma 3.4 shows that d,,({0, «a, ab}) = d,({0, a, b})
for any m > ab, (m,a) = 1. Letting m — oo in (2) of Lemma 3.3 we see that
d({0, aa, ab}) = d({0,a,b}). So we may assume that « = 1.
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Put m = a + b. Then b = —a (mod m) and Lemma 3.4 gives
dm({o’ a’ b}) = dm({ - a, 05 a}) = dm({0> ra9 2ra}),

where (r,m) = 1. Since (a,b) = 1, we have (a,m) = 1, and so there exists r satisfy-
ing ra = 1 (mod m). Thus Lemma 3.3 gives

d({0,a,b}) < dm({0,a,b}) = du({0,1,2}).

But we see that

dn0,1,2) = FL”/;’J,

and this proves the first inequality in Proposition 3.2.
The second inequality in Proposition 3.2 follows by a similar argument.
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