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OSCILLATION RESULTS FOR SOME
LINEAR DIFFERENTIAL EQUATIONS

YIK-MAN CHIANG, ILPO LAINE and SHUPEI WANG

1. Introduction.

The zero distribution of solutions of linear differential equations of type,
(1.1) f"+ A@R)f=0,

where A(z) is a transcendental entire function, has been actively investigated
during the last decade, see [2] for the starting point of these investigations. The
exponent of convergence A(f) of the zero-sequence of f has been the standard
device to measure the frequency of the zeros. The major conjecture, still remain-
ing open, is that whenever the order a(4) of A4 is finite and not an integer, then
max (A(f1), A(f2)) = + oo, provided f}, f, are linearly independent solutions of
(1.1). Most of the research work dealing (1.1) during the last decade has been
written towards proving this conjecture, at least partially. A special case, fre-
quently studied, is given by equations of type,

(1.2) "+ (Re" +Q)f =0,

where R, P, Q are polynomials, see [4], [S], [6], [7], [15] and [16]. The starting
point of this paper is the following typical “f¢-theorem”, see [5], Theorem 1:

THEOREM A. Let P be a polynomial of degree degP = n = 1, and let Q be an
entire function of order a(Q) < n. Suppose that

(1.3) 1+ +0)f=0

admits a non-trivial solution f such that A(f) <n. Then f has no zeros, Q is
a polynomial and

(1.4) Q= —&(P) +4iP"
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This paper consists of three parts. We first prove some results directly related
to Theorem A. Secondly, we give some similar results for solutions to corre-
sponding linear differential equations of higher order. Finally, we consider
periodic linear differential equations. In what follows, we assume that the reader
is familiar with the basic notions and results of the Nevanlinna theory, see e.g.
[12],[13] and [14]. In particular, S(r, ) means any quantity of growth o(T(r, f))
as r — oo outside of a possible exceptional set of finite linear measure.

2. The second order case.

In Theorem A, it remains an open question whether n < A(f) < co may happen
for a non-trivial solution f of (1.3). We give a negative partial solution to this
question by proving

THEOREM 2.1. Let P(z) be a polynomial of degree n = 1, and Q(z) be a transcen-
dental entire function of order o(Q) < n. Then any non-trivial solution f of (1.3)
satisfies A(f) = oo.

Of course, Theorem A and Theorem 2.1 address the case when the coefficient in
(1.1) is of finite order. Our second result treats a special case of (1.1) where this
coefficient is of infinite order. Theorem 2.2 may be considered an analogue.

THEOREM 2.2. Let B(z) be a transcendental entire function, and let A(z) % 0, and
C(z) be entire functions of finite order. Then for any non-trivial solution f to

2.1) "+ (A(2)eP? + C(2) f = 0,
we have either A(f) = oo, or f admits no zeros, A(z) has no zeros, and
A' 2 A/ ’
. = —4 B’ HW—+B).
2.2) C Tg( 1 + > + z( 1 + )
REMARK. In the special case of C(z) = 0, (2.2) reduces to
AI A/ ’ A/ 2
. ’2 — 4 "o R —_ — .
2.3 B B 2AB+4<A) (A)

By the standard Clunie-type argument, see [14], Lemma 2.4.2, we deduce from
(2.3) that m(r, B') = O(logr). Hence, B’ is a polynomial, contradicting the above
assumption. Therefore, in the case of C(z) = 0, any non-trivial solution of (2.1)
must satisfy A(f) = oo, see [2], Theorem 2(B), where such a result is proved.

To prove Theorem 2.1 and Theorem 2.2, we have to recall some known
lemmas. Lemma 2.1 is nothing but an easy variant of the standard Clunie lemma
[10], Lemma 1.
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LEMMA 2.1. Let f be a non-constant meromorphic function, and let
P f.f'....f9), Q£ f,. .., f®) be two differential polynomials of f, not ident-
ically zero, with the total degree of Q being < n. If

"PELS SO =0 NS fP),
then

m(r,P) < S(r.f) + Y. m(r,a(z))

a(z)

where the sum extends over all coefficients of P and Q.
Next, write P(z) in (1.3) in the form
PZ)=(@+if)z"+...+ay, a+if+0, n=1, a/pfreal,
and define
(P, 0):= acos nf — Bsinnd.
Then &(P, 0) = 0 on the rays

argz=0j:=5+%7z, j=0,1,...,2n -1,

which form 2n sectors of opening n/n for some 6. We denote by S{,...,S) (resp.
Si,...,8,) those open sectors where 6(P,0) > 0 (resp. (P, 0) < 0). We also
denote S* = (Jr_, $;", S~ = (J}=, S;". With this notation, it is easy to deduce
the following lemma, see [6], Lemma 3, and [14], Lemma 5.14.

LEMMA 2.2. Let P(z) be a polynomial of degree n = 1, and let ¢ > 0 be a given
constant. Then we have:
(1) If (P, 6) > O, there exists an r(6) > O such that for any r = r(6),

lePr<)| 2 exp((1 — &)6(P, O)r").
(2) If 6(P, 6) < O, there exists an r(6) > 0 such that for any r = r(0),
e < exp((1 — &)3(P, O)r").
Lemma 2.3 below is just a special case of [6], Lemma 2, see [14], Lemma 5.15.
LeEMMA 2.3. Let P(z), S(z) be two polynomials and let 8, be such that 6(P,0,) =
0. Consider

H(z):= etP® f S(t)e~*P0dr,
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where acC is fixed. Then there exists a rational function ((z) such that for any
0 & 0, we have

H(re®®) = Q(re”) + () et™"*” + 0(r2),
as r — oo, where c(0) is a constant, provided 6(P, 0) > 0, while
H(re") = Qre) + 0(-™")
holds as r — o0, if (P, 6) < 0.
Finally, we recall [11], Corollary 1:

LEMMA 2.4. Let f be a meromorphic function of finite order p, let ¢ > 0 be a given
constant and let k > j = 0 be integers. Then there exists a set E, < [0, 2n) of linear
measure zero, such that if 0y € [0, 2n)\ E,, then there is a constant R, = Ry(6,) > 1
such that

fO(re™)

A S (k—j)p—1+e)
ey | =7

for allr = R,

2.1. Proor oF THEOREM 2.1. In this section, we always denote by E, a set in
[0, 2n) of linear measure zero, by K and N positive constants, by 6 a given valuein
[0,2x), and by R(6) a positive number (usually sufficiently large) depending on 6.
Each of these symbols will not necessarily be the same in different occurrences.

Suppose now that the equation (1.3) admits a non-trivial solution f, such that
Afo) < c0. Write f; in the form

(2.9) fo =mne,

where h(z) is transcendental entire and n(z) is the canonical product formed with
the zeros of f,; hence a(n) = A(fy) < oo0. Substituting (2.4) into the equation (1.3)
we obtain

”

I

(2.5) (W) = —h" — 2%;;' I e

T

By Lemma 2.1, (2.5) implies that a(h’) < co. Furthermore, differentiation of (2.5)
and elimination of ef from (2.5) and the differentiated equation results in

(2'6) 2Shl= _h///+<P1_2E_>hﬁ+2<Pil_<_n_)>h/
T T T

rr (2 ) +ro-o:

n
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where
2.7 S(z):=h"—%PN.
Again by Lemma 2.1, we get

m(r,S) = 0(r*")

for some 0, < n = deg P. Hence, S(z) is an entire function of order < n. In fact,
S(z) reduces to a polynomial. This follows easily by proving that S(z) is of
polynomial growth along any ray z = re® in S*\ E,. In fact, once this has been
established, then a standard Phragmén-Lindel6f argument implies that S(z) has
to be a polynomial. Indeed, around each of the negative sectors S;”, we may take
two rays from the neighbouring sectors of S;” such that S(z) is of polynomial
growth on these two rays and that the opening between these two rays is less than
n/a, for some g, such that 6(S) < o, < n. The Phragmén-Lindel6f principle now
shows that S(z) is of polynomial growth along any ray in S;”. Hence, S(z) has to be
a polynomial.

Consider now a fixed point on any ray z = re'in S* \ E,, where E, < [0, 27) is
a set of linear measure zero such that Lemma 2.4 may be applied whenever
needed. If |l (re®®)| < 1, then (2.7) and Lemma 2.4 imply that

”

h
(2.8) IS| < W' + 31P| < || + 3P S Koo

holds along the ray z = re® for r = R(f) and for some N. On the other hand, if
|W(re®®)| > 1, then we have at z = re'®, by Lemma 2.4 and (2.6) that

29) mgl”+7WQm+z )(wdl ())
1 nEs "\ , ,
+m(|P|—n- +K7>‘+|PHQ|+|Q|)
<K+ e

L

for r > R(6) and for some 0 < g5 < n, since 6(Q) < n. However, by (2.5) and the
fact that |0 (re®®)] > 1, we get at z = re®,

(2.10) Ie"|<|h’lz+|h"l+2|h’|‘ ’ l ‘+|Ql

wﬂu—%40|ﬂﬂm

<P+ e
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for r = R(0) and for some 0 < o, < n, since 6(Q) < n. Hence, by Lemma 2.2, we
can deduce from (2.10) that

(2.11) W (re'®)| = es®or"
for r = R(6). Therefore, by (2.11) and (2.9) we get
(2.12) IS(re®) < Kr"

for r = R(f), provided that |i'(re®®)| > 1.
By (2.8) and (2.12), we see that S(z) is of polynomial growth along any ray in
S*\E,.

Next, we proceed to show that Q(z) is of rational growth along any ray

I'e ST\ E,, where E, again meets the hypothesis of Lemma 2.4. To this end, we
solve the equation (2.7) for i’ to get

(2.13) K(z) = c-e**@ + H(z), ceC,
where

H(z):=e‘}""’J~ S(t)e **"dt, aeC.

By Lemma 2.2 and Lemma 2.3, it follows from (2.13) that h'(z) is of rational
growth along I'. On the other hand, by (2.5), we have

(2.14) 19l < K> + k|-

— + 2K ‘

|+Ie”|

Since i’ and = are of finite order, Lemma 2.2, Lemma 2.4 and (2.14) imply that
Q(z) is of rational growth along I'.

Since 6(Q) < n, we may apply the same Phragmén-Lindelof type argument as
we did above for S(z) to show that Q(z) is a polynomial, a contradiction. This
completes the proof of Theorem 2:1.

Similar arguments in the corresponding higher order case result in
THEOREM 2.3. Consider the equation
215 fO+ A@f TP+ + AQf + (€D + Ao(2)f =0,

where k = 3, P(z) is a polynomial of degree n > 1, and Ay, A,,..., Ay, are
polynomials, while A, is a transcendental entire function of order < n. Then any
solution f =% 0 of (2.15) satisfies A(f) =

We omit here the proof of Theorem 2.3. See also [7].
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2.2. ProoF oF THEOREM 2.2. Let f be a non-trivial solution to (2.1) such that
A(f) < oo. We then prove that f has no zeros and (2.2) holds. Since o(f) = o0, we
may write f = He?, where g is transcendental entire, and H is the canonical
product formed with the zeros of f, hence a(H) < co. Substituting f = He? into
(2.1) we obtain

’ "

H H
2.16 (@) =g +2—¢g Aé® + C.
(2.16) ) 9’ +2rg t g tAe+

Since B(z) is transcendental, a simple order consideration implies that o(g') = co.
Differentiating (2.16) yields

pot i ' ’ E_ ” Y ’ " ,B 4
2.17) —2¢4'g" =g +2<H>g+2Hg +<H>+(A+AB)e + C.
Eliminating e® from (2.16) and (2.17) results in
(2.18) g'R(g) = T(g),

where R(g’), T(g') are two differential polynomials of g’, with the following
expressions:

(2.19) R(g)):=2A4g" — (A’ + AB)g,

H’
(2200  T(g):= —Ag" + (A’ + AB — 2AF>g”

, , HI HI ’ ,
ol am (1Y),

H// HI/ !
+(4' + AB) - — A(F) + (4 + AB)C — AC.

By Lemma 2.1, it follows from (2.18) that
(2.21) m(r,R) < S(r,g') + O(m(r, B') + r*"),
where o; < 0. On the other hand, we conclude by (2.16) that
T(r,€®) = m(r,e®) = O(m(r,g') + r"*), r¢E,,
where o, < oo and E,, is a set in [0, c0) with finite linear measure. Hence,

(2.22) m(r,B') = m(r, %) = S(r,€®) = o(m(r,g’) + r’?), réE,.

Combining (2.21) and (2.22) we obtain
(2.23) m(r,R) = S(r,¢) + 0(¢™), réE,
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for some g3 < co. But now, substituting

1 1
2.24 "= ——(A' Vg + —
(2.24) g 2A( +AB)9+2AR

from (2.19) into (2.16) we get
"2 ’ ' H, ’ 2 H”
(2.25) —2A4(g')* —|( A + AB +4A—IT g =24 eB+2A—H—+2AC+R.

Differentiating (2.25), eliminating e® similarly as was done for (2.18), and making
use of (2.24), we obtain

(2.26) gV="W,
where

1 ’ ’ ’ ’ H’
(2.27) V=104 + AB)( 4 + AB + 44—

- A(A’ + AB + 4A—;II—> — 24R,
: HII ! 1 , , HI
(228)  W=A(24 +24C+R) +iR( 4 + 4B + 44

”

H
—(24"+ AB)| 24
4 + )( i

+ 2AC + R).
Suppose now that V in (2.27) does not vanish identically. From (2.26), we
conclude that
(2.29) m(r,g') = T(r,g') = T(r, W) + T(r, V) + O(1)
< O(m(r,R) + m(r,B') + r°*) = S(r,g') + O(**)

for some 04 < o0, 65 < 00, by (2.22) and (2.23). Therefore, ¢’ is of finite order,
contradicting the passage after (2.16). Hence, V must vanish identically.
We now set

A’ , H
2Ho-=7 + B, =

Making use of ' + u> = H"/H, and of (2.24), we may rewrite (2.27) in the form

(2.30) H3— Hy + 2uHy — 24’ + 2g'Hy — 29" = 0.

An elementary Laurent expansion consideration in (2.30) implies that 4 and
H must be zero-free. Hence f admits no zeros and we may assume H = 1.
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Therefore, (2.27), (2.28) and (2.30) may be rewritten as
(2.31) R = A(H3 — Hy),

2C' —4H,C — H3 + 3HoH, — H} = 0.
Now, (2.31) may be solved explicitly by

A/ ’ A! 2
(2.32) C=cerB+%<A +B’> —-}6—<7+B’> , coeC.

But now, we must have ¢, = 01in(2.32), since 6(C) < o0, g(4) < o0, Bis transcen-
dental and T(r, B') = S(r, e®), see (2.22). Hence,

AI 2 A/ ’
C=—4 B) +14 ).
K<A+ > +1<A+B>

This completes the proof of Theorem 2.2.

3. The higher order case.

This section is devoted to giving, in the case of higher order linear differential
equations, two results corresponding to those in Section 2. A partial counterpart
to Theorem A is the following

THEOREM 3.1. Let P be a polynomial of degreen = 1, and let Qy,Q;,...,Qk_,
k = 3, be entire functions of order < n. Suppose the linear differential equation

(3.1) fO+ Q2@+ + Qi@ f + (PP + Qo) f =0
admits a non-trivial solution f such that A(f) < n. Then f has no zeros.

ProOOF. This proof is nothing but a higher order variant of the standard proof
for Theorem A, see [14], Theorem 5.17. Therefore, we omit some details. On the
other hand, due to complications arising from higher order terms, the assertion
remains less precise than in the second order case.

Suppose now that (3.1) admits a non-trivial solution f such that A(f) < n.
Write f in the form f = He? where g is entire transcendental and H is the
canonical product formed with the zeros of f; hence g(H) < n. Next, it is
immediate by induction that

() g
6y Lo-gr+ (';)(g')*-zg" PR @+ Pag)
for all k = 1. Here P,_,(g’) stands for a differential polynomial in g’ of total
degree at most (k — 2) with coefficients which are polynomials in H'/H,H"/H,...,
having constant coefficients.



218 YIK-MAN CHIANG, ILPO LAINE AND SHUPEI WANG

Substituting (3.2) into (3.1) results in
Nk k nNk—2 n H’ nk—1 ’ P
(3 @) =(,)@r g + k@) + Pa@) + € + Qo

where the coefficients of P, _,(g’) are now polynomials in Q,...,Q,_,, H'/H,
H"/H,..., with constant coefficients. By Lemma 2.1, we infer o(g9') < n from
(3.3). On the other hand, if o(g’) < n, estimating m(r, e7) by (3.3) results in an
immediate contradiction. Hence a(g’) = n.

Differentiating now (3.3), and eliminating e” from (3.3) and the differentiated
equation, yields

1 ! ’ !
(34) k<g//__I;P¢g/)(gr)k—l=k<})/%_<%>>(gr)k—l
k
+ <2> @Y (Pgg — (k-2 —g4")

Kk~ )@ + Pea0)
Applying Lemma 2.1 once more, we see that
(3.5) ¢~ P = 50),
where o(S) < n. Moreover, we may use (3.5) to find expressions for g”,g",. .., in

terms of g’ and of P’, S, and their derivatives. Substituting these expressions into
(3.4) implies that

(3.6) <kS - (;)—k—lz—(P’2 — kP") — P’ﬁH— + k(—iIT,),)(g’)"‘1 = P _»(g').

Denoting

. — k 1 r2 " /i i, '
oz.—kS—<2>k2(P — kP") — P H +k<H),
we conclude from (3.6) that
1
(k — Dm(r,g') = m(r,(g'} ") < m(n;) + m(r, P-2(9)

ST o)+ (k—2m(r,g) + S(.9)

by writing P, _,(g’) as a polynomial in g’ whose coefficients are polynomials in
Q4...,0—2, H/H ,H"/H,...,9"/9',9"/d,...,and applying a standard proxim-
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ity function estimate. This implies the contradiction () = o(g’), unless

H'Y ,H’ k 1 ’2 "y o
3.7) k<H) — P kS - <2>P—(P —kP") = 0.

Assuming that H has a zero at z,, an elementary pole order consideration in (3.7)
implies a contradiction. Hence, f cannot have zeros.

1
3
(P'? — kP") by (3.7). The resulting equation for ¢/, see (3.5), immediately implies

ReMark. If f has no zeros, we may assume H = 1. Then S = (g)

; -1
'=CeéF ———P, C#0.
g e o b CF
This representation could be used to obtain expressions for Qy,. .., 0, interms
of P/, P",... . We omit such details except for the following related special case.

THEOREM 3.2. Let P be non-constant entire, Qo,Q4,Q, be entire functions of
order < gy:= o(e’) and Q, % 0. Suppose the linear differential equation

(3-8) "+ Q) +(Q1(2)e" + Qo(2) f =0

admits a non-trivial solution f such that A(f) < a(e?). Then f is zero-free, and

(2o r) -4 Qs p)(Ger),
on=4(G ) -i(G ) (6 e

=__1 __,1_ v, Ql /)
Q. g(Q1+P> +’<Q1 d

Moreover, Q, also is zero-free.

PROOF. In a way similar to the proceeding argument we obtain

’ ’

H H
(39) (g )3 __gm + 39, " u+3_FI__g

"

H!I , HI
+ (371— + Qz)g + Q1" + Qo tg @t

where g and H, o(H) < 6, < oo come from the standard Hadamard representa-
tion f = He®.
Again as in the preceding argument we obtain a(g) = 0o by Clunie-type
reasoning and by standard order estimates in (3.9). Defining 3H,:= %1_ + P,
1

differentiating (3.9) and eliminating e® we get
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i

H
(310) (9" — Hog)lg)* = —3¢ + (Ho H ) 9" ~9"q =

H' H' HY\ H"
O A
H H'Y H" H" !
+ <3H0 H (‘ﬁ‘) >(g')2 + <Ho(37 + Q2> - ( % + %Qz) >g'

/ HI" HI HIII !’
+Q0H0+Ho< Q, + )—’}SQB— ( 0, + )

H
Applying Lemma 2.1 again, we see that
(3.11) g" — Hog' = S(z), where a(S) < gy.

Differentiating (3.11) twice, and substituting the expressions for g”, g”, g** into
(3.10) we obtain

(3.12) A(2)(g')* + B(z)g' + C(2) =

where

H’ H/ !’
A(z) = —S — H; H:+ Hy— — | —
(2) o+ Hp+ g <H>’

H/
B(z) = —1(H} + 3H H), + H3) + (H, + H?) (Ho - W) —(S' + H,S) — 2H,S

HI Hl Hl ’ HII
+S<3H0—2 H)+H°(3H°7_<H) -~ —§Q2>

H/I HII ’
+ Ho<371— + Qz) - (“H— + %Qz>,

H
C(z) = —4(S" + HoS' + (2H, + H2)S) + <H0 - ——)(S’ + HoS) — 82

Hl H’ ! H” HI H”I
+ <3Ho71~ - <F> “H ™ %QZ)S + QoH, + Ho( 0, + _I_I_>

/ HI'I !
—3Q0 — ( Q0+ )

By (3.11) and standard estimates, 4, B, C are all of order < g(g9') = 4. By
evaluating (3.12) at an appropriate sequence of points where the function g’
assumes its maximum values, we obtain a contradiction, unless A4(z), B(z) and

and
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C(z) all vanish identically. Combining the definitions of S and H,, with A(z) = 0, it
is easy to see by elementary Laurent expansion considerations that H, and hence
f must be non-vanishing entire functions. Thus, we may assume H = 1, and the
equations for A4, B, C reduce to

(3.13) H: —H, =S5,

(3.14) —$HG + 3H — '+ 3Q,Ho — $0, =0,

(3.15) —38" + 3(HoS' — H,S + H3S) — 5% — 10,8 + QoH, — 10, = 0.
Substituting (3.13) into (3.14) results in

(3.16) 0, — 2H,Q, — 2H3 + 6H,H{, — 2H}, = 0,

which can be solved explicitly. Hence, it is immediate, since ¢(Q,) < o, and
m(r, Hy) = S(r, "), that

_ (9 L) (Ql >
(3.17) Q,= —H?+2H, = §<Q1 )+3 o tF

is the only solution to (3.16) which is of order < . Similarly, substituting (3.13)
and (3.17) into (3.15) yields

(3.18) Qo —3H,Q, = Hy + 3H3H, — H} — 4HyH},
Again, explicitly solving (3.18) we see that

=iy 4G+ 7) (G0 )

is the only solution to (3.18) of order < g,. Finally, (3.17) immediately implies
that Q, has no zeros.

4. The periodic case.

In the periodic case, oscillation results usually rely on certain representations of
solutions, see [3], Theorem 1, for a prototype of such representations. If {3, f, are
two linearly independent solutions of f” + A(z) f = 0 with a few zeros only, and
A(z) is rational in €%, it was shown in [1], Lemma 3.1, that their corresponding
representations are closely related. The proof of Theorem 4.1 applies a similar
technique in the case where A(z) is of finite order of growth and transcendental in
€°. In this case, the final conclusion max (A(f}), A(f2)) = co follows. Actually,
Theorem 4.1 is nothing but a special case of [8], Theorem 4. However, we have
included it here, since we feel that our proof may be modified to cover the case
where A(z) is of infinite order. Concerning some notation below, see [3].
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THEOREM 4.1. Let A(z) be a nonconstant entire function of period 2mi, of finite
order of growth and transcendental in &°. Let fi, f, be two linearly independent
solutions of f" + A(z)f = 0. Then max (A(f}), A(f3)) = 0.

Proor. We first write A(z) in the form A(z) = B(e*) where B(() is transcenden-
tal and analytic on 0 < |{| < o0, and 64(B) = 0,(B) = 0. Supposing A(f;) < oo,
A(f2) < o0, we may use [3], Theorem 4 and Theorem $, to obtain the representa-
tions

@.1) f@) = e H{e ), i=1,2,

where d; € C, Hi({) and g;({) are analyticon 0 < |{| < o, 6¢(H;) = 6 (H;) = 0and
00(9:) = 0,(9;) = 0. Moreover, g;,i = 1,2,is of polynomial growth at { = 0, resp.
{ = oo, if and only if B({) has at most a pole at { = 0, resp. { = oo0. By [3], Lemma
B,

E(2) = fi@)(2) = 740 Hy () Hy(e%)es 52
is of finite order of growth. Therefore, exp (g,(e%) + g,(¢?)) is of finite order, and so
4.2) P(z):= g4(€”) + g,(€")

is a polynomial. Obviously, P(z) is periodic by (4.2), and so it reduces to
a complex constant, say f. Therefore,

4.3) g2(€*) = -g4(e°) + B.

Clearly, we may assume that § = 0. By (4.3), we may rewrite (4.1) as
(44) [1@) = $:1(De?, fr(2) = $x(2)e ™,

where

$1(2):= Hy(e*),
(4.5) ¢2(2):= Hy(e) e * 2%,
G(z):= gy(€®) + d,z.

Denoting n:= d, + d,, we obtain by (4.5) that
¢1(2) _ Hye) .
¢1(2)  Hy(e®)

$2(2) _ 2€)

6.0 " T H O
$:()9:(2) = Hi(@)Ha(e)e™ (= £i(2)fo(2) = EQ@)
G'(z) = g (e*)e” + d;.

4.6)
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Let K # 0 be the Wronskian of fi, f,. Then, by (4.4), (4.5) and (4.6),

KoLK @ _fi)
Hy(€e)Hy(e®)  fi(2)f2(2)  fal2) f1(2)
—n—2d, + 5 o HE) e

e
H,(€) H,(e")
Hence we have in the {-plane for 0 < |{| < oo that

1 HyO , Hi(0)
ROK0 " T o T RO
To proceed now, we recall the Valiron representations H;() = (*¥,(Qui(0),
i=1,2,wherek;eZ, ¥;isanalyticin 0 < |{| < oo, ¥;(0) % 0, and y; is entire and
of order zero, see [14], Lemma 5.18. Similarly, H(():= H,({)H,() = (*¥(Q)u(?).
Moreover, for an entire function v of order zero, we may apply the theorem on p.
294 in [9] to conclude that

@7  K{o

— 2091(0).

log dens {r > 0|log u(r,v) > glog M(r,v)} 2 }.

Here u(r, v): = min|v(z)|. Hence,

lz|=r

4.8) u(r,v) >/ M(r,o) 2 1

holds in a set of r-values of infinite logarithmic measure. Finally, the standard
Wiman-Valiron reasoning applies to (4.7), since by the Valiron representation,
one concludes that

HQ _ b %0 |, 40 _

H@ ( Y0 w@ w
Let { be such that (4.8) applies for |{| = r as well as for the Wiman-Valiron
theorem, see [14], Theorem 3.2, relative to u, and u,. Then, by (4.7), (4.8), [14],
Proposition 3.3, and the fact that the fact that the entire functions u, u,, u, are of
order zero, we get

214, O £ O(1) + v(r, ) + v(r,2) + OC) + 0<r|‘u(lT)|>

=0 (r"‘"‘ ) +0(r) = 0(r)

wlr, u)
as r — oo for all such {. Here v(r,u;) is the central index for u;, i = 1,2. Since
0,(97) = 0, g} must be of polynomial growth at { = co. The point { = 0 can be
treated similarly, hence g,({), and so B({) also, must be a rational function,
a contradiction.
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REMARK. The assumption in Theorem 4.1 that the order of A(z) is finite is

necessary. In fact, the differential equation

J"+ (e —fge™ +3¢7)f =0

admits two linearly independent zero-free solutions, namely

10.
11.

12.
13.

14.
15.
16.

f(z) = exp < —%(%e’ +2i f e*”dt)).
0
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