MATH. SCAND. 77 (1995), 225-250

THE IMAGE OF THE ENVELOPING ALGEBRA AND
IRREDUCIBILITY OF INDUCED REPRESENTATIONS
OF EXPONENTIAL LIE GROUPS

JACOB JACOBSEN

Abstract.

It is shown that the image of the universal enveloping algebra of the Lie algebra of an exponential Lie
group under a representation of the group induced from a character satisfying the Pukanszky
condition is a dense algebra of differential operators. This result is used to prove irreducibility of
certain families of nonunitary induced representations of exponential Lie groups.

I. Introduction.

Let G denote an exponential Lie group with Lie algebra g and let U(g°) denote the
universal enveloping algebra of the complexification of g. In the case where G is
nilpotent a theorem due to A. A. Kirillov [Ki] (and to J. Dixmier [Di] in
a generic case) states: Let 7 be a strongly continuous and unitary irreducible
representation of G, then n may be realized on L*(R") such that its derived
representation dn maps U(g®) onto the complex algebra of all differential oper-
ators on R" with polynomial coefficients. The present paper deals with the
problem of describing this image of U(g®) when G is a general exponential Lie
group. We provide an extension of Kirillov’s result which implies that the image
is dense in the algebra of all differential operators on R” with C*-coefficients.

We establish the result in a context of not necessarily unitary representations
induced in a generalized sense from not necessarily unitary characters, with the
unitary representations arizing as particular cases. The aim of our study is to
extend irreducibility results known for the unitary representations to this wider
class of representations. This was achieved for the nilpotent groupsin [JS1], [Ja]
and [JS2] by extensions of Kirillov’s theorem adapted to the generalized setup.
For the Heisenberg groups particular instances of these representations were
treated in [Pe], [Li2], [Ho] and [LL1,2]. Cf. also [Lil, 2] for related studies. In
the present paper the results are inferred for general exponential groups via our
density theorem.
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To be more specific, let « e (g*)° be a complex-valued and real-linear functional
on g and let f be a subalgebra of g with «([f,¥]) = {0}. Let K denote the analytic
subgroup of G corresponding to fand let y = y, , be the continuous character on
K determined by y(exp X) = e *®, X ef. Let finally 4, , denote the action of
G by left translations on the distribution space

2, (G):= {ue 2'(G)|u(gk) = y(k)"'u(g), VgeG, keK}.

The representations we study, and call induced from g, are the restrictions of
A,y to any left invariant subspace of &, (G) with a locally convex topology for
which certain natural continuity and density conditions are satisfied.

The unitary representations fit into this setup as follows. If « = iff + J, where
B,6eg* and [y = $tr ady, then the unitary representation 7, ; of G induced
from the unitary character y;;, is the restriction of A4, ; to the subspace of
functions in 2 ,(G) satisfying an appropriate square-integrability condition.

It is well-known that m, y is irreducible if and only if f satisfies the so-called
Pukanszky condition relative to f, and that every continuous unitary irreducible
representation of G is unitarily equivalent to some 7 y, cf. [Be], [Pu].

We prove that the Pukanszky condition also suffices for irreducibility when
the induction from y, , is in the extended sense, and then in addition for more
general complex-valued « than arizing in the unitary case.

Our results are obtained for « of the form o = cf + §, where ce C\{0}, feg*
and d e(g*)° with 6([g, g]) = {0}, and with T satisfying the Pukanszky condition
relative to B. The induced representations are realized via coexponential bases
Z of g modulo f as representations on subspaces of 2'(R"), n = dim g/£.

The main result of the paper is (Theorem 4.1): The basis Z may be chosen such
that the image of U(g®) in the algebra of differential operators on R" in coordi-
nates x,..., X, contains the multiplication by either x, or ¢*' (if n = 1). If g is
spanned by  and the nilradical of g, then = may be chosen such that the image of
U(g%) equals the complex algebra of all differential operators on R” with poly-
nomial coefficients.

From the main result follows by recursion on n that the image of U(g°) is dense
in a specific sense in the algebra of all differential operators on R" with coefficients
of class C® (Theorem 4.2).

Combining this density theorem for the image of U(g®) with an irreducibility
criterion from [JS2] we extend irreducibility results proved for nilpotent groups
in [JS2] to exponential groups. We show that:

(1) The considered induced representations are all scalar irreducible (the only
continuous intertwining operators are the scalar multiples of the identity).

(2) The representations on the spaces which are invariant under the natural
multiplication on &, (G) by the functions in C*(G/K) are even ultra-irreducible
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(the image of the group under the representation spans a dense subspace for the
ultra-weak operator topology; cf. [JS2]).

The concept of ultra-irreducibility was introduced in [Li3], [Li4]. It
strengthens the notion of topological complete irreducibility due to [Go], which
on its side in particular implies topological as well as scalar irreducibility.
General criteria for ultra-irreducibility and other density results are found in
[LL1,2].

For unitary representations all the considered notions of irreducibility co-
incide. The irreducibility of the unitary induced representations 7, ; for f satisfy-
ing the Pukanszky condition relative to 8 is thus a particular instance of (1).

Part (2) applies to the representations on local distribution spaces , e.g. 2, (G)
and C2(G):= C*(G)n 2, ,(G). These choices appear in particular natural
when the covariance condition u(gk) = y(k™‘)u(g), VgeG, keK, is given its
equivalent differential formulation, Xu = a(X)u, VX ef. This relates our induced
representations to the so-called eigenspace representations introduced by S.
Helgasonin [Hel]; cf. Chap. I1.4 of [He2]. The present work may thus be seen as
solving for exponential groups modified cases of the program set up in [Hel].

II. Notation, definitions and auxiliary results.

1. General. In the following G denotes a real exponential Lie group with Lie
algebra g, i.e. the exponential map exp: g — G is a diffeomorphism. The universal
enveloping algebra of the complexification g° of g is denoted U(g®). The dual
space of g is denoted g* and (g*)° will be the set of the complex-valued and
real-linear functionals on g. By Cg* we denote the subset of (g*)€ consisting of the
complex multiples of the elements of g*.

For each a €(g*)%, S(, g) will denote the set of subalgebras f of g subordinate to
a,i.e. forwhichf < %, where 1*: = {X eg| ([ X, f]) = {0}}. Foreacha e g*, P(, g)
will denote the set of subalgebras f of g satisfying the Pukanszky condition relative
to a, i.e. for which f = f for all feg* with § = « on £ If g is nilpotent, then
a subalgebra fe P(«, g), if only = 1% [Be; Chap. IV.3].

2. The induced representations. Given a € (g*)° and fe S(a, g), let K denote the
analytic subgroup of G corresponding to f and let y = y,,; be the continuous
character on K defined by y (exp(X)) = e ™ for all X ef.

The left regular representation A of G on the space 2'(G) of distributions on
G then leaves invariant the subspace

P, (G):= {ue P'(G)| R(kju = y(k)"'u, VkeK},

where R(k) denotes right translation by k. Left and right translations on 2'(G) are
defined so as to extend the actions on function spaces embedded in 2'(G) by
means of some chosen left Haar measure on G, i.e. [A(g)u](¢) = u(A(g ™)) and
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[R(g)ul(e) = u(dg(g~")R(g~Y)o) for all ge G, ue 2'(G) and ¢ € 2(G), where A4,
denotes the modular function on G.

Set C24(G) = C*(G) n 2, (G) and let 2, (G) denote the subspace of C°(G)
consisting of the functions of compact support modulo K.

The spaces 9, 4(G) and C;°((G) inherit their topologies as closed subspaces of
the strong dual 2'(G) and the Fréchet space C*(G), respectively, while the space
2,.4G)is equipped with the inductive limit topology from the family of subspaces
{we C2(G)|supp ¢ = CK}, where C ranges over the compact subsets of G.

We adapt the notion of a normal space of distributions to the present setup:
a normal subspace of &, (G) is a locally convex space E for which 2, ((G) <
E < 2, ,(G) with weakly continuous inclusion maps and with 2, ,(G) dense in E.

We then define a representation induced from y to be the restriction Ag of A to
a left invariant normal subspace E of 2, (G), provided that Ag is a strongly
continuous representation of G by weakly continuous endomorphisms of E.

Examples are E = 2, ((G), C(G) and 9, (G). The representations on these
spaces are even differentiable. The restrictions of A to &, ,(G) and CZ4(G) are
denoted by A4, ; and 4, y, respectively.

The unitary representation n; ; induced from the unitary character y;;, 1, where
Beg* teS(B,g), is then in our setup induced from ;4 4 5 1, Where 6 € g* fulfilling
dly = 3 tr ad,, accounts for the square root of the quotient between the modular
functions on K and G appearing in the unitary induction.

3. Coexponential bases. To establish isomorphisms 2, ,(G) ~ 2'(R"), CZ{(G) ~
C*(R"), 2,,1(G) ~ 9(R") etc. we use coexponential bases:

Let f be a subalgebra of g. An ordered basis (X, ..., X,), of g modulo {, i.e. of
a complementary subspace to f in g, is called coexponential, cf. [ Be], if the map

(X15.. s X, X)€R" x 1 exp(x1X,)...exp(x,X,)exp(X)eG

is a diffeomorphism of R” x f onto G.

An ordered basis (X},...,X,) og g modulo f is called normal, if for every
i =1,...,n, the subspace g;:= span{X;;,..., X,} + fisanideal of g;_;.

A normal basis of g modulo f is automatically coexponential, cf. Theorem
3.18.11 of [Va]. If g is nilpotent, then by Engel’s theorem there is for every
subalgebra ¥ of g a normal basis of g modulo . The existence of coexponential
bases for general exponential g is established by (c) of Lemma 2.1 below.

A coexponential basis of g modulo f of the form in (c) of Lemma 2.1 below will
be called compatible with the nilpotent ideal n in question.

2.1. LEeMMA. Let T denote a subalgebra of g.

(a) Let i be anideal of g for whichg =1+ L. If (X,,...,X,) is a coexponential
basis of i modulo i N ¥, then it it also a coexponential basis of ¢ modulo t.

(b) Let ! be a subalgebra of gwith1 2 %. If (X4,..., X,,) is a coexponential (resp.
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normal) basis of g modulo | and (X, 4,...,X,) is a coexponential (resp. normal)
basis of 1 modulo ¥, then (X,...,X,) is a coexponential (resp. normal) basis of
g modulo §.

(c) Let nt denote a nilpotent ideal of g with [g,g] < n. Let (X,,..., X)) denote
a basis of g modulo n + t and let (X, ,.. ., X,) denote a normal basis of n modulo
nn¥t Then(X,,...,X,)is a coexponential basis of g modulo t.

PROOF. (a): Since g/iissolvable, thereisanormal basis (Y}, ..., Y,) of gmodulo
i, cf. Cor. 3.7.5 of [Va]. Since g = i + f, we can choose the Y;,..., Y, in f, and the
basis will be normal of f modulo fni. Let I, K and K, denote the analytic
subgroups of G corresponding to i, f and f,:= { N1, respectively. Then we have
the diffeomorphisms:

(x1,..., xpa)eR" x Ko — exp(x1Xy)...exp(x,X,)acl
@, y1,--.,Yp)€Ko x R? 1> aexp(y,Y,)...exp(y, 1;)eK
(b, y1,...,yp)el x R? 1= bexp(y,Y,)...exp(y; Y1) eG

The map (xy,...,X,, k)€R" x K > exp(x;X,)...exp(x,X,)ke G is thus com-
posed of diffeomorphisms R" x K - R" x K, x R? - I x R? - G and is hence
itself a diffeomorphism, so (X,..., X,) is a coexponential basis of g modulo f.

(b): Straightforward.

(c): Since [g,g] < n + f, the basis X, ..., X, of g modulo u + fis normal and
hence coexponential. Since n is an ideal of n + f, the normal and hence coex-
ponential basis X, , ,..., X,, of n modulo n n fis by (a) a coexponential basis of
n + f modulo f. The conclusion now follows by (b).

4. Realizations. Let a e(g*)¢ and fe S(a, g), and let Z: = (X,..., X,) be a coex-
ponential basis of g modulo . Then the map S: C*(G) - C®(R") given by

()1, xn):= fexp(x,Xy)...exp(x, X)), feC¥(G),

restricts to a topological vector space isomorphism S, y ¢ of C34(G) onto C*(R"),
realizing A, y as a representation A = 4, 1 z of G on C®(R") of the form

[Ag)f1(x) = e f(g™1-x),  geG, feC™(R"), xeR"

Here k: G x R"—>f and (g9,x)e G x R" > g-xeR" are the C*-maps deter-
mined by g(x,0) = (g- x, x(g, x)) for all ge G, xeR", where G is identified with
R" x f by means of the coexponential basis =.

The map S,y - extends and restricts to topological vector space isomorphisms
of 7, (G) and 2, (G) onto 2'(R") and Z(R"), respectively. The formula for
Aq1, 2 €Xtends by continuity to the realization A4, ; z of 4, ; on Z'(R").

If = is chosen compatible with a nilpotent ideal of g containing [g, g], then the
Lebesgue measure on R" ~ G/K is relatively invariant under the action of G: Let
do€g* be defined by do(Z) = {0} and J|; = tr ady, and set y, (exp X) = e*®),
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X eg. Then g, is a character on G and it may be shown that d(g - x) = xo(g) dx,
geG. The unitary representation mg,, feg*, is realized for such Z as the
restriction of A4, ; z to L(R"), where a = if + 35,.

We denote by DO(R") the complex algebra consisting of all the differential
operators on R" with C®-coefficients, and by DP(R") the subalgebra consisting of
the operators with polynomial coefficients.

The derived image of U(g®) under the induced representations is determined by
the representations on the spaces C;°((G) ~ C®(R"). If the basis Z is compatible
with a nilpotent ideal n of g with [g,g] < n, then

2.1 dA, 1 5(U(g%) = DO(R") ® DP(R"™¥) = DO(R"),

where k = dim g/(n + f) and n = dim g/1.
The remaining two lemmas establish transformation properties of 4, ; ¢ under
a change in Z or the addition of a character on g to .

2.2. LEMMA. Let ae(g*)® and teS(a,g). Let E=(Xy,...,X,) and E =
(X1,...,X,) denote coexponential bases of g modulo t and set A =1,z and
A = A, 1,5 Then the following hold:

(1) The isomorphism ®:= S, ; z°S; { z: C*(R") > C*(R") which intertwines A’
and A is of the form

(@ )x) = P f(¢(x).  feC*(R"), xeR",

where £ = (£4,...,&,): R" = R" is the diffeomorphism and p: R" — ¥ is the C*-map
determined by

(22)  exp(x1Xy)...exp(x,X,) = exp(1(x)X7). .. exp(Eq(x)X,) exp (p(x))

Sforall x = (xy,...,x,)€R™

(2) If for some Del(g®), dA'(D) equals the multiplication by a function
Y € C*(R™), then dA(D) equals the multiplication by the function o £ € C*(R").

(3) Putg,:=span{X,,...,X,} + t and suppose that g, = span{X3,..., X} +
that g, is an ideal of g and that X, — X} €g,. If for some D € U(g%), dA'(D) equals
the multiplication by a function y(x,), Y € C*(R), then dA(D) equals the multiplica-
tion by the same function Y(x,).

(4) Let nbe anilpotent ideal of g with [g,g] < nand suppose thatg =n + fand
that the coexponential bases E and =’ of g modulo T are normal bases of n modulo
nn 1. Then dA(U(g®) equals DP(R") if and only if dX'(U(g°)) equals DP(R").

ProoF. (1): For every f e C*(R") and x = (x,,...,X,)€ R" we have
(@)x) = (S 1,5/ )exp(x,Xy)... exp(x, X,))
= (Sut.2/)NEXP(E1(0)X}). .. exp(E,(X)X;) P
= e f(&4(x), ..., &alx)).
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(2): Let feC>®(R". Then dAD)®f = ®dA(D)f = P(Yf) = e*°?((Yf ) &) =
(Yo e*°P(fo &) = (Yo O)Pf.

(3): Put G,:= exp(g,). Applying the quotient homomorphism n: G —» G/G, to
(2.2) we get that exp(x,dn(X,)) = exp(&,(x)dn(X})) for all x = (x4,...,x,)eR"
Hence £,(x) = x,, since dn(X ;) = dn(X}) #+ 0 and since the quotient group G/G,
is exponential. The conclusion now follows from (2).

(4): Since N:=exp(n) is a subgroup of G, p maps R" into £~ n. Since n is
nilpotent, the maps &, ¢! and p are all polynomial. Hence the isomorphism
E+ ®oEo®~! of DO(R") onto DO(R") which maps dA'(2(g°)) onto dA(2(g))
also maps DP(R") onto DP(R"). This proves (4).

The representation 4, ,is essentially unchanged when a character on g is added
to o

2.3. LEMMA. Let ae(g*)° and teS(x, g). Let 5 €(g*)C be a character on g, i.e.
o([a,9]) = {0}, and let y, denote the corresponding character on G, i.e.
xo (€xp(X)) = *® for all X eg. Then teS(a + 6, g) and the following hold:

(1) There is by

(23) feC2is(G) > 16 ' fECUG)

defined a topological vector space isomorphism of C3', 5 ((G) onto C((G) intertwin-
ing the representations A, 5  and xg ', 1 of G.
(2) If Eisacoexponential basis of g modulo t with the property §(Z) = {0}, then

dhgis,1,5(X) = dA, 1 5(X) — 6(X) forall Xeg.

(3) If Eis a coexponential basis of g modulo T compatible withn = [g, g], and if
&' €(g*)° is the extension of d|; given by &'(E) = {0}, then

dAg15,0,5(X) = dAy 1 £(X) — 0'(X) forall Xeg.

PrOOF. (1): Set y(exp(X)):= e*® for X el. Let feCP;(G), g, g’ €G and
ke exp(f). Then (x5 ' /)(gk) = xo '(gk) f(@)x(k)xo(k) = (xo * £)(g)x(k), Which proves
that yq'f € C2((G). Also x5 '(9) /(9™ "9) = xo0 '@ (X0 ' f)g~'g'), which proves
that the map (2.3) intertwines 4, , ; and xo '4, ;.

(2): If 8(E) = {0}, then the equivalence between A, 5 y s and xg ‘4, , ¢ given by
(2.3) is the identity map.

(3): Since &' is a character ongand dA, ;5 1z = d,+5 1 2, (3) follows from (2).

III. Lemmas on exponential Lie algebras.

Here we collect the results we need about the Lie algebra of a real exponential Lie
group, i.e. a real solvable Lie algebra g for which adX, X €g, has no non-zero
purely imaginary eigenvalues; cf. 1.2 of [Be]. The center of g is denoted 3.
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3.1. LEMMA. Assume that g % 3 and let a be minimal among the non-central
ideals of . Puti:= {X eg|[X,a] < an3}. Then:

(i) ais abelian and 1 < dim(a/an3) < 2.

(i) tis anideal of g, dim(g/i) < 1 and for each X € g\i, adX acts irreducibly on
a/a N 3. In particular i contains the nilradical of g.

(iii) If i = g, then dim(a/a n3) = 1.

PRrROOF. (i), first part of (ii): Follows by Lie’s theorem, cf. Lemme 1.1 and 1.2 of
Chap. VI of [Be]. To prove the last statement in (ii) let X be in the nilradical of g.
Then ad X acts nilpotently on a/a n 3. Hence ad X acts reducibly on a/a n 3 unless
dim(a/a n3) = 1 in which case it acts as zero. So X ¢ g\t and therefore X €i.

(ii)) Ifi = g, then any subspace of a containing a N 3 properly is a non-central
ideal of g. The minimality of a therefore implies that dim(a/a N 3) = 1.

3.2. LEMMA. Assumethat g + 3andlet aandibe asin Lemma3.1. Let o € g* and
assume that Ker a does not contain any non-zero ideal of g. Then:

(i) dim3 < 1and 1 < dim(g/a®) < dim(a/an3) < 2.

(i) i = a*<«>anj= {0} =dim(g/a”) = 1 «>dima < 2.

(i) If i+ a% then the bilinear form o[-,']) on i x a factorizes to
a non-degenerate form on ifina* x a/an3. In particular then dim(g/a%) =
dim(i/i N a%) = dim(a/a N 3).

(iv) a*is anideal of g if and only if [a® a] = {0}, in which case dim(g/a*) = 1.

(v) If g, is a subalgebra of g with g, 2 a°% then either g; = g or g; = a*

PROOF. (i): By the assumption on ker « we have 3 " ker« = {0}, sodim3 < 1.
Since a is a non-central ideal of g, [g, a] is a non-zero ideal of g, so [g,a] € kera,
i.e. g ¥ a* Hence dim(g/a*) = 1. The bilinear form a([-,-]) ong x afactorizes to
a non-degerate form on g/a* x a/a n g*. Hence dim(g/a*) = dim(a/ang*) <
dim(a/a N 3) < 2, where the first inequality is due to 3 < g*

(il): Assumei = a* Then g # i, so that [g,a] & 3. Thus [g, a] is a non-central
ideal of g contained in a, whence [g, a] = a by the minimality property of a. Since
i=a% we also have [i,a] = 3nkera ={0}. So given X eg\i we have that
[X,a] =[RX + i,a] =[g,a] = a, whence dima = dim[X,a] < dim(a/a N 3).
This implies that a n 3 = {0} and dima < 2.

Assume a N 3 = {0}. Then [i,a] = {0} and thus i < a* Since dim(g/i) <1 =
dim(g/a®), this implies that i = a* and dim(g/a%) = 1.

Assume dim(g/a®) # 1. Then, as just proved, an 3 + {0}. Since dim3 < 1, it
follows that dim(an3) = 1. Also, by (i), 1 < dim(g/a*) = dim(a/an3)=2.
Hence dima = 3 > 2.

To prove the remaining implication of (ii), i.e. that dim(g/a*) = 1 implies
dim a < 2, we use (iii), which is proved below. Assume dima > 2. Then by (i),
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dim(a/an3) =2 and dim(an3) = 1. Since i = a* implies a N 3 = {0}, we also
have i & a* Hence by (iii), dim(g/a”) = dim(a/an3) = 2 F 1.

(iii): The bilinear form ([ -,-]) oni x afactorizes to a non-degenerate form on
i/ina* x a/ay, where ag:=ani® Since 3nkera = {0}, we have ani* =
{Yeal|[Y,i] = {0}}. Hence ay = a ni*is anideal of g. Since a N 3 S aqy < q, the
minimality of a therefore implies that either ay = anjor ag = a. If g = g, then
a < i*and thusi < a”* so thati = a* as seen above. Assumingi + a% we therefore
have ap =an3 This proves the first part of (iii). Hence dim(i/ina%) =
dim(a/a N 3) = dim(g/a*) = dim(i/i N a%), which finishes the proof of (iii).

(iv): If a®is anideal of g, then [a% a] is an ideal of g contained in ker o, whence
[a% a] = {0}. Conversely, assume [a% a] = {0}. Then a* equals the centralizer of
ain g which is an ideal of g. Moreover, a* < i. If a* = i, then dim(g/a%) = 1 by (ii).
If a* #1i, then we have by (iii) that g =1+ a* and so g =1i. In this case
dim(g/a*) = dim(a/a n3) = 1 by Lemma 3.1 (iii).

(v): The claimis trivial if dim(g/a*) = 1, so assume dim(g/a*) = 2. Then by (iv),
[a% a] # {0} and thus a* ¢ i. Hence there exists Vea*\i < g,\i. Moreover
a® # i, so (iii) applies. Since [V, [i,a]] = [V,an 3] = {0} < kera, the action of
ad V oni/i n a* equals minus the transpose w.r.t. a([ -, -]) of the action of ad V on
a/a M 3. Since the latter action is irreducible by Lemma 3.1 (ii), so is the former.
Hence, since (g; N i)/(i a%) is an ad V-invariant subspace of i/i n a* because
Veg, and g, is a subalgebra of g, we have thateitherg; ni=ina*org, ni =1i.
If ggni=tna% then g, =RV +(g;ni)=RV+(ina%)=a* If g;ni=1,
then g, 21 + a% implying, since g =t + a* by (iii), that g; = g.

3.3. LEMMA. Let aeg* and teS(a,g). Then f€ P(x, g) if and only if for every
X e g\I there exists Vet for which [ X, V]ef\kera.

ProoOF. Let X eg\f and suppose [X,f] nf < kera. Then there exists feg*
such that § = o onfand f = 0 on [ X, f]. Hence X et#\t and thus f # ¥, proving
that t¢ P(a, g).

Conversely, assume that for all Xeg\l there exists Vel such that
[X,V]ef\kera, and let feg* with = o on f. As f\ker f = f\kerq, it follows
that (g\[) ¥ = @, i.e. ¥ = 1. Thus ¥ =1, since T = ¥, as B([1,f]) = «([f,1]) =
{0}. This proves that fe P(«, g).

3.4. LEMMA. Let aeg* and te P(a, g), and let a be an ideal of g.
() If ais minimal among the non-zero ideals of g, thena = t.
(ii) If ais abelian, then¥ .=t a* + aeP(x, g).

PROOF. (i): By minimality of a, either a3 = a oran3 = {0}. If [f,a] = {0},
then a = ¥* =1. So assume [f,a] # {0}. Then the case an3 = {0} holds. It
follows by Lemma 3.1 that ad f acts irreducibly on a. Hence the ad f-invariant
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subspace a N f of a equals either {0} or a. The case a nf = {0} is ruled out by
Lemma 3.3. Henceanf=aq,ie.ac i

(ii): Since a is an ideal of g, a* and ¥’ are subalgebras of g. Since a is abelian,
a < a* Let yeg* with y = a on ¥. We shall then prove that (f')’ = ¥

Sincey = a on ¥ a? thereexists fe g*suchthat f = aonfand f = yona® It
follows thata = f = yon a. Thus a* = a® = a’,since ais anideal of g. Also f = ¥,
since fe P(a, g) and = a on . Hence

Fy=0FCna*+a=>Fna)y na’=Fna) na*=(Fna na*
=(fndPna*=Fndna=(f+affna
=f+a+dg)na*=F+ana*=Ffna’) +a="7.

3.5. LEMMA. Let aeg* andte P(a, g). Assume g % 3 and let a be minimal among
the non-central ideals of g. Set fo =t na® andi = {Xeg|[X,a] = an3}. Then:

(i) dim(¥/%y) = dim(a/a N ¥).

@ [Eni,ini]cstyni

(i) If t i, then[L1] + £, =L

iv) Ifttiandt ¥, thenant=an3.

(v) The bilinear forma([-,-])ontni x a factorizes to a non-degenerate form on
tni/ffoni x a/ant. In particular dim(f N i/t; N 1) = dim(a/a N ) = dim (¥/f,).

ProoF. (i): Sincef = % the bilinear form o[-, ]) onf x afactorizes to a non-
degenerate form on {/f, x a/ani.

(ii): Since [[i,i],a] = {0}, as [i,a] =3 we have [i,i] <a® Hence
IniLinilctna*ni=fni.

(iv: Wehave3 < f* = f. Assume thatf 4 f;and a n ¥ & a n 3. The ad f-invari-
ant subspace a N f/an 3 of a/a n 3 is then by (i) non-trivial. So by Lemma 3.1
ad f acts trivially on a/a n 3, whence f < i.

(v): The proof of (i) covers the case in which f = i and makes the claim trivial if
f=1,, so we may assume f + f, and f ¢ i. Then by (iv), anf = an 3. Clearly
Eni)na* =%, i, so it remains to be proven that an(fni)* =anf Let
Aea\l. Then by Lemma 3.3 there exists Vef such that [4, V]ef\kera. In
particular [4,V]eanf=an3 so adV does not act irreducibly on
a/anf=a/an3 Hence Veinf and thus Ad(Eni)* This proves that
anni)fcant,whencean(fni =ant

(iii): Assume f<4i and f$f,. Then by (iv), anf=an3 By (v),
dim(t/fy) = dim(Eniff,ni), so E=Fni+f, Hence also f, £i. Let Vef,\i
Then ad V acts irreducibly on a/anf = a/an 3. Since [V,[Ini,a]] < [V,3] =
{0} < ker a, the action of ad V on t N i/f, N i (defined since V ef,) equals minus
the transpose w.r.t. a([-,*]) of the action of ad ¥ on a/anf. Hence ad V also acts
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irreducibly on fni/foni. In particular [V,Ini]+f,ni=fni, so as
f=fnt+f, we have [V, i] + f, = L. This proves (iii).

IV. The image of (g°) and irreducibility of the group representations.

This section contains the results of the paper. The first theorem is the main one. It
gives a partial description of the derived image of the enveloping algebra W(g®)
under the induced representations A, ; of G realized as representations on 2’'(R")
via coexponential bases. It is assumed that I satisfies a Pukanszky condition
relative to a. The result implies irreducibility in various senses of the associated
induced representations of G realized as representations on subspaces of 2'(R").

To determine the image of W(g®) it suffices to consider the restriction Ag0f A,y
to the space C;°(G) of C*-functions in 2, ,(G).

4.1. THEOREM. Let G denote areal exponential Lie group with Lie algebra g. Let
ae(g*)° be of the form a = ¢ + &, where ce C\{0}, Be g* and §([g, g]) = {0}, and
let teP(B,g). Let n denote a nilpotent ideal of g with [g,g] Sn and let
(Xi+15---,X,) be a normal basis of n modulo n N t, where k = dim g/(n + ¥) and
n = dim g/f.

(1) If k=0, set Z:=(X,,...,X,). Then the image di, ; z(2(g°)) equals the
algebra DP(R") of all differential operators on R” with polynomial coefficients.

(2) If k > 0, there exists a basis (X4,...,X,) of g modulo n + ¥ such that if
Ei=(X1,- ., Xi» Xx4 15 - -» Xp), then the image dA, , :(U(g°)) contains the multipli-
cation by either the function x, or the function e*'.

ReEMARKS. (i) If G is nilpotent, we may choose n = g, and then case (1) applies.
Moreover, with ¢ = iand § = 0 the restriction of A, , ; to L*(R")isa realization of
the unitary representation nz ;. Hence Theorem 4.1 is an extension of Kirillov’s
result mentioned in the introduction, [Ki; Theorem 7.1] (modulo [Ki; Theorem
5.2]). Actually it extends the more explicit version [CGP; Theorem 3.1], which
says that dn , £(U(g%)) = DP(R")for each f € P(f, g) and each normal basis Z. (In
[Ki] this is concluded, for given B, merely for some  and some ).

(ii) Theorem 4.1 is for nilpotent G not as general as [Ja; Theorem 3.2], which is
a version of Kirillov’s theorem for arbitrary complex-valued a, but it contains
[JS1; Theorem 4.1] where « is proportional to a real-valued functional.

The proof of Theorem 4.1 is given in section V below. Here we derive some
consequences of it. First we show that the image of U(g®) is dense in the algebra
DO(R") of all differential operators on R" with C*-coefficients. The density will
in particular be with respect to pointwise convergence of operators on C*(R").
For our application, however, we need to consider convergence in a more
controlled manner: For each subspace &/ of DO(R"), &7 will denote the subspace
of DO(R") spanned by the operators M,, D, where D € &/ and M,, is multiplication
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by a function y € C*(R") which is the limit in C*(R") of a sequence {i;}{2, such
that M, e« and M, De o/ for all ie N. For each meN, &/ will denote the
result of applying this “closure” operation m times to .&/.

4.2. THEOREM. Let G, g, a, £, n and k, n be as in Theorem 4.1. Let E denote
a coexponential basis of g modulo t. Then

A1, z(U(g%)* "V = DO(R").

PRrOOF. Put A = 4, , z. The conclusion of the theorem is by Lemma 2.2 easily
seen to be independent of the choice of coexponential basis Z. If k = 0, we have by
(1) of Theorem 4.1 that dA(U(g%)) equals DP(R") for a suitable choice of Z. In this
case the conclusion holds because the polynomials are dense in C*(R").

Suppose k > 0 and let the coexponential basis & = (X4,..., X,) of g modulo
f be chosen in accordance with (2) of Theorem 4.1. Since both x and e* generate
a dense subalgebra of C*(R), it follows that the “closure” dA(U(g®)) contains all
the operators of the form M, D, where y € C*(R") is a function of x; alone and
where D e dA(U(g%)). Note also that 9/0x; = —dA(X,)edAU(g°)).

Set go = span{X,,...,X,} + 1, a9 = aly, Zo = (X;,..., X,) and Ao = 4, v 5,
Then A, is a representation of the subgroup G, = exp(g,) of G. Since g, is an ideal
of g we have for each D e U(g§) that

[dAD)@](x1, %) = [dAo(e™**** ¥ D)g(xy,.)](%)

for all e C*(R", x,€R and X = (x,,...,x,)€e R""!. For every D e U(g§) there
exist finitely many y,e C*(R) and D, € W(g§) such that

e XD =% Y (x,)D,, x,€R,
Y

and so

1 ® dio(D) = Y. ¥,(x,) dA(D,) € dAU(g)).

From this it readily follows that
DO(R,,) ® dio(U(gg)) = dAU(g")).

Ifk — 1 > 0 we may repeat the argument with g replaced by go. Carrying out the
argument k times in all we conclude that

DO(R,) ® - ®DO(R,,) ® DP(R" ") < dAU(g)*® = DO(R").
From this the conclusion of the theorem follows.

As an application of this density theorem we extend to exponential Lie groups
the irreducibility result proved for nilpotent Lie groups in [JS2; Theorem VI.1].
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The class of functionals a covered here in the exponential case, however, is
somewhat smaller than in the nilpotent case, where arbitrary complex-valued « is
handled. Depending on the choice of representation space we establish irreduci-
bility in the weak sense of scalar irreducibility or in the strong sense of
ultra-irreducibility, cf. the definitions in the introduction.

Ultra-irreducibility implies topological complete irreducibility, and hence
again topological irreducibility and operator irreducibility (the latter meaning
that the only densely defined and closed intertwining operators are the constant
multiples of the identity). For the unitary representations all the considered
notions of irreducibility coincide.

For the exponential groups of dimension <3 irreducibility results for the
representations on the spaces C;°(G) and Z,, ((G) are found in [St; Sec. III].

4.3. COROLLARY. Let G denote areal exponential Lie group with Lie algebra g.
Let a€(g*)® be of the formo = cB + &, where c e C\{0}, Be g* and §([g, g]) = {0},
and let Y€ P(B, g). Then the following hold:

(1) Any representation Ag induced from x,  on a normal subspce E of 2, (G) is
scalar irreducible.

(2) Let furthermore the topology of E be semi-complete and let E be stable under
the natural multiplications by the functions from C*(G/K) ~ Cg (G) on 2, (G)
with the corresponding bilinear map (Y, u) — Yu of C*(G/K) x E into E being
separately continuous. Then the representation Ag is ultra-irreducible.

ExaMmpLEs. Part (1) in particular entails the well-known irreducibility of the
unitary representation m, y induced from y;; ; with fe P(f, g). Indeed, if ¢ = i and
dly = $tr ad,y, then in a suitable realization 2/, ((G) ~ 2'(R"), ms ¢ is the restric-
tion of A4, , to L*(R"), cf. sec. I1.4.

Part (2) applies to the local spaces of distributions in &, (G) ~ 2'(R"). The
representation A, ; realized on 2'(R") restricts to ultra-irreducible representa-
tions on e.g. the spaces C(R") and C'(R") for 0 < r < 00, 2'(R") and §'(R"), and
If,(R" and L2(R") for 1 £ p < 0.

PROOF OF COROLLARY. Choose a realization A:= A, y 5 of A, {corresponding
to a coexponential basis = of g modulo f and identify E with its associated image
in 2'(R"). Then 2(R") < E = 2'(R") with weakly continuous inclusions.

(1): Let A: E — E be a continuous linear operator commuting with A. It must
be proved that A is a scalar multiple of the identity on E. The restriction A4, of
A to 2(R") is a continuous operator into 2'(R"). Since 2(R") is dense in E, it
suffices to prove that A, is a scalar multiple of the inclusion map
ii 2(R") —» 2'(R". If A, commutes with every operator in a subspace & of
DO(R"), then 4, commutes with every operator in /. Since A, intertwines the
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actions of A, Theorem 4.2 therefore implies that 4, commutes with every
operator in DO(R"). Hence A, is a scalar multiple of the inclusion map.

(2): Let now the further assumptions in (2) be in force. Then we may form the
integrated representation Az: 2(G) - B(E) corresponding to Az: G — S(E). Here
for any given topological vector spaces E and F we let IL(E, F), S(E, F) and B(E, F)
denote the spaces consisting of those linear operators from E into F which are
continuous, weakly continuous and maps bounded subsets of E into bounded
subsets of F, respectively. For each ¢ e2(G) we then have A(p)e L(2'(R"),
C=(R") with A(¢)|x = Ae(¢) € BE).

The representation Ay is ultra-irreducible, according to Theorem IV.2 of
[JS2], if the following two conditions hold:

(i) The closure of L(2'(R"), 2(R")|g in S(E) w.r.t. the ultraweak topology
contains the identity operator I on E.

(ii) The closure & of A(2(G))|gz = A(2(G)) in B(E) w.r.t. the ultraweak topol-
ogy contains the operators Mw/'l'((p)IEeL(@'(R"), 2(R")|g for all Yy € 2(R™) and
0€ 2(G).

Condition (i) is satisfied as an immediate consequence of the assumptions on E,
cf. the proof of Corollary IV.3 of [JS2]. Condition (ii) is verified by means of
Theorem 4.2 above: Fix ¢ € 2(G). Then for each D € U(g®) we have

dAD)Ax(9) = dAD)A(9)le = AdAD)@)lre AL(G)x = F.

By Theorem 4.2 it thus suffices to prove the following: If <7 is a subspce of DO (R")
such that AAz(p)e Z for all Ae o, then BAy(p)e F for all Be .

Now, such B is a sum of operators of the form M, 4, where 4 € &/ and where
Y € C*(R" is a limit of C*(R") of a sequence {y;};2 , such that M, A€ « for all
ie N. We shall prove that Mu,A/TE((p)e .

Since M, A € o/, we have Md,iA/"f e(p)e F forallie N, so it suffices to prove that
M, AA(¢) > My, AAg(¢) ultraweakly in B(E) as i — co. But M, - M, ultra-
weakly in L(E) as i — oo (cf. Lemma II.2 in [JS2]), A4.(¢) belongs to # < B(E)
and the map C — CD is for each D € B(E) continuous from L(E) into B(E) w.r.t.
the ultraweak topologies. Hence this is indeed the case.

V. Proof of Theorem 4.1.

For a given G it follows by (3) and (4) of Lemma 2.2 that if the conclusion of the
theorem holds for one choice of normal basis of n modulo n N {, then it holds for
any other. In particular, since such a basis may be chosen compatible with [g, ],
we have by Lemma 2.3 (3) that the conclusion of the theorem holds for any
character 6, if it holds for ,= 0. Hence we may assume 6 = 0.

The proofis by induction on dim G. If dim G = 1, then g = {. In this case 4, ,is
one-dimensional and the conclusion of (1) thus trivially satisfied. Therefore
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assume that dim G = 2 and that the theorem holds for all the groups of dimen-
sion < dim G.

Ifker o contains a non-zero ideal i of g, then the result follows by an application
of the induction hypothesis to the quotient group G/exp(i).

Therefore, from now on we assume that ker « does not contain any non-zero
ideal of g. Since a is of the form a = ¢}, where ce C\{0} and B € g*, this implies
that the center 3 of g is of dim 3 < 1.

Let a denote a minimal non-central ideal of g and set i = {Xeg|[X,a] =
anji}.

Assume first that a n 3 = {0}. Then a is minimal among the non-zero ideals of
g,s0 by Lemma 3.4(i),a < f = I* < o* By(ii)and (iv) of Lemma 3.2 we geti = a%,
dim(g/a®) = 1 and [a,a*] = {0}. By Lemma 3.1, n <, so also n < a* Hence
n + f < a% in particular k > 0.

Moreover, dim a = 1 or 2. In any case there exist Y;, Y, ea and X, e g\a® such
that a = span{Y,, Y,} and [X,, Y; +iY,] = (—} + ib)(Y; + iY) for some be R
(where b = 0ifdima =1and b # 0if dima = 2).

Let (X5,...,X;) denote a basis of a* modulo n + f. Then (X,,X,,..., X)) is
a basis of g modulo n + f. Let (X, + 4,..., X,) be a normal basis of n modulo n n {
and set £ = (Xy,...,X,). Then, since Y;, Y, ef are central in a* we find that

o1 2(Yy £iY;) = —ale (Y, £ i) = —o(Y; + iYy)e”THEDx

Here o(Y; + iY,) % 0, because span{Y;, Y,} = a & ker o and o« = ¢ e Cg*. Since
e = g +ibmek=ibxi thig finishes the proof in the case a N 3 = {0}.

Assume from now on that an 3 & {0}. Thendim3 = 1,sothatan 3 =3 =RZ
with a(Z) + 0.

The proof is now divided according to whether (I): ¥ < a* or (II): ¥ & a*

(I) Assumef < a* Thena < f* = £ Since {g,g] = n,n + a*isanideal of g, so
by Lemma 3.2 (v) either (a): n < a* or (b): g = n + a*

(a) Assumen < a* Thenin particular k > 0. Moreover, then a* is an ideal of g,
so by Lemma 3.2 (iv),dim(g/a%) = 1. Hencedim a = 2,say a = span{Y, Z}, where
oY) = 0. By Lemma 3.2 (ii), i #+ a% so by Lemma 3.2 (iii), g = i + a*

Let X, ei\a* be normalized so that [ X, Y] = Z. Let (X,,...,X;) denote
a basis of a® modulo n + f. Then (X, X,,..., X;) is a basis of g modulo n + . Let
(Xt +1,...,X,) denote a normal basis of g modulo n nf and set & = (X,,..., X,).
Since [X,Y] = Zez = tand Yeankera < f, where a nkera is an ideal of a*
(in the present case in fact [a,a”] = {0}), we find that

(5.1) Qi 1 oY) = ale™*%n o™X Y)) = o(Z)x,,

which concludes the proof in case (I) (a).
(b) Next, assume g = n + a® We shall here apply the induction hypothesis to
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the subgroup exp(a®) of G. Set ng = nn a® Then n, is a nilpotent ideal of a*
containing [a% a*]. Also, [n,n] € a* " n = ng since [n,a] < [i,a] < 3.

Set p = dim(g/a*) = dim(n/ny). By Lemma 3.2, p=1orp = 2.

Since g = a* + 1, a basis of a* modulo n, + fis also a basis of g modulo n + {.
Let (X4,..., X}) be such a basis.

We have dima =p + 1,50 a = span{Z, Y;,..., Y,}, where Y,..., Y, is a basis
of a nkera. Since g = n + a* and n < i, it follows by (iii) of Lemma 3.2 that the
real bilinear form ¢-,> = «(Z) " 'a([-,"])onn x afactorizes to a non-degenerate
form on n/ny x a/RZ. Also, [X,Y] =<X,Y)Z for all Xen and Yea.

Hence there exists a basis (X.4,...,Xx+,) of n modulo n,, normal since
[n,n] < no,suchthat [ X, ,;, Y;] = 6;;Zforalli,j =1,...,p.Sinceg = n + a* this
is by Lemma 2.1 (c) also a coexponential basis of g modulo a®.

Finally,let (Xy++1,. .., X,) denote a normal basis of nomodulong nf =nnf,
so that (X +4,...,X,) is a normal basis of n modulo nn{.

Then Z:= (X4,..., X,) is a coexponential basis of g modulo f compatible with
nand Ey:= (Xy,..., Xy, Xk+p+1,--., Xp) is @ coexponential basis of a* modulo
fcompatible withng. Also &’: = (Xy+1,..., Xi+,) @ Zois a coexponential basis of
g modulo fsince (X, 4, ..., Xi+p) is a coexponential basis of g modulo a* and =,
is a coexponential basis of a* modulo f.

For notational convenience put (Wy,...,W,):=EZ. Set A=A, 15 A =4, 1
and Ay = 4, 1 5,, Where ay = |, Since span{Y;,..., Y,} = ankerais an ideal
of a% the relations [W,, Y] = [ X+, Y;] = 6;;Z,1i,j = 1,..., p, then imply

(5.2) dN(Y) = «Zw,  i=1,....p.

Moreover, we claim that

(5.3) { . i} O (e ® dio(U((0)°) € dA'U(eE))

ow, 7 ow,

Indeed, let ¢ € C((G) and put g(wy, ..., w,) = @ (exp(w; W;)...exp(w,W,)). Then
for every Vegand ie{l,...,p + 1} we have

[d'q'(V)(ﬁ](wl: CEREY W,,)

| @lexp(=tV)exp(wWy)...exp(w, )

t=0

@ (exp(w W))...exp(w;—  W;_j)exp(e ™= 2Wi-1 e~ »dWi(_tV))

t=0

dt

-exp(wiW)). .. exp(w, W),
so that
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[dA(e¥ 2% e™ -2 Wi )5 (wy, ..., w,)

d
=2 @ExpwiW)...exp(wi— 1 Wi 1) exp(—tV)exp(w; W))...exp(w, ).
t=0

In particular forie {1,...,p} and V = W, we get
0 0 N1 i - 1
wi Wil . 0
——...——dA((ad W)™ ... VW) = — ——
Lo L @A @d W W) = —

while for i = p + 1 and Vea®,

Y o Y L diad Wy ad W) = 1 ® ddo(V).
n=0 ny,=0 N1: np
Since W;,..., W,en, these series are finite, and since wy, ..., w, € dA(U(g")), their
sums belong to dA(U(g%)). This proves (5.3).
(1) Assume k =0. Then a®* = ny + . Hence by the induction hypothesis
applied to exp(a%)

(5.4 dlo(U((a%)%)) = DP(R" 7).
Also, £ = E and A = 1, so by (5.2}5.4) it follows that DP(R") < dA((g%)),
whence (cf. (2.1))

dA(U(g%)) = DP(R").

(2) Assumek > 0. Then alsodim(a*/(ny + f)) = k > 0. Hence by the induction
hypothesis applied to exp(a®), the basis (Xy,...,Xi) = (Wps1,..., Wp4y) Of a*
modulo n, + fmay be chosen such that di,(2((a%)%)) contains the multiplication
by (Wp+15..., Wa) > Yo(Wp 4+ 1), where either yo(x) = x or Yo(x) = e* for all xeR.

Thus by (5.3) there exists D € U(g€) such that

dA (D) = ¥/,

where Y/'(wy,...,w,) = Yo(w,+,) for all (wy,...,w,)eR".
By (1) and (2) of Lemma 2.2 it then follows that

dAD) =y’ ¢,
where £ is the diffeomorphism of R" onto R" defined by
(5.5)  exp(x1X,)...exp(x,X,) € exp(1(x)W))... exp(E.(x)W,) exp(F)

for all x = (xy,...,x,)eR". Since span{X,,...,X,} + I is an ideal of g, as it
contains n 2 [g, g], (5.5) implies that £, 4(x) = x, for all x = (x4,...,x,)eR".

Hence (Yo &)(x) = Yo(&p+1(x) = Yolxy) for all x = (xy,...,x,)eR", which
proves that dA(U(g)) contains the multiplication by either x; or e*.
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This concludes the proof in case (I).

If the conclusion of the theorem holds for one nilpotent ideal n of g with
n 2 [g, g], then it holds for every smaller such. Indeed, if n, is a nilpotent ideal of
g such that n 2 ny 2 [g,g] and r = dim((n + ¥)/(ny + f)), then a normal basis
(Xk+15...,X,) of n modulo nn ¥ can be chosen such that (X4, +q,...,X,) is
a normal basis of ny modulo ny N £ Since the conclusion of the theorem holds
independently of the choice of normal basis of n modulo n N {, the claim easily
follows.

Hence we may and will assume in the rest of the proof that n equals the
nilradical of g. Then in particular a < n.

(IT) Assume ¢ a* Setfy =fna* and ¥ = a + {,. Then by Lemma 3.4 (ii),
¥ € P(a, ). This case will be reduced to (I) essentially by relating suitable realiz-
ations of 1, ; and 4, to each other. We begin by choosing appropriate coex-
ponential bases, which, however, will be adjusted along the way.

Set p = dim(¥/f,) and ¢ = dim(f~n/f; A n). Then 0 < pand 0 < q < p, and
by Lemma 3.5, p = dim(f ni/f; ni) = dim(a/a nf) < dim(a/an3) < 2.

Set go = a + f. Then gois a subalgebraofgand go =t + F withtn ¥ = {,. By
Lemma 3.5 (i) we have [Ini,fni] = f,ni Since goni=a+ (fni) and
[a,i] < 3 < £, N i, therefore also [go N 1,80 N i] S fy N i. Asn < i, it follows that
[g0 N 1,g0 N 1] < E; N . Also, dim(g/go) = dim(g/f) — dim(ge/f) = n — p.

Let (W,,..., W,) be a basis of f n n modulo f, n n. Since n < i, we can extend it
to a basis (W, ..., W,) of t ni modulo f, ni. Adding suitable multiplies of Z to
each W, we may assume that o(W;) =Oforalli = 1,...,p.

The set (W},..., W,)is a basis of go » nmodulo ¥ n n. It is a normal such, since
[go 1,80 "] = fo n 1. The set (W;,..., W,) is a basis of go N i modulo ¥ ni. It
is a normal such, since [go N1,80 Ni] < Iy N 1. Since gy N i is an ideal of g, with
goni+ ¥ =golastni+f,=FHandgonint =¥ ni,itfollows by Lemma 2.1
(a) that (W},..., W,) is a coexponential basis of g, modulo .

We have [X,Y]=<(X,Y)Z, where {X,Y)=a(Z) 'a([X,Y]), for all
Xefni, Yea. By Lemma 3.5 (v) the real bilinear form (-,-) factorizes to
a non-degenerate form on (fni/f, ni) x (a/a n ). Hence there exists a basis
(Y1,...,Y,) of a modulo ant, with o(Y;) =0, such that [W, Y;] = ;;Z for
i,j=1,...,p.

The set (Y},..., Y,) is a basis of go » n modulo f " n, and it is a normal such
since [go N 1,80 N 1] S fgnn = fnn Lemma 2.1 (a) it is thus a coexponential
basis of g, modulo {.

Let (X4,...,X,) denote a basis of g modulo n + f = n + g,, automatically
normal since [g,g] < n. Let (X4 4,..., X, -,) denote a normal basis of n modulo
nn go, by Lemma 2.1 (a) then a coexponential basis of n + g, modulo g,. Then
by Lemma 2.1 (b),



THE IMAGE OF THE ENVELOPING ALGEBRA AND IRREDUCIBILITY ... 243

Ei=XyeosXnopy Yy Y,) and = (Xy.., Xyopy Wiso., W)

are coexponential bases of g modulo f and ¥, respectively. Here Z is compatible
with n, since (X4 1,..., X, p, Y1,..., Y,) is a normal basis of n modulo nnt.

Claim (*): Let @ denote the algebra isomorphism of DO(R"?) ® DP(R?)
onto DO(R""?) ® DP(RP) given by & = I ® &,, where I is the identity on
DO(R""*) and @, is the algebra isomorphism of DP(R?) onto DP(R?) deter-
mined by

0 d
;) = i - —_
Do(yi) = %(2Z) oW’ ‘Do< Em

Then di, , +((g%) < DO(R""?) ® DP(R?) and

‘p(dlla, t, s(u(gc))) = di,, f'.:’:’(u(gc))-

PROOF. Abbreviate A = 4,z and A' =4, . . We will show that & inter-
twines d1 and dA’ after certain characters are added to « in the two representa-
tions.

Let § e g* denote the linear extension of 5 tr ad, , € t* given by §(Z) = {0} and
let &' e g* denote the one of 3 tr ad, x € (F)* given by §'(Z) = {0}. Then 6 and &'
are characters on g. Indeed, since nilpotent endomorphisms have zero trace, we
have 6 =0onnntand & = 0onnn¥. Moreover,nngo =Y’ RY, + nnt
and nngo=nnt +Y/_ ,RW, so n=nnspan(&) +nnt and n=nn
span(Z") + nn . Hence 6 and ¢’ vanish on n 2 [g, g].

For later reference, note thatsince [W,go] = [W,,) /- RY, + ] RZ + t =1
we have 6(W;) = §tr ad, (W) = Oforalli = 1,..., p, so that both é and &' vanish
onspan{Y,Z,W;|1 <i < p}.

Set X:= A,451zand X':= A, 5y z. Then by (2) of Lemma 2.3, d1 = dA — 6
and d' = dA’' — &, so that dAQU(g°)) = dAU(g%) and dA'(U(g%)) = dA'(U(g®)).

Hence the claim (*) will follow if di(g) =€ DO(R""?) ® DP(R?) and

(5.6) ddA(V) =di(V) forall Veg.

>= —o(Z)w;, i=1,..p.

We shall reduce (5.6) to an assertion involving only go. Set 1o : = Ay +30,1,5,and
Xy:= Aag+a5,v, 25 Where ao, 09 and 0y denote the restrictions of a, 6 and ¢ to go,
and where Zy:=(Y},..., Y,) and Ej:= (W,,..., W,).

Given V e g, there exist £, C*(R x R""?)and Ue C®(R x R"7?,go)such that
for all (t,x)eR x R P,

exp(—tV)exp(x; Xy)...exp(xn—pXn-p)
= CXP(él(t, x)Xl) e exp(én —p(t, x)Xn —p) CXP( - U(t, x)),

implying that
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) =% S0 (%—‘t’ o x))
and
(V) = :'Zf%(o x)— + di, ( aalt] (o, x)>.
Thus to prove (5.6) it suffices to prove that diy(go) = DP(R?) and
5.7 Do(dAo(V) = diy(V) forall Veg,.

Put dg:= A,,1.5,a0nd Ag:= Ay, .5 Thendiy = dio — 6o and diy = diy — &,
by Lemma 2.3 (2). Put [ = f, nkera. Then g = span{Y,,Z,W;|1 i< p} + L

First we observe that (5.7) holds for Vespan{Y;,Z,W;|1 <i < p}. Indeed,
using the relations [W,Y;] = 5,,Z and [W,W;+Ini]<ini and that
W,, Y;eker a, we easily find for i = 1,..., p, that

dio(W) = —a(Z)y;,  do(Y) = __56;’ dAo(2) = —u(2),
dio(W) = — = dio(Y) = aZ)w;,  dAo(2) = —(2).

ow;’

Since § = &' = Oonspan{W, Y;,,Z|1 < i < p}, as noted above, it follows that
(5.7) holds for Vespan{W, Y,,Z|1 <i < p}.

It remains to prove (5.7) for V el. Note that [I,a] < span{Y,..., Y,}. Indeed,
[Lal]<= [e%a]l] S ankera, and if f<i, then [l,a] € RZ, so that actually
[L,a] = {0}, while if f & i, then by Lemma 3.5 (iv), anf = an 3 = RZ, so that
ankera =span{Y;,..., Y,}.

Let A denote the matrix of ady (V) wrt. the basis Yj,..., Y, of go modulo I.
Then, since ad V leaves span{Yj,..., Y,} invariant,

)4 14
ad V(Z ini) =Y yi¥, with ) = Ay, yeRP.
i=1 i=1

Let B denote the matrix of ad, (V) wrt. the basis W;,..., W, of go modulo ¥'.
Then, since [V, W] < [f,f] = Eninkera = span{W,,...,W,} + [ N1, there are
Vielni,i=1,...,p, such that

14 14 p
ad V<Z w,-W}) =Y wiW,+ ), wV, with w =Bw,weR”
= i=1 i=1

Applying ad V to

£

'

llM'q

p
W, Z V; ]=(W'y)Z, w,yeRP,
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and using [I N 1, ¥;] = {0}, we then get that (Bw)-y + w+(Ay) = Ofor allw, ye R?.
Hence B= —A',sothat §(V) = tr4d = —itrB= —§'(V).

Put G, = exp(go). Let 9 e CZ 1(Go) and set G(wy,...,w,) = @(exp(w Wy)...
exp(w,W,)) for all w = (wy,...,w,) € R. Since g, := span{W,,..., W,} + [niis
asubalgebraofgand [g,,8:] < [ ni,thereexists U e C*(R? x RP?,[ni)such that

eXp(Z W + Z Ui )— exp(w; Wy)...exp(w, W) exp (U(w, v))

forall (w,v)e R? x R?. Since p € C3 (Go)isinvariant under right translations by
elements from exp (¥ n ker ) 2 exp(l) we thus find

[dAo(V)@I(w) = dt @ (exp(—tV)exp(w W))...exp(w, W,))
t=0

d )4

T —( )
dt |i-o i=1
d )4

=— (exp(—tV)exp(Z w; W,~> exp(tV))
dt t=0 i=1
d )4

=0 §0<CXP<Z Wiwi—t[V, Z Wi“’i]))
dt |i=o i=1 i=1
d )4 p

S G PRI R
dt |i=0 i=1 i=1
d ! !

= @ (exp((wy — tw)Wy)...exp((w, — tw,)W,))

t=0
¢ ,
= — Y wjz—, where w = Bw.
i=1 w;
Since d, = di, — &, this gives
di(V) = — Z W ——,trB = —(Bw)'V,, — itr B,

L ow;

where V,,:= (0/0wy,. .., 0/0wp).
By similar, but simpler, computations

~ 4 0
aho(V) = = X yig, -~ hrd = —(4Y 'V, — i
i=1 i

Hence dZ,(V)e DP(RP) and
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Do(d2o(V)) = —(AZ)~'V,,) (—AZ)w) — jtr A

=V, A'w—3tr4d
= (A'w)'V,, +trd' —itr 4
= d(V).

This proves the claim.

Now, either (a): g = p or (b): ¢ < p.

(a) Assume g = p. Then (W,,..., W,)is a normal basis of go » nmodulo ¥’ nn.
Hence Z’ is compatible with n, with (X4 4,..., X, -5, Wy,..., W,) being a normal
basis of n modulo ¥ n n. We have dim(g/(n + ¥)) = dim(g/(n + f)) = k.

Since a = ¥ < a* we have by (I) that the conclusion of the theorem holds for
the representation 4,

(1) In the case k = O this means that

dAy v, (U(g°) = DP(R").
An application of the claim (*) then gives
g1, 5(U(G) = @7 '(dA, v = (U(g) = ¢~ '(DP(R") = DP(R").
(2) In the case k > 0 it means that (X, ..., X;) may be chosen such that
Y(x,)edi,, t',s'(u(gc))

for either Y(x,) = x, or Y(x,) = ¢**. Here an application of the claim (*) gives

Y(xy) = O W(x1) € D™ (dAy, v,z (U(G)) = diy 1, s(N(S°)).

This finishes the proof in case II (a).

(b) Assumegq < p. Since W, 4, ..., W, do not belong to n, we shall replace them
by their nilpotent parts in an extension of g.

The nilpotent part in the Jordan decomposition of a derivation is again
a derivation, cf. Cor. 3.1.14 of [Va], so we may form the successive semi-direct
product

8:=R X@w,,n - R X @aw,). 9

where (ad W), denotes the nilpotent part in the Jordan decomposition of
ad W€ End(R X uaw,, -+ B X @aw,),9) for i=p, p—1,...,9 + 1. Since nil-
potent endomorphisms have zero as only eigenvalue, the Lie algebra g is ex-
ponential.

We may consider g as a subalgebra (in fact ideal, cf. (5.8) below) of § and write
as a direct sum of subspaces

g=RWZ, +...+ RW" +g,
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where [W”, X] = (ad W)),(X) for X espan{W%,,...,W™} + gi=q + 1,...,p.
Since for each W the nilpotent part (ad W), of ad W is a polynomial in ad W
without constant term, we have

(5.8) [a.8] =[RW,” + g,RW;” + g] = ... = [3,8].

In the present case f < i. Indeed, dim(f " n/f, " n) = g < p = dim(f/f;) im-
plies that [£,T] + I, = fnn + §, + k, so by Lemma 3.5 (iii), f = i.

Set W©®:= W, — W™,i=gq+ 1,...,p. Since W,etand [f,a] < [i,a] < 3, each
ad W, acts nilpotently on a, so by the uniqueness of the Jordan decomposition,
[WS,a]={0}fori=q+1,...,p.

Set T:=1t + span{W9,,...,W?} and ¥:=¥ + span{W9,,..., W}. Since
¥ =f, + a, where a commutes with q, f, and each W, we have [F,¥] < [ T].
Since W e, we conclude as in (5.8) that [T,T] = [f,f]. From f < i we get by (ii) of
Lemma 3.5 that [T,T] = I, n kera. Hence [F,¥] = [§T] < f, nkera.

We form a modification § of g by exchanging W, for W™, i=q + 1,...,p:
Setting g,:=span{Xy,..., X} + m + ) =span{X,,....X,_,, W;,..., W} + T,
which satisfies g = g; + span{W,.,,..., W,}, we define

d:=g; +span{W,,..., W} and fi:=n+span{W?7,,...,W"}.

Then § = span{X,,...,X,} + (it + ¥) is an ideal of § with [§,8] = [g,8] =
n € fl € §, and fi is a nilpotent ideal of § containing [§, §]. Also, dim § = dim g.

Set §o:=span{W,,..., W, W%,,...,W"} + ¥. Then [§o,§0] < fo = ¥, since
Go = T+ awith [f,a] =3 = foand [T,T] < f,. Hence (Wy,..., W, WD ,,..., W)
is a normal basis of §, N ft modulo ¥ N it.

The normal basis (Xy+ 4, ..., X, - ) of n modulo n N go may be chosen such that
it is also a normal basis of f modulo fi N §o = N go + span{W7,,..., W"}.
Then

Bor= Kistreeor X py Wiseoos Wy WD L W)

q

is a normal basis of ft modulo ¥ N fi, and thus
= X X Xit 1505 Xnm s Was oo, W, W, W)

is a coexponential basis of § modulo ¥’ compatible with ft.

By Lemma 2.1 (a) £ is also a coexponential basis of § modulo ¥, since § is an
ideal of g withg = § + T and § n ¥ = ¥'. Similarly, the coexponential basis = of
gmodulo ¥ is also a coexponential basis of §modulo ¥, since g is an ideal of § with
d=g+TVandgnt ="*.

Let ¢eCa* denote the extension of aeCg* given by a(W™) =0 for all
i=gq+1,...,p,and set d:= dl Clearly ¥ € S(&, ) and ¥ € S(d, g).

Claim: ¥ e P(,3). Proof: Let Ueg\t' and write U =)7?_ ., a;W™ + U,,
where Uyeg;. Then U:= Y7 ., a;W; + Upeg\Ff'. Since I'e P(a, g), there exists
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by Lemma 3.3 Vel such that [U,V]eP\kera. Since [WY,F]c
[F,¥] < £, n kera, we also have [U, V]e¥\kera = ¥'\ker 4. By Lemma 3.3 this
proves the claim.

Put L:= Azp 5 A= Agzp.gand A:= 4,y 5. Then

di(V)=dizy s(V) forall Vegca,
(5.9) dX(V) = dA, p. o (V) forall Vegcg,
dA(V) = dX(V) forall Veg.

Indeed, the first two relations are trivial. To prove the third set §o:= go +
span{WD,..., W"} and ¥: =t + span{W\3,,..., W¥}. Then §o = a + Tand
[To,a] = {0}, so that [Go,To] < [T,To] = [T.¥] = fo nkera. In particular Ty:=
Tonkera is an ideal of §, containing WS ,,...,WS, so for every
Wg+1,...,wp)ERPTY,

exp(Wo+1Wys1)...exp(w,W,) eexp (w4 1 W3,)...exp(w, W ") exp (o).

This implies by Lemma 2.2 (1) that the canonical equivalence between 4 and 1’ is
the identity map.
Combining (5.9) with Claim (*) we finally obtain

(5.10) dAU(g") = dA(U(G) = i,y =(U(g") = PAAU(GE))).

Now, a ¥ < of with ¥ e P(@,§) and dim § = dim g. Also, a is a minimal non-
central ideal of §. Hence by (I) (or the prior cases) the conclusion of the theorem
holds for the representation Ag y:

(1) In the case dim §/(ft + ¥) = k = O this means that

(5.11) dAU(GO) = digz,y, {U(E°) = DP(R").

Moreover, ¢ = 0 and p = 1 in this case. Indeed, k = 0 implies thatg = n + f,
soasn S iandf < i, we have g = i. Hence by Lemma 3.5 (i) and Lemma 3.1 (iii),
p = dim(¥/f;) = dim(a/a n ) < dim(a/an 3) < 1. Since 0 < g < p, the claim fol-
lows. This will simplify the notation below.

Using [§,8] = [g,8] < g; = span{X;,...,X,-1} + ¥ we find, denoting the
coordinates on R" by x4,...,x,_, w;, that

di(V)e DP(R" ') ® Pol(w;) forall VeRW® + g,

and
4AWE — =2~ + DP(R™) ® Pol(wy),
1

where Pol(w;) denotes the algebra of polynomials in w;.
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Since § = RW™ + g,, we conclude from this via (5.11) that DP(R"™) ®
Pol(w,) is generated by dA(g,), so
dAW) eDP(R"™!) ® Pol(w,) = dUgS)).
Since g = RW, + gy, where W, = W + W9, it follows that
dAU(g%) = dA(U(E°) = DP(R"),
which by (5.10) finishes the proof in case k = 0:

dAU(g%) = @~ '(dAU(g%) = &~ '(DP(R") = DP(R").
(2) In the case dim§/(fi + ¥) = k > 0 there exists a basis (X;,...,X,) of
g modulo 7t + ¥ such that for Z replaced by (X,,..., X,) ® &, we have

(5.12) Y(xy) edAgp (G = dAU(E)),

where either ¥(x;) = x; or ¥(x,) = e*'.

By Lemma 2.2 (3) the conclusion (5.12) still holds if we to each X; add elements
from i + F. Hence we may assume that span{X,,...,X,} = span{X,,..., X}
and then as well that X; = X, fori=1,...,k.

From [§,8] = [g,g] S n<span{Xy.y,..., X,—p, Wi,..., W,} + ¥ we get, de-
noting the coordinates on R" by xy,..., X,—p, Wy,..., wp, that

di(g;) = DO(R"?*9) ® C*(R"79),
and
dAW")e — aiw +DOR" P*)®C®RP™Y, i=q+1,...,p.
Since § = span{W7,,..., W™} + g;, we thus conclude that (5.12) may be
strengthened to
W(x;) e dAU(S) = dAU(GE)).
Since Y(x,) is fixed under @1, it follows by (5.10) that
Y(x;)e @~ H(dAU(G) = dAU(g°),

which was to be proved in the case k > 0.
This finishes the proof of Theorem 4.1.
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