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COHOMOLOGICAL PROPERTIES OF MODULES
WITH SECONDARY REPRESETATIONS

LEIF MELKERSSON

0. Introduction.

The notion of secondary representation is in some sense dual to that of primary
decomposition. A module M over the ring A4 (always assumed to be a com-
mutative noetherian ring in this paper) is called secondary if for any element x in
A, multiplication by x on M is either surjective or nilpotent. The radical of the
annihilator of M is then a prime ideal p and we say that M is p-secondary.
A secondary representation of a module is the representation of it as a finite sum
of secondary submodules. If the module has a secondary representation, we
simply call it representable. Basic facts about the theory of secondary representa-
tions are found in [2] and [3, appendix to §6]. It is wellknown that any artinian
module is representable, and so is any injective module as shown by Sharp, [7],
(the ring is noetherian). More generally if E is injective, Hom 4(N, E)is representa-
ble for any finite module, as shown by Melkersson and Schenzel, [5], Toroghy
and Sharp, [9] and Zo6schinger, [11]. Zoschinger also shows, [11, Folgerung
1.9], that if M is a representable module, which has finite Goldie dimension, then
Hom (N, M) is representable for any finite module N, provided that Ass M is
a discrete set. A module M is said to have finite Goldie dimension, if M does not
contain an infinite direct sum of nonzero submodules, or equivalently the
injective hull E(M) of M decomposes as a finite direct sum of indecomposable
(injective) submodules. (The indecomposable injective modules are the modules
of the form E(A/p), where p runs through the set of prime ideals of 4.) In
particular Ass M must then be a finite set. The condition on a module to have
finite Goldie dimension is a natural finiteness condition put on a module.
Artinian and finite modules have finite Goldie dimension, and so has any
A-module, which has the structure of an artinian module over a localization of 4,
and a module of that kind is in addition representable, by [4, Proposition 4.1]. In
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section 4 we study the problem, when Hom (N, M) is representable, where N is
finite and M is representable of finite Goldie dimension. It is shown that in
general this module is not representable. Its representability is connected with
the purity of the submodules I',(M) of M. For the concept of purity see e.g. [10].
But in many respects representable modules of finite Goldie dimension behave
well. The representability of a module of finite Goldie dimension is in section
1 characterized by vanishing of local cohomology. The local cohomology mod-
ules H:(M),i = 0,1,2,... of an A-module M with respect to an ideal a of A were
introduced by Grothendieck, [1]. They arise as the derived functors of the left
exact functor I',(-), where for an 4-module M, I',(M) is the submodule of
M consisting of all elements annihilated by some power of g, i.e. U:": 1 a”. There
is a natural isomorphism H:(M) =~ li_l’n Exti,(4/a", M). The exact sequences
connected with local cohomology are exploited to show some results on the
representability of modules of finite Goldie dimension, e.g. the local criterion
of representability. Connected with H!(M) are the modules D:(M)=
li_rzl Exti(a",M), i=0,1,2,.... There is an exact sequence 0 — I,(M)—
M - D?(M) —» H!(M) - 0, and if a is the principal ideal generated by the el-
ements s, D?(M) is canonically isomorphic to M;. The structure of the representa-
ble modules of finite Goldie dimension is determined in section 3. It is shown that
they are close to artinian modules over localizations of the ring. Their minimal
injective resolutions are simple; the Bass numbers of the module satisfy strong
finiteness properties. The Bass numbers of an A-module M are defined by
wip, M) = dimk(,,Ext;’(k(p), M,), wherei =0,1,2,..., and p is a prime ideal of
A. The cardinal y;(p, M) equals the number of times E(A4/p) occurs in the ith
module in a minimal injective resolution of M. In the last section we deduce some
properties of modules of the form Hom ,(F, M), where F is flat and M representa-
ble, which is also related to the co-localization of an artinian module at a multi-
plicative set in A, studied by this author and Schenzel in [6].

1. Vanishing of local cohomology.

For any A-module M and an element s € 4 the natural homomorphism M — M;
has kernel I',,(M) and its cokernel is isomorphic to H!,(M). The surjective of this
map can therefore be expressed as the vanishing of H.,(M). The surjectivity can
also be elementwise characterized in the following way: for each x € M, there is
y€ M and a number n, such that s"(x — sy) = 0,1i.e. M belongs to the class &/” in
the terminology of [11].

PROPOSITION 1.1. Let M be an A-module such that Ass , M is finite. If H} (M) =
0 for all principal ideals a in A, then H:(M) = 0 for all ideals a in A and all i 2 1.

ProOOF. Let N =TI,(M)c M and M = M/N. Then Ass M = Ass M\ V(a),
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where V(a) is the set of prime ideals p such that p > a. M satisfies the same
hypothesis as M. Moreover H.(M) =~ H:(M) for all i = 1. We may therefore
assume that a ¢ pfor all p e Ass M. By prime avoidance (Ass M is finite!), there is
sea which is a non-zerodivisor on M. By the hypothesis H’,(M) = 0, which
means that the natural map M — M, is an isomorphism. Hence H!(M) =~
Hi{(M,) = H., (M,) = 0 for all i.

PROPOSITION 1.2. IfAss M = Max A then H (M) = O for any ideal a and every
i1

PrOOF. By localization we may assume that 4 is local with maximal ideal m. If
a = mthen H{(M) = Oforalli > 1, since Supp M < V(a). If a is the unit ideal, of
course H:(M) = 0 for all i.

COROLLARY 1.3. Let M be an A-module such that Ass M\Max A is finite. If
H}(M) = 0 for all principal ideals a in A, then H:(M) = O for all ideals a and all
izl

ProoF. LetN'= ) TI,(M)<=MandM = M/N.ThenAssM = Ass M \Max 4

mcMaxA
and Ass N = Ass M n Max A. Of course M — M, is surjective for any se A.

Proposition 1.1 applied to M and Proposition 1.2 applied to N together with the
exactness of the sequence H:(N) — H.(M) — H'(M) give the conclusion.

The result in Corollary 1.3 is a reformulation of [11, Lemma 2.2 (b)] in terms of
local cohomology. Whenever M is a representable module, the map M — M; is
surjective, or equivalently H:,(M) = 0. This is immediately reduced to the case
that M is a p-secondary module, and then it is trivial, since multiplication with
s on M is surjective, if s¢ép and nilpotent, if sep. Note also that if 5 is an
non-zerodivisor on M, then multiplication with s on the representable module
M is bijective. However if M is an arbitrary representable module, there might
exist a non principal ideal a, such that H!(M) # 0.

ExaMPLE. Let A be a ring with an ideal a, such that for some finite 4-module
N one has H2(N) # 0. Since a quotient of an injective module is representable, if
E is the injective hull of N, the module M = E/N is representable, but H(M) =~
HZ(N) #0.

REMARK. The condition H!(M) = 0 for all ideals a in A is equivalent to the
flasqueness of the quasi-coherent sheaf on Spec A defined by M. However not
every A-module M satisfying this condition is representable. For an example
take M = | [2., A4/m", where (4, m)is a local ring of dimension = 1. By Proposi-
tion 1.2, H}(M) = 0 for all ideals a, but there is no number n, such that m"M =
m"*1 M, which there is in case M is representable.
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The modules in these two examples did not have finite Goldie dimension. For
modules of finite Goldie dimension we have the following criterion of representa-
bility, which is [11, Satz 2.4] expressed in terms of local cohomology.

THEOREM 1.4. Let M be an A-module of finite Goldie dimension. Then the
following conditions are equivalent:

(i) M is representable

(ii) The map M — M is surjective for all se A

(ily H!(M) = 0 for all principal ideals a in A

(ii)) H:(M) = 0 for all ideals a and A and all i 2 1

(iv) The sheaf M on Spec A defined by M is flasque.

Proor. The implication (ii)’ = (iii) follows from Proposition 1.1, since Ass M
is finite. The only nontrivial implication is (ii) = (i), so let us assume that (ii) holds.
We prove that (i) holds by induction on the number of the prime ideals associated
to M. If we put S = A\UaeAssM p, each element in this multiplicative set is
a non-zerodivisor on M, hence acts bijectively on M. Thus M has a natural
structure as a module over S ~! A4 and if it is representable as such a module, it is
representable also as a module over A4, [4, Proposition 4.1]. We may therefore
assume that A is a semilocal ring and that Max A4 < AssM. Let L=
Y memaxa Lm(M)and N = M/L. Since Las a submodule of M also has finite Goldie
dimension, it must be an artinian module. Moreover Ass N = Ass M\ Max A
and N has finite Goldie dimension, since N, = M, for all peSpec A\Max 4.
Clearly N also satisfies (ii). By the induction hypothesis N is representable. Since
Lis artinian and M/Lis representable, it follows from [11, Lemma 2.3], that M is
representable.

COROLLARY 1.5. Let M be a an A-module of finite Goldie dimension. Then M is
representable if and only if M, is a representable A,,-module for each maximal ideal
min A.

PROOF. Let a be a principal ideal in A. Then for any maximal ideal m in A4,
H!(M),, = H., (M, = 0, when M,, is a representable 4,,-module.

COROLLARY 1.6. Let 0 - M' —» M — M" — 0 be an exact sequence of A-mod-
ules. If M' and M" are representable and M has finite Goldie dimension, then M is
representable.

Proor. This follows from Theorem 1.4 and the exactness of the sequence
H!(M') - H}(M") for each principal ideal a. Both modules at the ends vanish
here, so H:(M) = 0.

COROLLARY 1.7. Let M be a module of finite Goldie dimension. Then the sum of
any family of representable submodules of M is again representable.
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Proor. Use condition (ii).

COROLLARY 1.8. Any module of finite Goldie dimension has a largest representa-
ble submodule.

Proor. It is the sum of all the representable submodules.

2. Representability of I',(M).

THEOREM 2.1. Let M be arepresentable module of finite Goldie dimension. Then for
any ideal a, the submodule I',(M) is representable.

PROOF. Let E be the injective hull of M. Now by Theorem 1.4, H:(M) = 0, so
we get the exact sequence

0— I'y(M) > I'.(E) > I',(E/M) - 0
For any ideal b there is induced exact sequence
0 - I(Iu(M)) = Iy(IL(E)) = I'e(To(E/M)) — Hy(I'o(M)) > Hy (Io(E))

However the last module in this exact sequence is zero, since the module I',(E)
isinjective. Since H!, (M) = 0, by Theorem 1.4, we have also the exact sequence

0= I, 5(M) > Iy 4(E) = I'y 1 (E/M) - 0.

Now Iy([L,(N) = I',+,(N)for any A-module N, so comparison of the above exact
sequences yields H.(I',(M)) = 0. By Theorem 1.4 it follows that I',(M) is a repre-
sentable module.

COROLLARY 2.2. Let M be an A-module of finite Goldie dimension. If ais anideal
of A, such that I',(M) is a representable submodule of M, then for any ideal ¢ > a,
I'.(M) is also a representable submodule of M.

ProoF. TI',(I',(M)) = I'.(M), whenever the ideal ¢ contains a.

PROPOSITION 2.3. Let M be an A-module of finite Goldie dimension and let a and
b beideals of A. If the submodules I',(M) and I',(M) both are representable, then the
submodule I',z(M) is representable, too.

Proor. The exactness of
0- I(M)> M- M/, (M)-0
yields the exactness of
0 — I (Iy(M)) = Io(M) - I'y(M/Ty(M)) - 0,
since H!(I'y(M)) = 0, by Theorem 1.4. Therefore I',(M/I'y(M)), as a homomor-
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phic image of the representable module I',(M), is representable and it is the same
module as I,,(M)/I'y(M). Now apply Corollary 1.6 to the exact sequence

0 - I'y(M) = Teo(M) = I'yy(M)/Ty(M) - 0

COROLLARY 2.4. An A-module M of finite Goldie dimension, such that the

submodule I',(M) is representable for any minimal element p of Ass M, representa-
ble.

Proor. Ifaisthe product of the minimal elements of Ass M, then I',(M) = M.

ExaMpPLE. When M is representable, but doesn’t have finite Goldie dimension,
there might exist an ideal a, such that I',(M) is not representable. Let 4 be
a domain with quotient field K and suppose there is a regular sequence x, y in A.
From the exactness of 0 - A5 4 — A/xA — 0, we get an exact sequence

Iy, (A/xA) - H;A(A) > H;A(A) - H;A(A/XA) - HfA(A)

Now I', 4(A/xA) = 0, since y is regular on A/xA. This means that multiplication
with x on H} ,(A) is injective. However it is not surjective, since H},(A4/xA) # 0
and H2,(A) =0. Therefore the module H,,(4) is not representable. The
A-modulus K and K/A are representable, so the exactness of 0 > 4 - K —
K/A — 0 yields exactness of I’ 4(K/A4) —» H, ,(A) — 0. Therefore I', ,(K/A) is not
representable, because as we just have shown that its homomorphic image
H, ,(A) is not representable.

3. Bass numbers of representable modules with finite Goldie dimension.

We give a structure theorem for representable modules of finite Goldie dimen-
sion.

THEOREM 3.1. Let M be arepresentable module of finite Goldie dimension and let
Pi,. .., P, be its distinct associated prime ideals, ordered in such a way that p; is
maximal in {p;,...,Pa}, for eachi,i=1,...,n. Then there is a chain 0 = M,
M, c... € M, = M of submodules of M, such that for i = 1,...,n, the quotient
module M;/M;_, has the structure of an artinian module over the localization A,,.

Proor. We prove it by induction on n. The prime ideal p, is maximal in Ass
M. If we put M, = I, (M), the module M, is representable by Theorem 2.1, and
has finite Goldie dimension with p, as its only associated prime ideal. Therefore
it has the structure of an artinian module over 4,,. Consider the quotient module
N = M/M,. Since AssN = AssM\{p,} and N,, = M, for i=2,...,n, it has
finite Goldie dimension.



COHOMOLOGICAL PROPERTIES OF MODULES WITH SECONDARY ... 203

Now just apply the induction hypothesis to N and use the correspondence
between the submodules of N and those submodules of M, which include M,.

THEOREM 3.2. Let M be a representable module of finite Goldie dimension. Then
allits Bass numbers y;(p, M) are finite and moreover for each i there are only finitely
many prime ideals p such that p,(p, M) # 0. This means that in a minimal injective
resolution 0 > M — E° —» E' ... of M, for each i, E' is a direct sum of finitely
many indecomposable injective modules.

Proor. First note that the assertions hold when M is artinian, and more
generally when M is artinian over a localization of M. Next if 0 > M’ > M —
M" — 0 is an exact sequence and the assertions hold for M’ and M”, then they
hold for M, since for each p and each i, there is an exact sequence Ext;v(k(p, M) —
Extl, (k(p), My) — Extl, (K(p), M),

COROLLARY 3.3. Let 0 > M’ — M" — 0 be exact, where M’ and M are represen-
table. If M has finite Goldie dimension, then so has the (representable) module M".

Proor. For any prime ideal p there is an induced exact sequence
Hom,, (k(p), M,) - Hom 4, (k(p), M}) > Ext}{v(k(p), M}). Now M’ and M are rep-
resentable with finite Goldie dimension, so the endterms are by Theorem 3.2
finite dimensional k(p)-vector spaces, and there are only finitely many p for which
they are non-zero. Hence Hom, (k(p), M) is for each p a finite dimensional
k(p)-vector space, and there are only a finite number of prime ideals p for which it
is non-zero, which is the condition for a module to have finite Goldie dimension
expressed int terms of (the zeroth Bass numbers). It now follows that M” has finite
Goldie dimension.

As another application of this technique we have:

THEOREM 3.4. The set of representable submodules with finite Goldie dimension
of an A-module M satisfies the descending chain condition.

PROOF. Let M; o M, >... be a descending sequence of submodules of
M such that M, is representable of finite Goldie dimension for each n. We shall
show that it is stationary. By first localizing at the multiplicative set consisting of
the non-zerodivisors on M,, we can assume that A4 is a semilocal ring. Next we
localize at the maximal ideals and we are reduced to the case that A4 is a local ring
with maximal ideal m, and we use induction on dim A. For each n, [ (M, +,) =
(M, M,,,,sothesequence M, /I (M,),n = 1,2,...embeds as a descending
sequence of submodules of M/I,,(M). The above localization process applied to
this module and the induction hypothesis yields that M, /I",(M,),n = 1,2,... is
stationary. Since in addition the descending sequence I',(M,), n =1,2,... of
artinian modules is stationary, the original sequence must eventually terminate.
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4. Representability of Hom ,(N, M).

For an A-module N, let us call an exact sequence 0 > M' > M - M" - 0,
N-pure exact, if 0— Hom (N, M')—> Hom (N, M)— Hom,(N,M") -0 is
exact. The given exact sequence is thus by [10, Proposition 3] pure (exact) in the
sense that it remains exact after tensoring with any A-module, if it is N-pure exact
for all finite (finitely presented in case A is not required to be noetherian)
A-modules N. A submodule Lof M is called N-pure (pure) if the natural exact
sequence 0 - L - M — M/L — 01is N-pure (resp. pure) exact. An A-module Q is
called pure injective in case any pure exact sequence remains exact after applying
Hom,(—, Q) toit. Then itis a direct summand of any module, in which it is a pure
submodule. Since any module can be embedded as a pure submodule of a pure
injective module, the converse also holds. Any injective A-module E is trivially
pure injective and from the adjoint homomorphism Hom, (M ® 4 X, E) =
Hom 4(M,Hom 4(X, E)), it follows that in fact Hom 4(X, E) is pure injective for
any A-module X, when E is injective.

LEMMA 4.1. Let ¢: A — B is a ring homomorphism, then any pure injective
B-module Q is also pure injective considered as an A-module.

ProoOF. Let 0 > M’ - M — M” — 0 be a pure exact sequence of A-modules.
Then it is easily seen that 0 >~ M' ® 4/ B> M ®, B->M"®,B -0 is a pure
exact sequence of B-modules. The conclusions follows by considering the natural
isomorphisms Homg(X ® 4 B, Q) =~ Hom (X, Q) valid for all A-modules X.

COROLLARY 4.2. Any artinian module M over a (noetherian) ring A is pure
injective. Moreover any module artinian over a localization S~ A is pure injective
as an A-module.

PrROOF. There is a direct sum decomposition M = @[_; M;, where for each
i the module M; has the structure of an artinian module over the localization A4,
of A4 at some maximal ideal m;, hence also over the completion over this ring. By
Lemma 4.1, we may therefore assume that A is a complete local ring. Then by
Matlis duality there is a finite 4-module N, such that M =~ Hom (N, E), where
E is the injective hull of the residue field of A. But as noted above a module of this
form is pure injective. The last assertion now follows from what has just been
proved using Lemma 4.1 again.

ReMARK. Corollary 4.2 remains valid without the noetherian hypothesis on A4,
since Sharp has shown, [8, Theorem 3.2], that there is a ring homomorphism ¢:
A — B, where B is (complete semilocal) noetherian ring, over which M has the
structure of an artinian module. Then merely use the result just shown for
artinian modules over noetherian rings and apply Lemma 4.1. Also Corollary 4.2
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is a consequence of the characterization in [ 10, Theorem 2, Proposition 9] of pure
injectivity by means of solvability of linear equations (algebraic compactness)

LeEMMA 4.3. Let M be a representable module of finite Goldie dimension and let
N be afinite module. Then the module Hom 4(N, M) is representable if and only if for
each (principal) ideal a,I',(M) is an N-pure submodule of M.

Proor. Since Hom 4(N, M) is isomorphic to a submodule of M" for some
number n, it has finite Goldie dimension. By Theorem 1.4, the module
Hom,(N, M) is representable precisely, when Hom (N, M) —» D (N, M)) is a sur-
jection for any (principal ideal a. Now N is finitely presented so the functor
Hom (N, —) commutes with direct limits. Therefore D,(Hom (N, M)) is nat-
urally isomorphic to Hom (N, D,(M)), and the surjectivity of the above map is
equivalent to the surjectivity of Hom (N, M) - Hom ,(N, D.(M)), which just
means that I',(M) is an N-pure submodule of M.

THEOREM 4.4. Let M be a representable module of finite Goldie dimension, with
Pi,. .. P, as its distinct associated primes. Then Hom (N, M) is representable for
every finite A-module N if and only if M = @?_ | M; where for each i, M; is an
artinian A, -module.

ProoF. If N is a finite A-module and M is an artinian A,-module, then
Hom,(N, M) is an artinian module over 4, and thus representable also as an
A-module. From this follows one of the implications. The converse implication is
shown by induction on the number of the associated primes of M. Let p be
maximal in Ass M. Then as in the proof of Theorem 3.1, I',(M) has the structure
of an artinian module over A,. By the hypothesis and Lemma 4.3, the sequence
0 I,(M)—> M — D,(M)— 0 is pure exact. Now I',(M) is an artinian module
over A,, hence by Corollary 4.2 pure injective as an A-module. Consequenctly
the above sequence splits. Thus M = I,(M) @ D,(M); but D,(M) has one less
associated prime than M, since its set of associated primes is Ass M\ {p}.

ExXAMPLE. We now give an example of a representable module of finite Goldie
dimension, which does not satisfy the condition in Theorem 4.4. Let (4, m) be
a local ring of dimension at least 2, such that there is a regular element x in m.
Take a prime ideal p minimal over xA4. Consider the exact sequence
0-0 x> E % E — 0, where E is the injective hull of A/m. We get the exact
sequence

0 — Hom(E(A/p), E) % Hom(E(A/p), E) » Ext!(E(A/p), Oéx) -0

Since multiplication by x on E(A/p), is not injective, (as x € p), multiplication by
x on Hom(E(A/p), E) is not surjective and we conclude Ext!(E(4/p), 0:x) % 0.
NextletM' =0 L% which is an artinian A-module and M” = E(A/p), whichis an
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artinian A,-module. Since Ext}(M", M’) % 0, there is a nonsplit rxact sequence
0->M ->M->M"-0. By Corollary 1.6, M is representable of finite Goldie
dimension. It is easily seen that I',(M) is naturally isomorphic to M’. Conse-
quently I',,(M) cannot be a pure submodule of M, since it as an artinian module is
pure injective and thus would be a direct summand of M, in case it would be
a pure submodule of M.

If a is an ideal of A, then Hom 4(A4/a, M) = 0 : a, so one could ask if the finite
module N in the above counterexample could'be taken to be cyclic. Now the
equality 0 i (a +xA4)=0: x, where M’ =0 P shows by induction on the
number of generators of a, that f for all representable A-modules of finite Goldie
dimension M and any x € A the submodule 0 X of M is representable, thenO : a
is representable for any ideal a of 4. Note that 0 X is the kernel of the
endomorphism on M defined to be multiplication by the element x. We therefore
ask the following:

QUESTION. Let M be a representable A-module of finite Goldie dimension and
fiM - M an A-linear endomorphism. Is then Ker f always a representable
module?

Note thatif f: M’ - M isan A-linear map, where the A-modules M’ and M are
representable of finite Goldie dimension, but are not required to be the same
module, then Ker f is not necessarily representable. Consider e.g. the canonical
surjection of K onto K/A4, where A is a discrete valuation ring and K its quotient
field. Both K and K/A are indecomposable injective modules, thus representable
of finite Goldie dimension, but A4 is not representable.

5. Connections with flat modules.

An A-module M is called a cotorsion module if Ext}(F, M) = 0 for any flat
A-module F. Let 0 > K - L —» F — 0 be exact, where F is flat and L is free. By
considering the long exact Tor-sequence it follows that K is also flat. If now M is
cotorsion we get from the long exact Ext-sequence Ext\(F,M)=
Ext', (K, M) for any i = 2. Hence induction yields that if M is cotorsion, then
actually Ext',(F, M) = 0 for every flat A-module F and every i = 1. An exact
sequence 0 - K — L — F — 0 with F flat and L free is pure exact. This follows
from the long exact Tor-sequence, since Tor} (X, F) = 0.Soif M is a pure injective
A-module, then 0 - Hom (F, M) - Hom (L, M) - Hom (K, M) - 0 is exact,
and again using the long exact Ext-sequence, it follows that Ext}(F, M) = 0, i.e.
M is cotorsion. Since any artinian module is pure injective by Corollary 4.2, it
follows that any artinian module is cotorsion. Moreover Theorem 3.1 implies
that any representable module of finite Goldie dimension is cotorsion, because if
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0—- M - M — M" - Oisexact, then M is cotorsion, if both M’ and M” are. Thus
we have

THEOREM 5.1. Let M be arepresentable module of finite Goldie dimension. Then
M is a cotorsion module, i.e. Ext'(F, M) = 0 for every flat A-module F and every
iZ1.If0-> M —» M — M" - 0is an exact sequence of representable modules of
finite Goldie dimension, then the sequence 0 — Hom (F, M’) - Hom ,F, M) —
Hom(F, M") — 0 is exact for all flat A-modules F.

COROLLARY 5.2. If 0 > M’ — M — M" — 0 is an exact sequence of representa-
ble A-modulus of finite Goldie dimension, then for any multiplicative set S in A, the
sequence 0 — Hom 4(S™'4,M’) - Hom (S~ *4, M) - Hom (S '4,M") - 0 is
exact.

In [6] it was shown that what there was called the co-localization
Hom (S ™' A4, —) preserves exactness of exact sequences of artinian A-modules.
In [6] it was also shown that if M is an artinian A-module then for any
multiplicative set S in A4, the S~ !4-module Hom 4(S ~ ' 4, M) is representable.

QUESTION. Let M be a representable module of finite Goldie dimension. Is
then the S~ ! 4-module Hom ,(S ! 4) representable?

Note that an S~ 'A4-module is representable, if it is representable as an
A-module, according to [11, Lemma 1.7]. A stronger question is the following
one:

QUESTION. Let M be a representable A-module of finite Goldie dimension. Is
then, for any flat A-module F, the module Hom 4(F, M) representable?

Of course these modules do not in general have finite Goldie dimension. There
are however some positive results:

PROPOSITION 5.3. Let M be an artinian A-module. Then for any flat module F,
the module Hom 4(F, M) is representable.

PROOF. M is a finite direct sum of modules artinian over localizations of A4 at
maximal ideals. We may therefore assume that A is a local ring. Since M is
artinian, it can be considered as a module over the completion 4 of 4. Since
F ® , A is a flat module over A and Hom 4(F, M) =~ Homj(F ® 4 4, M), we may
assume according to [4, Proposition 4.1] that A is complete. By Matlis duality,
then M =~ Hom (N, E) for some finite A-module N, where E as usual denotes the
injective hull of the residue field of 4. Then Hom,(F, M) = Hom,(F,
Hom (N, E)) = Hom (N, Hom ,(F, E)), which is representable by [5, Theorem
1], since Hom 4(F, E) is an injective module.

Even if we don’t know, whether Hom ,(F, M) for an arbitrary representable
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module of finite Goldie dimension is representable or not, we can at least prove
that it has some property in that direction.

PROPOSITION 5.4. Let M be a representable module of finite Goldie dimension
and F a flat module. Then for any ideal a of A

Hé((HomA(F’ M)) = 09 i g 1

Proor. If M isartinian, we use Matlis duality in the same way as in the proof of
Proposition 5.3. For a general M, use Theorem 3.1 and 5.1.
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