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WEIGHTED SOBOLEV AND POINCARE INEQUALITIES
AND QUASIREGULAR MAPPINGS OF
POLYNOMIAL TYPE

JUHA HEINONEN AND PEKKA KOSKELA*

1. Introduction.

In this paper, weight means a locally integrable positive functionin R", n = 2, and
we assume throughout that 1 < p <n. A weighted Sobolev inequality is an
inequality of the type

1 ‘p 1/xp ) 1 ) i/p
(1.1) <—‘;)ZB—)L||//| wdx> nglamB<WjB|V¢| wdx) ,

valid for all balls B in R" and functions ¥ € C{(B), and a weighted Sobolev-
Poincaré inequality is an inequality

12 f( 1 j d)”"” d ( 1 jvw d)””
. inf| — — al*Pwdx < Cdiam B{ —— wdx ) ,
12 e " = wB) "

valid for all balls B and bounded functions y € C*(B); the constants ¥ > 1 and
C > 0 should be independent of B and . Here and throughout we use the
notation

wW(E) =J‘ w(x)dx, |E| =j dx,

for a measurable subset E of R"; thus |E| is the Lebesgue n-measure of E.

For the constant weight w = 1 both inequalities (1.1) and (1.2) hold for
K = nf(n — p). This is due to Sobolev. More recently, Fabes, Kenig, and Serapioni
[5] verified (1.1) and (1.2) for two important classes of weights: w can be an
A,-weight of Muckenhoupt or of the form w(x) = J(x, f)' ~?"", where J(x, f)is the
Jacobian of a quasiconformal mapping f: R" —» R". The relevance of the second
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example comes from two sources. First, composing a harmonic function with
a quasiconformal mapping f yields a solution to a linear elliptic equation whose
degeneracy is given in terms of the weight w(x) = J(x, f)! ~%/", and one can reduce
the study of harmonic functions in certain nonsmooth domains to the study of
solutions to degenerate equations in their smooth quasiconformal images. Sec-
ond, the use of quasiconformal mappings provides a relatively easy proof for the
fact that (1.1) holds for many interesting weights such as w(x) = |x|’,y > —n. We
refer to [10] for an expostion of these ideas, and for references to numerous
earlier works.

It has been asked in [18], [19] whether the four conditions described in [5]
hold for the weight w(x) = J(x, f)! ~?"", where f: R" — R"is a quasiregular map-
ping. These conditions are needed in running the familiar Moser iteration (giving
Harnack type inequalities for weak solutions to related degenerate elliptic
equations) and they are: the weighted inequalities (1.1) and (1.2) (in fact, (1.2) is
only needed with ¥ = 1), the doubling condition (1.3), and the uniqueness of the
gradient in the pertinent weighted Sobolev space. Recall that a weight w is called
doubling if there is a constant C > 0 such that

(1.3) w(2B) < Cw(B)

for all balls Bin R"; we use the standard notation AB for the ball with same center
as B but radius dilated by 4 > 0.

In [10, p. 7-8], a weight is declared p-admissible if the above four conditions
are satisfied for a fixed p, and, again, inequality (1.2) is assumed to hold for k = 1
only. We shall show in this paper that for a quasiregular mapping f: R" — R" the
weight w(x) = J(x, f)! “P/ is p-admissible if and only if f is of polynomial type
(see the definition below). In proving this, our task is to verify (1.1),(1.2), and the
doubling condition (1.3). The uniqueness of the gradient was proved earlier by
Jksendal [19, Lemma 2.1]. In Section 5 we shall show in fact that the uniqueness
of the gradient is a consequence of the Poincaré inequality (1.2) (with k = 1). This
was pointed out to us by Semmes [23], and we are grateful to him for allowing us
to include his proof in this paper.

Recall that a continuous mapping f: Q — R", Q = R" open, is quasiregular if
f belongs to the Sobolev class W!;*(€2) and satisfies

(1.4) IDf ()" = KJ(x, f)

for a.e. xeQ and for some K = 1. The infimal K for which (1.4) holds will be
referred to as the dilatation of f and denoted by K(f). Thus f is quasiconformal if
and only if f is quasiregular and injective. If n = 2 and K = 1in(1.4), we recover
precisely the analytic functions of one complex variable.
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CoONVENTION. We assume that all quasiregular mappings f Q — R" in this
paper are nonconstant in any of the components of an open set Q.

DEFINITION. A quasiregular mapping f: R" — R" is said to be of polynomial
type if | f(x)| = oo as |x| —» 0.

For a mapping f: 4 — R" and y € R" we define the (crude) multiplicity of f in
A by

Ny, f,4) = #{f ~(») n 4} [0, 0],
We also put
N(f,A) = sup N(y, f, 4).
yeR"
Our first result is a characterization of polynomial type quasiregular map-
pings.

1.5. THEOREM. Let f: R" — R" be a quasiregular mapping. Then the following
are equivalent:

(1) J(x, f) is doubling;

(2) J(x, f) is doubling for some 0 < s < 1;

(3) J(x, f) is an A -weight in R",

(4) f is of polynomial type;

(5) N(f, R is finite;

(6) J(x, f)is a strong A -weight in R".
T he associated constants depend only on each other, and on n and K(f).

The equivalence of (4) and (5) in Theorem 1.5 is well known and it is included in
the theorem only to emphasize the connection between the doubling property of
J(x, f) and the multiplicity of f For instance, the derivative of the complex
polynomial f(z) = z" is doubling but with a constant depending on N.

By an A -weight we mean a weight that belongs to the Muckenhoupt class
A4(R") for some g > 1. Recall that A,(R") consists of all weights w for which there
exists a constant C > 0 such that

1-¢q
_|113—|_[ w(x)dx < C(ﬁ‘[ w(x)l/t-9 dx)
B B

for all balls B in R™.

David and Semmes in [3] (see also [22]) introduced the class of strong
A -weights, which we next describe. For each 4,,-weight w one can associate
a quasidistance d,,(x, y) by setting

1/n
O0,(x,y) = (L w(z) dz) ,
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where B, , is the smallest (closed) ball that contains both x and y. Now J,,(-, *) is
not generally a metric in R", and we say that w is a strong A -weight if §,, is
equivalent to a distance function, that is, there is a function §": R" x R" — R such
that ¢’ defines a metric in R" and that

C718,(x,y) £ 8'(x,y) < Cd(x,y)

for all x, ye R" and for some C > 0 independent of x and y. A fundamental result
of Gehring [7] says that the Jacobian J(x, f) of a quasiconformal mapping
f: R" > R"isan A ,-weight, and by using basic distortion results for quasiconfor-
mal mappings it is not difficult to see that J(x, f) is a strong A4 ,-weight. David
and Semmes arrived at the concept of a strong A -weight in their study of
parametrizations of surfaces. They asked whether for a given strong A4 -weight
w there is a quasiconformal self-mapping of R"” whose Jacobian is comparable in
size to w. Besides being a beautiful “existence” theorem, an affirmative answer
would provide nice parametrizations for a large class of n-dimensional surfaces
inside R™, m > n.

The answer to this question turned out to be “no”. Semmes has recently
constructed examples of strong 4 -weights in R3 which cannot be comparable to
the Jacobian of a quasiconformal mapping. As a consequence of Theorem 1.5,
one could try to construct more such examples by exhibiting a quasiregular
mapping of polynomial type in R” whose Jacobian is not comparable to that of
a quasiconformal mapping. Unfortunately, this does not seem to make the task
easier, and we believe in fact that no such examples exist. In the plane this
nonexistence can easily be proved by invoking the Beltrami equation.

As an application of Theorem 1.5, we prove the following result. Unless
otherwise stated, all the balls in this paper are open, and we write B(x, r) for the
ball centered at x with radius r.

1.6. THEOREM. Let f: R" — R" be quasiregular mapping of polynomial type.
Then the image f(B) of each ball B = B(x, r) is a John domain with John center f(x)
and constant depending only on n, K(f), and N(f, R").

We recall that a domain D in R" is a John domain with constant ¢ = 1 if there is
a point x, in D, called the John center, such that each point x € D can be joined to
Xo by an arc (equivalently, by a path) y satisfying

(1.7 diam y[x, y] £ cdist(y, D)

for all y ey, where y[x, y] denotes the subpath of y between x and y.

It is obvious that Theorem 1.6 cannot be improved much. First, the image of
the ball B((1,0), 1) ¢ R? under the complex polynomial z+ z? is a John domain
but not a quasidisk. Second, let f(z) = €* in the plane. Then the John constant of
f(B(0, 1)), with center f(0), tends to infinity as A — oo.
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David and Semmes established in [3] weighted Sobolev and Poincaré inequal-
ities for strong A, -weights; these inequalities involve different powers of weights
on different sides. The argument of David and Semmes was used and extended by
Franchi, Gutiérrez and Wheeden in [6] to produce more examples of weights
satisfying Poincaré type inequalities. We exhibit a simple argument in Proposi-
tion 4.1 below which reduces (1.1) to the results in [3] and (1.2) to the results in
[6], in case w is an appropriate power of a strong A4 ,-weight. Notice that [3]
contains a weighted Poincaré inequality that does not seem to be general enough
for our purposes. In the case of quasiregular mappings, we provide a different,
more elementary approach to the Sobolev inequality.

1.8. THEOREM. Suppose that v is a strong A -weight. Then (1.1) and (1.2) hold
forw = v! ~P" The constant C depends only on n, p, and on the constants associated
with v, and one can choose

_p+gn—p
T g —p)

where g > 1 is such that ve A,(R").

1.9. CorOLLARY. Let f: R" — R" be a quasiregular mapping of polynomial type.
There are constants k > 1 and C > 0, depending only on n, p, K(f), and N(f, R")
such that (1.1) and (1.2) hold for w(x) = J(x, f)* ~7™.

Observing the uniqueness of the gradient from Section 5, we have yet another
corollary:

1.10. COROLLARY. Let v be a strong A,-weight. Then w = v* ~P™™ is p-admiss-
ible. In particular, for a quasiregular mapping f.R"—R", the weight
w(x) = J(x, f)* “P™" is p-admissible if and only if f is of polynomial type.

The above theorems should be viewed as the main results of this note. In the
following we discuss inequalities which involve two weights; these results are
partially known.

1.11. THEOREM. Let f Q — R" be a quasiregular mapping. Then there is a con-
stant C > 0, depending only on n, p, and K(f), such that

(1.12) f WP, f)dx < C(diamfm»"J VPGP, )7 dx
Q Q

whenever € C3(Q).

For p = 2 Theorem 1.11 was first proved by Gksendal [19] with an argument
based on stochastic and Hilbert space methods not available for p + 2. Recently,
Moscariello [15] pointed out that (1.12) easily follows from a basic inequality in
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the theory of quasiregular mappings [1, (3.4)]. We provide a different, geometric
argument which also allows us to verify a weighted Sobolev inequality with
“correct” Sobolev exponent on the left hand side, provided that f has finite
multiplicity.

1.13. THEOREM. Let f:Q — R" be a quasiregular mapping with N(f,Q) =
N < o0. Then there is a constant C > 0, depending only on n, p, K(f) and N, such
that

1/p

(L9 q "“")"’"""“”J(x,f)dxy_wm écq 'Vl//(x)l"J(x,f)“”/"dx>
2 Q

whenever € Cg(Q).

Assuming Theorem 1.5, inequality (1.14) follows from the main theorem in [3]
inthe case @ = R". Our argument here is different and more elementary than that
in [3]. The crucial observation is that even in the case of noninjective quasiregu-
lar mappings f: Q — R"afunction ¥ in Q can be “pushed” to a function y* in f(R2)
by an averaging method. Then we can mimic the proofin the case of quasiconfor-
mal mappings, where inequality (1.14) readily follows from a change of variables
and the usual Sobolev inequality. The push-forward function was apparently
first used by Martio in [14]. For later applications in connection with mappings
and partial differential equations, see [9], [17], [10].

The results in this paper were obtained for the most part when the second
author was visiting the University of Michigan in the fall of 1991. Some of the
theorems and methods here found applications in a recent work [12], thus giving
us new motivation to write up our observations.

ADDED IN APRIL 1994. Hajtasz and Koskela have recently verified that for
a doubling weight the Poincaré inequality (5.1) in section 5 implies both the
Sobolev inequality (1.1) and the Sobolev-Poincaré inequality (1.2). Thus, in light
of this and Semmes’s uniqueness result, we see that two of the four conditions that
define p-admissibility in the sense of [10] are implied by the other two: the
doubling condition and the Poincaré inequality.

2. Preliminaries.

Let f: Q — R" be a quasiregular mapping. According to a well-known theorem of
Reshetnyak [20, I 6.3], f is an open and discrete mapping, the latter meaning
that f ~!(y) consists of isolated points for each y € R". In particular, N(f; 4) < o
whenever A cc Q.

An open, connected neighborhood U cc Q of a point x € Q is called a normal
neighborhood of x if f(0U) = df(U) and U n f~(f(x)) = {x}. Denote by
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U(x, f,r) the x-component of f ~*(B(f(x),r)). For the following lemma, see [16,
Lemma 2.9] or [21,14.9].

2.1. LEMMA. For each point x € Q there is g, > 0 such that U(x, f,r) is a normal
neighborhood of x whenever 0 < r < ¢,. Moreover, diam U(x,r, f) >0 asr — 0.

Next suppose that xe Qand 0 < r < g, where g, is asin Lemma 2.1. The local
topological index i(x, f) of f at x can be defined by
i(x, f) = N(f, U(x, f,r)).

Notein particular that N(f, U(x, f,r)) isindependent of r < o,. Thus, i(x, /) = 1if
and only if x € Q\B,, where B/ is the branch set of f. We refer the reader to [16,
Section 2], [10, Chapter 14], or [21, Chapter I] for this discussion.

A proof of the next lemma can be found in [10, 14.27].

2.2. LEMMA. Suppose that U = U(x,, f,r) is a normal neighborhood of x, € Q.
Then

L u(f (M (x, f)dx = ilx, f )j )u(y) dy

Jw
for each nonnegative measurable function u in f(U).
We also have a more general change of variables formula for quasiregular

mappings f: Q@ —» R™

(23) J J(x, f)dx = L N(y, f,A)dy
A n
whenever 4 < Q; see [20, p. 99] or [21, 14.14].

3. A, and quasiregular mappings.

In this section we prove Theorems 1.5 and 1.6. So we assume that f: R" —» R" is
a quasiregular mapping with dilatation K = K(f).
First recall that the Jacobian of f satisfies the weak reverse Holder inequality

i1 1 1heg 1/(1+¢) <c 1 J‘ Jexf)d
— & <C——r , X
G.1) (IBI LJ(x,f) x) =C0g ],

whenever B = R"is a ball. The constants ¢ > 0 and C > 0 depend only on n and
K. For a proof, see [ 1, Theorem 5.1]. In fact, 2 can be replaced withany 4 > 1in
which case ¢ and C depend also on A. It is well known that inequality (3.1)
improves itself to
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_1— e 1/(1+¢g) (LJ\ ; >l/s
(3.2) <|B| fBJ(x,f) dx) = Cn,K,s) 28] 2B.](x,f) dx

for any s > 0, where ¢ > 0 is the same as in (3.1). See [13, Theorem 2], or [10,
3.38].

ProOF OF THEOREM 1.5. We let C denote various constants depending only on
the parameters in the statement of the theorem.

The implication (1) = (2) is trivial, and to prove the implication (2) = (3) we use
(3.2), the assumption, and Holder’s inequality to obtain

1 d 1/(1+¢) 1 d 1/s
I 1+e < o S
(IBI LJ(x,f) X> =C(|BI LBJ(x,f) X)

1 Ls 1 '
< C(WLJ(x,f)’dx) < C—]B—l BJ(x,f)dx

for all balls B = R". It is well known that this implies that J(x, f)is an 4 ,-weight
in R see [2].

Next we prove the implication (3) = (4): We may assume that f(0) = 0. The
derivative Df belongs locally to Lf for some g = q(n, K) > n by the weak reverse

Holder inequality (3.1) and quasiregularity of f. Hence Sobolev’s embedding
theorem together with (3.1) yields

1/q
[fO) = 1f(x) — fO) = Clxl“"’“( L |Df (V)I"dy>

1 1/q

< Cdiam B (- J IDf (y)I* dy)
|B| Js

1 1/n

< CdiamB(—f J(y,f)dy> ,
2B

2B

where B is any ball centered at the origin and containing x. This combined with
the A -condition

BO,1)I _ _( wBO, 1) \*
(3.3) \BO,R) = C( B0, R»> :

where w = J(x, f) (see [2, Lemma 5] or [10, 15.5]), implies

> 0,

max | f(x)| £ Cw(B(0,2R))'"" < CR'".

Ix|<R
We conclude that f grows at most polynomially:

[fE = Cix|'™,  |x] > co.
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Now we invoke a result of Viisild [25, Theorem 4.2] which implies that
oo cannot be an essential singularity of f, and, in particular, |f(x)| - oo as
|x] = 0.

The implication (4) = (5) is well known; see [21, 1.4].

The implication (5) = (6) is immediate in view of the following sufficient
condition for w to be a strong A -weight: there is a mapping p: R" — R" such that
pe WL 1(R"), that |Dp(x)|" < w(x) for a.e. x, and that

(3.4 w(p~ '(B(x,R))) < CR"

for some constant C > 0 independent of x and R > 0. This is proved in [3, 1.8].
Therefore, we only need to check the validity of (3.4) for p = f. But this readily
follows from the change of variables formula (2.3) because N(f, R") < oo.

Because (6) trivially implies (3), and hence (5), it remains to establish (5) = (1).
We have by (2.3)

LB J(x, f)dx = L(zn) N(y, f,2B)dy = N(/,R") | f(2B)|

and

j J(x, f)dx = J N(y, f, B)dy 2 |f(B)),
B f(B

and therefore it suffices to show that

(3.9) |f2B) = C|f(B)

whenever B = R" is a ball.
To this end, fix a ball B, centered at x. Since f is open, f(x)is an interior point of
the open connected set U = f(B). Let d = dist(f(x), 0U) and set

r=max|f(x) — ),

yedU’
where U’ = f(2B). Then 2r = diam(U’). Next let L, be a line segment of length
d joining f(x) to dU and let L, be a continuum in R* = R" U {00} joining a point
in dB(f(x),r) N dU’ to oo in R™\B(f(x), ). Then some lifts of L, and L, join x to
0B, and 92B to oo, respectively, and hence

mod(f ~!(Lo), f~'(L4); 3B) 2 C >0,

where mod (4, B; D) refers to the usual conformal modulus between sets 4 and
Bin D. On the other hand, the quasi-invariance of modulus (see e.g. [26, 10.13])
gives
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mod(f ~(Lo), f (L1 3B) £ KN( R")mod (Lo, Lis RY) < C<'°g %)1 :

We obtain r < Cd, which shows that f(B) and f(2B) have comparable volumes,
as desired.

3.6. REMARKS. (a) The proof of the implication “(5) = (1)” above shows the
following stronger conclusion: Let f: 1B — R", 1 > 1, be a quasiregular mapping
with N = N(f, AB) < co. Then there is an exponent ¢ > 0 and a constant C > 0,
depending only on n, K(f), N, and 4, such that

( 1 J‘ L+ d )1/(1 +¢) 1 d

— | J(x, fdx <C——| J(x, X.

|B'B(f) IBIB(f)

Moreover, the doubling (3.5) holds in this case with 2 replaced with (1 + 1)/2,and
we have that

(3.7 C~'diam f(B) £ <j J(x,f)dx)lln < Cdiam f(B),
B

where, as above, C > 0 depends only on n, K(f), N, and A.

(b) If f: 2 — R" is a quasiregular maping, defined in a proper subset Q of R”,
then the question when J(x, f)e 4,,(2) is much more delicate even for injective
mappings. By J(x, f) € A,(Q2) we mean that a reverse Holder inequality

! J d e C ! d
o 1+e < -
(IBI L (x,f) x) =Cp LJ(x,f) x

holds for each ball B = Q. (The answer here also depends whether we use cubes
instead of balls.) By using [16, Lemma 4.3] and [14] one can show that
J(x, f)e A,(2) only if there is a uniform bound for the local index; that is
SUpP,eni(x, f) £ N forsome N < co. On the other hand, such a bound does not in
general imply J(x, f)e A(Q); consider, for instance, the analytic function
f(z) = €* in the plane. This problem for homeomorphic quasiregular mappings
was studied in [11].

ProOOF OF THEOREM 1.6. Let B — R" be a ball centered at x,, and write
U = f(B),yo = f(x0). Pick a point ye U and let x € B be such that f(x) = y. The
proof of the implication (5) = (1) in Theorem 1.5 gives that

(3.8) diam f([x, xo]) £ Cdist(f(xo), f (Bo)),

where By = B(x,,|x — xo|) @ Band C > 0 depends only onn, K(f),and N(f, R").
Infact, (3.8) remains valid equally well when we replace x, with any point z on the
radius [x, xo] and B, with the ball B, = B(z,|x — z|) = B. Then
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diam f([x,z]) < Cdist(f(2),of (B.)) = Cdist(f(z), o),
and we infer that the path f([x, x,]) will satisfy (1.7). The theorem follows.

4. Weighted Sobolev and Sobolev-Poincaré inequalities.
We first prove Theorem 1.8. The following simple proposition is crucial.

4.1. PROPOSITION. Suppose that ve A,(R") and suppose that

(n—p)/np 1/p
@ (| woorme-ucn o) " s J ey
B B

for some ball Bin R" and for some g and hin L*(B). Then there is a constant C, > 0,
depending only on n, p, Cy, and the A, constants of v, such that

1/p

4.3) (T«)(IY) L [g()|“Pw(x) dx)l/xp < C,diam B <$ L [h(x)|Pw(x) dx) R

where w(x) = v(x)! ~P'" and

p+4qn—p
4.4 K=—"".
@49 q(n —p)
PROOF. Let k > 1 be as in (4.4). Then
k(n—p)/n
@.5) J lglPot ~PI" dx < (j lglre/» =P dx)
B B

(xp—(x~1)n)/n
X v*dx ,
B

_-wn-p _ 1
T kp—(k—-Un 1—¢g

1 L n/(n—p) < 1 i< C 1 . 1/s
i —pln _— < — X s
<|B| R T b U

we obtain
(kp—(x—1)n)/n 1-x ]
<j v dx) < C|Bf<pi <j pl e dx) < C(diam B)**w(B)' *.
B B

Therefore (4.5) and the assumption imply

where

< 0.

Because



262 JUHA HEINONEN AND PEKKA KOSKELA

1/xp (n—p)/np
(j |g|<Pvt P/ dx) <C (j |g|"P/n =Py dx) diam Bw(B)!/xp~1/p
B B

1/p
C(f |hjPot =P dx) diam Bw(B)!/xp~1/p,
B

IA

from which the assertion follows.

PrOOF OF THEOREM 1.8. We apply Proposition 4.1 and results in [3] and [6].
Thus, let v be a strong A ,-weight. For y € C3(B) inequality (4.2) with g = ¢ and
h = Vi was established in the main theorem of [3] (with constant C, indepen-
dent of Y and B, of course). In the case v is the Jacobian of a polynomial type
quasiregular mapping, this is Theorem 1.13. Hence (1.1) follows from Proposi-
tion 4.1.

Next, we show that for a given B and bounded € C*(B), there is ae R such
that (4.2) holds with g = ¥ — a and h = Vi, where, again, C, is independent of
¥ and B.

To this end, consider first the inequality

(n=1)n
(4.6) (J Iy — l//,,l"""“’vdx> = C'[ IVl ot =" dx,
B B

where Y is the (v-)weighed average of y in B. This inequality follows from
Theorem Iin [6] with the choices g = n/(n — 1)and p = 1, provided the following
two conditions hold:

i (n—1)/n 1-1/n
(47) d.lam B jB 2 § IB - 1-1/
diam B, \ [p,v [, vt 1"
For all balls B and B, with B = B, and there is a strong 4 ,-weight w such that
4.8) vl T Unym A m e 4 (wh TN dx),

Here the notation is that of [6]. Now (4.8) is trivially true, as we can choose w = v,
and (4.7) follows upon observing that

)~ (arl,e)
1Bl Js- ~ \IBl Js

for all 0 < s < 1 whenever v is an A, -weight. Thus (4.6) holds.
The proof is now finished by standard arguments. For convenience, we
provide the details. Write

¢ = ma.X(l/I —a, O)S - max(a - 'p’ 0)’,

where s = p(n — 1)/(n — p) > 1 and a€R is chosen such that
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J ¢vdx = 0.
B
Then by (4.6) and Holder’s inequality, we have

(n—1)/n (n—1)/n
(J W — al""/("—")v dx) = (f '¢In/(n— by dx)
B B

= CJ VYl — al"~to' =t dx
B

1/p (p—1)/p
< C(I |Vl//|"v("_”)/" dx) (f w, _ a|”"/(""”v dx) ,
B B

from which (4.2) follows by dividing.
This gives us (1.2) by Proposition 4.1, and the proof of Theorem 1.8 is
complete.

It remains to establish Theorems 1.11 and 1.13. As cited in the introduction,
these results are fairly easily proved for quasiconformal mappings via a change of
variables argument. We intend to mimic this idea in the case of non-injective
mappings.

Suppose that f: Q — R" is a quasiregular mapping with dilatation K. For
a function Y € Cy(Q2) we define

o) = Y ik ().
xef ~'(y)

Because fis discrete and because spt () is compact, the sum contains only a finite
number of terms.

4.9. LeMMA. If Y eCo() is Lipschitz continuous, then y*e Co(f(€)) N
Wo'""(f (£2)).

ProoF. This is proved in [14] and in [10, 14.30, 14.31]. The careful reader
notices that in these sources it is assumed that ¥ € CF(£2). An examination of the
proof reveals, however, that only the Lipschitz character of ¥ is needed.

4.10. LEMMA. If s € Co(R) is nonnegative and Lipschitz continuous, then
J Y(x)J(x, f)dx < C(n,K)diam f (Q)J VYl J(x, £)! 1" dx.
Q Q

Proor. Since f is open and since y* € Wy 1(f(22)) by Lemma 4.9, the usual
Sobolev inequality implies
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(4.11) J Y*(y)dy £ C(n)diam f(Q) j IV *(y) dy.
() [

Fix yoespt(y*)\f(B; nspt(¥) and let {xi,...,x} = f"'(yo) "spt(¥). By
Lemma 2.1 there exists r, > 0 such that

k
fql(B(.}’o,"o))mSpt(w) == U Uj,
j=1

where U; = U(xj, f,ro) are pairwise disjoint normal neighborhoods of x; with
i(x;, f) = 1. Thus f; = f| U;is a K-quasiconformal mapping of U; onto B(y,, 1),
and for each ye B(y,,ro),

010)= X V00D

Because the inverse of a K-quasiconformal mapping is K"~ *-quasiconformal, we
now have

L( )IVx//*(y)I dys ¥ V(™ oDl dy

j=1JBo.ro)

=) IVU(f;~ o)D)l dy

Jj=1J B(yo,ro)

SKOTUR Y| O OO0

j=1J B(yo, ro)

—ke Y [ vplae i d

i=1JU;

= K= vn f VY@ I, £} 4 .
S~ 1(B(yo,ro)

On the other hand,

k
j Y()J(x, fdx =y, Y(f;" o) dy
S~ Y(B(yo,ro)

j=1JB¥o,ro)

= J y*(y)dy.
B(yo, ro)

Now Lemma 2.1 and the Vitali covering theorem permit us to decompose the set
spt*\f(B;nspt(y)) to a pairwise disjoint union of balls {B(y,ry),
B(y,,r3),...} such that each B(y;,r;) has the properties of B(y,,r,) as indicated
above and that
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sptW*)\f(B; nspt(¥)) = L2 By, 1) U A4,
where |A4] = 0. Consequently, since |B;| =0 and since for nonconstant
quasiregular mappings |f(E)| = 0 if and only if |E| = 0, we have that
spt(¥*) = Ui, B(yi,ri) v 4,
where |A'| = 0.
The proof is now finished by collecting the facts proved above. Indeed,

fe o]

L Y (x, fdx = 3, L_w . YO (x, f)dx

i=1

@

= J Y*(y)dy = f Y*(y)dy
B(y;,ri) f(2)

i=1

< Cdiamf(Q)J

o [V *(y)l dy = diam £(€) i (VY *(y)l dy

i=1dJBy,r)

< Cdiam (@) ¥, L_l(m_ VYOI )

= Cdiam f(Q) J V()| J(x, £) V" dx.

The lemma follows.

PrOOF OF THEOREM 1.11. Given Y€ CP(Q2) we apply Lemma 4.10 to the
Lipschitz continuous function = ||” to obtain

j W(x)IPJ(x, f)dx < Cdiam f(£) J;;W(x)lp_l VW0l I(x, £) 1 dx.
Q
Holder’s inequality yields

J WP J(x, f)dx < C diam(f(£2))

1/p
g (J WCAI? U (x, f)] dx)® 17 ( L'Vw(xnmx, fyrem dx)
o]

and the claim follows after dividing; note that

J [WIPJ(x, f)dx =f [WIPI(x, f)dx < co.
Q spt(y)

PRrOOF OF THEOREM 1.13. Given i € C2(), it clearly suffices to establish the
asserted inequality separately for  , = max{y,0} and y _ = —min{y,0}. Both
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of these functions are nonnegative, Lipschitz continuous and compactly sup-
ported in Q. Thus we assume without loss of generality that y € Cy(€2) is non-
negative and Lipschitz continuous. Then y* € W' ?(f(£2)) by Lemma 4.9, and the
Sobolev inequality gives

(n—p)/np 1/p
(f Il//*l"”""“"’dx) gcq lVl//*I”dx) :
S S

where C = C(p, n). Reasoning as in the proof of Lemma 4.10 we conclude that we
only need to verify

(4.12) f [Vy*Pdy < Cf IVYIPI(x, f) P dx
B £-4®)

and

@.13) f AP dy 2 f WPl =PJ(x, f) dx
B S-uB)

whenever B — f(€)is an open ball with f ~!(B) nspty = U} Uj;(disjoint union)
and f; = f|U;is injective for each j = 1,..., k.
To this end, we estimate

k )4
L IVy*Pdy = J;(“_[,l IV (f;~ 1(y)))l> dy
k
Skr? ;1 L IVY(f;~ ' 0)IP IDf;~ YOI dy
< NPTIKPOT DR _Zl L V(S5 ONPIG, 5~ DI, f; P~ dy

k
S NPiKP-Din Y IVY(x)IPI(x, f)* ~PI"dx

i=1Ju;

Uj=1uj

< NP*‘KN"-”/"J VORI, ) T,

and (4.12) follows. Moreover,
k np/(n—p)
L )P dx = L( L/ 1(y))) dy
Jj=1

k k
=) f WP dy = 3, L_lm WP (x, f) dx

establishing (4.13). The theorem follows.
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S. Uniqueness of the gradient.

Let w be a weight. We assume that the Poincaré inequality
(5.1) J ¥ — ¥plPwdx < C(diam B)"J |Vy|Pw dx,
B B

holds for all balls B and bounded functions e C*(B); the constant C > 0
naturally should be independent of B and . This weighted Poincaré inequality is
clearly implied by (1.2) via Holder’s inequality; it is easily checked that the
number a can be replaced by the weighted average 5.

In this section we verify the following uniqueness property, a result which is
due to Semmes [23].

5.2. THEOREM. Fix an open set Q — R". Let (/;) be a sequence of functions in
C*(Q) such that

(5.3) ¥; =0 in I2(Q),
and
(5.4) Vy;—g in Q).

Then g = 0 almost everywhere in .

We assume for simplicity that Q = R". We say that a compact set K is helpful if
there is a constant C = Cg such that

u(x) — u(y)l < Clx — yl (Myu(x) + My.(y))

whenever ue C*(R" and x, ye K satisfy |x — y| < 1. Here My, is the maximal
function defined by

1/p
My, (y) = sup <r_"J |VulPw dx> .
r>0 B(y,r)

Theorem 5.2 is an immediate consequence of the following two lemmas.

5.5. LEMMA. Let K be helpful. If (¥;), g are as in (5.3) and (5.4), then g =0
almost everywhere in K.

5.6. LEMMA. There is a sequence (K ) of helpful compact sets with[R"\L K| = 0.

PROOF OF LEMMA 5.5. We may assume that the diameter of K does not exceed 1.
By passing to a subsequence we may also assume that

i/p i/p »
( J W1 — ll/,-l‘”wdx) + ( f Ve — Vl//,-l"de) <107,
Rn n
Let 4 > 0 be large. Set g; = ¥;+1 — ¥;. Pick an open set V; with
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(.7) lgi(x)IP'w(x) < (274 on R™V;
and
Vil < 252",
Define
(5.8) Q; = {x: My, (x) > 2793},

Then Q;is open, and since the Hardy-Littlewood maximal operator is of weak type
one-one, we have

19;] £ CR™IA)P107/7 = C(54) 7>

Next, since w > 0 almost everywhere, we can pick an open set U, such that

5.9 wx) =177 on K\U,
and we may further require that

/1111?0 IU].I =0.
Define
(5.10) K;=K\(u;V;uu;Q;uU,).
Then

IK\K;| = AT_.(IVJI +1Qi) + Uil = CA™7 + Uy,
and so lim,_, , [K\K,| = 0.
By (5.7) and (5.10),
lgj(x)IPw(x) < C27A)7" on K,
and since w = A7 ? on K by (5.9), we have that
lgix)) <C277 on Ki;.
Also,

lgx) — g, < C279A|x — y|
by (5.8) and (5.10) whenever x,yeK; since K is helpful. Using the Whitney
extension theorem (see [24, Chapter VI]), we find Lipschitz functions u;in R" such
that

|uj(x) — u;(y)l < C279A|x — y|
for all x,y in R",



WEIGHTED SOBOLEV AND POINCARE INEQUALITIES AND QUASIREGULAR ... 269

lujx) < C277
for all x in R" and
uj=g¢g; on K,

Set

V=Y + Z u;.

Then each v; is (locally) Lipschitz with
lvj — vj44] £ C277,
and with
[V(v; — v+ )l < C272

almost everywhere. Thus (v;) converges (locally) uniformly to some Lipschitz
function v on R"; also, by standard reasoning, (Vv;) converges to Vv almost
everywhere. Moreover, v = 0 almost everywhere in K ; since v; = ; on K. Thus
Vv = 0 almost everywhere in K, and we conclude from (5.4) that g = 0 almost
everywhere on K. The claim follows by letting A — co.

PROOF OF LEMMA 5.6. Forj = 1,2,... define
Q; = {x:j~'r" S w(B(x,r)) < jr"}

whenever 0 < r < 10. Since w > 0 almost everywhere and wis locally integrable, it
follows that

IR"\u,; Q) = 0.

Fix j. It suffices to show that each compact subset K of Q; is helpful. Let K be
a compact subset of Q;, and let ue C*(R"). Fix x,ye K with |x — y| = 1. For
k =1,2,... write B, = B(x,27*) and set a, = w(B,) " [, u(z)w(z) dz. Then

lu—alwdz < C2""f lu — alwdz

lax — G+l W(Bk+1)~lj
By

Bi+1

because x € Q;. Applying the Holder inequality and the Poincaré inequality (5.1),
we deduce that

1/p
(5.11) | — axeq] < C2”"<2""J~ |VulPw dz> < C27*My,(x).

By
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Since u is continuous, a, tends to u(x) as k — co. Fix ko, such that 2 7%~ <
|x — y| £ 27*_ Then, summing over k and using symmetry and (5.11) we conclude
that

lu(x) — u(y)l < C27(Muu(x) + (Mvu(y) + lax,_,(x) — ax,, W),

where

a(2) = w(B(z,27%) "1 J uwdx.

B(z,27%)

As in (5.11), we then conclude that the latter term is bounded by C|x — y| My,(x).
The claim follows.
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