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G-DIMENSION

SIAMAK YASSEMI

0. Introduction.

Among the finitely generated modules over a local ring the ones of finite
projective dimension are particulary nice. For example, if M % 0 is such a module,
then the (classical) Auslander-Buchsbaum equality states that depth A = depth
M + pd M, where pd M denotes the projective dimension of M.

In [1] Auslander and Bridger has generalized the notion of finite projective
dimension to that of finite G-dimension, and they prove a variety of interesting
results. For example, they extend the Auslander-Buchsbaum equality to this
setup. Furthermore, they prove that a ring 4 is Gorenstein if and only if every
finitely generated A-module M has finite G-dimension.

The notion of modules of finite projective dimension has also been generalized
in another direction, namely to that of complexes of modules of finite projective
dimension, cf. R. Hartshorne [5], and H.-B. Foxby [3] has proved that (most of)
the formulas known for modules, including the Auslander-Buchsbaum equality,
also hold for complexes of modules.

In this paper the notion of complexes of finite G-dimension will be introduced
by defining the class of reflexive complexes. This is done by applying the derived
functor of the Hom-functor of complexes. To describe this in classical terms let
I=0-1°-1'--- be an injective resolution of the A-module A. For any
bounded complex

X=0-X>-5X-0.

set X* = Hom(X, I) (which is a complex of 4-modules). The complex X is said to
be a reflexive eomplex if and only if

(1) HYX) finitely generated for all i and H(X) = 0 for |i| >> 0.

(2) H'(X™*) is vanishes for i >> 0.

(3) The canonical map X — X** is a homology isomorphism (that is, the
induced map H(X) — H'(X**) is an isomorphism for all i).
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It turns out that if the complex X is a module M (that is, X’ = O for i % 0 and
X° = M) then X is a reflexive complex if and only if the G-dimension of the
module M is finite.

This allows us to define the G-dimension of a complex X with finitely gener-
ated cohomology by

G-dim X = sup{ieZ| H(X*) + 0}

when X is a reflexive complex, and by G-dim X = oo otherwise. This is at the
same time a generalization of the G-dimension of finitely generated modules and
of the projective dimension of bounded complexes with finitely generated-
cohomology modules. We prove that the Auslander-Buchsbaum equality

depth 4 = depth X + G-dim X

holds whenever G-dim X is finite as wil as many other formulas known previous-
ly only for finitely generated modules of finite G-dimension or for bounded
complexes of finite projective dimension.

Throughout this paper all rings are commutative noetherian with a non-zero
identity element. Rings will always denote by A. We write “f.g.” for “finitely
generated” and we use the notation “C-M” for Cohen-Macaulay. We shall also
use the notation and terminology of [3] for complexes.

This paper will be included in the author’s Ph.D. thesis. The author wishes to
thank his supervisor, professor H.-B. Foxby for all his support, helpfulness, and
in particular for suggesting many of the topics considered in this paper.

The author also thanks the university of Copenhagen for its hospitality and the
facilities offered during the preparations of this paper.

1. G-dimension of modules.

In this section we bring the definition and some results of G-dimensions of
A-modules M. Then we prove some new results. Assume that (4, m) is a local
ring.

1.1. DerINITION. A f.g. A-modules M is said to be of G-dimension zero, and
we write G-dim M = 0, if and only if

(1) Ext{,(M, A)=0fori> 0.

(2) Ext'(Hom(M, A), A) = 0 for i > 0.

(3) The canonical map M - Hom(Hom (M, A), 4) is an isomorphism.

For a non-negative integer n the module M is said to be of G-dimension at
most n, and we write G-dim M < n, if and only if there exists an exact sequence

0-G,»G,_.1> " >G->G,>M-0

with G-dim G; =0forall0 < i < n.
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If there does not exist such an exact sequence then G-dim M = 0.

1.2. LemMa ([1; 3.7, 3.14)]. If G-dim M < oo then the following hold:
(a) G-dim M + depth M = depth A.
(b) G-dim M = sup {¢| Ext},(M, 4) + 0}.

1.3. THEOREM ([1; 4.13]). Let M be an A-module. Then the following hold:
(@) For any fg. A-module N with pd N < o0 we have

Ext,(M,N)=0 for i>G-dimM.

(b) For anyf.g. A-module M we have G-dim M < pd M. If M has finite projec-
tive dimension then equality holds.

In[12,2.7]itis proved thatif M and N are f.g. A-modules such thatpd M < o
then

dim Ext,(M,N) + i < pd M + dim(M ® N) for all i.
There is a similar result to above inequality when pd N < co.
1.4. THEOREM. Let M, N be f.g. A-modules with pd N < co. Then
dim Ext{,(M,N) + i £ G-dim M + dim(M ® N) forall .
In particular dim Ext},(M, A) + i £ G-dim M + dim M for all i.

ProOF. Since Supp Ext},(M, N) < Supp M U Supp N = Supp(M ® N),for all
i, we have dim Ext{,(M,N) < dim(M ® N) for all i. Also by (1.3) when
Ext!,(M,N) + 0 we have i £ G-dim M.

Now we show a result similar to the above when N has injective dimension.
1.5. THEOREM. Let M, N f.g. A-modules withid N < co. Then
dim Ext!,(M, N) + i < (depth A — depth M) + dim(M ® N) forall i.

PrOOF. We have i < depth A — depth M when Ext', (M, N) # 0 by [3, 6.46].
Also dim Ext!,(M,N) < dim(M ® N).

1.6. REMARK. If M, N are fg A-modules then gradeExt(M,N)=
depth 4, for some p e Supp Ext},(M, N). Assume that id N < oo (this implies
that 4 is a C-M by [7; page 151]) then i<id, N, =depthA4,, so
grade Ext\,(M,N) =i, and hence dimExt'(M,N) < dim A —i. Therefore
dim Ext‘(M, N) + i < dim A for all i. In particular, if 4 is a Gorenstein then we
have dim Ext'(M, A) + i < dim A for all i, and this is a beter result than (1.5) in
this case.
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2. G-dimension of complexes.

First we bring some definitions and results about complexes that we use in the
rest of paper. The reader is referre to [3] for details of the following brief résumé
of the homological theory of complexes of modules.

A complex X of modules over a ring A is a sequence of A-homomorphisms

X = X1 gi-1 X di Xitl ...

such that 9'¢'~! = 0 for ieZ. (Note that we only use superscripts and that all
differential have degree 1.) The notation € denotes the category of complexes and
all morphisms between them; thus we write X € €.

The cohomology functors from complexes 4-modules to graded A-modules is
as usual denoted by H(—). A complex of 4-modules X is said to be homologically
trivial if H(X) = 0.

We say acomplex X is bounded above (respectively, bounded below, bounded)
if there is ne Z such that X; = Ofori > n(respectively, i < n, |i| > n) and we write
X e®™ (respectively, X e 4", X e ¢®). Furthermore we set

s(X) =sup{ieZ|H(X) +# 0} and
i(X) = inf{ieZ | H(X) + 0}.

(Thus s(X) = — o0 and i(X) = oo if X is homologically trivial.)

Once and for all we identify any module M with a complex A-modules, which
has M in degree zero and is trivial elsewhere. We denote the class of all these
modules by ..

The full subcategory of complexes with finitely generated cohomology mod-
ules is denoted by €, and we write €, for € N %, and likewise for ¢, and %%,.

If X and Y are complexes of A-modules, then Hom (X, Y) denotes the complex
of A-modules with

Hom(X, Y)" = [[Hom(X’, Y'*") and
iez

(o)) = (0" "t — (=) 1 1P

for (a);;€ Hom(X, Y)" and neZ.
If X and Y are complexes of A-modules then X ® Y denotes the complex of
A-modules with

XY =[[x'®Y"" and

iez
(X ®Y i) = (XN ® Y + ()X ® (Y iz
for (' ® y" Niez€(X ® Y)"and neZ.
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A homology isomorphism is a morphism a: X —» Y such that H(x) is an
isomorphism; homology isomorphisms are marked by placing the sign ~, while
= is used for isomorphisms. The equivalence relation generated by the homol-
ogy isomorphisms is also denoted by ~.

When X €€, then the complex Fe # ~ (respectively, Pe?~ or Le ¥7) is
said to be flat (respectively, projecive of f.g. free) resolution of X, if there exists
a homology isomorphism F — X (respectively, P —» X or L— X). Here &~
denotes the set of bounded above complexes of flat modules, and £ ~ denotes the
set of bounded above complexes of f.g. free modules.

When X e €™, then the complex I €.# " is said to be an injective resolution of
X, if there exists a homology isomorphism X — I.

For (X,Y)e¥~ x € the equivalence class of Hom (P, Y) for any P belonges to
2~ (bounded above complexes of projective modules) with P ~ X is denoted by
Hom(X, Y). Similarly if (X, Y)e% x €* then Hom(X, Y) denotes the equival-
ence class of Hom(X, [)when Y ~ I e.#* (bounded below complexes of injective
modules). These two notations coincide when (X, Y)e 4~ x €* and in this case
Hom(P, I) represents Hom (X, Y). Moreover, Hom (X, Y) does not depend on the
choice of P or I.

Let (4,m) be a local ring and X e ¢*. Then we define

depth, X = i(Hom(k, X)).
For X e ¢~ we define dimension of X by
dim4 X = sup (dim A/p + s(X,))

P
where the supremum is taken over all pespec A. (Recall that s(X,) = —oo if

p¢Supp X\)
The flat dimension of X € 6" is defined by

fd, X = infsup{l|F~' 0},
F

where the supremum is taken over all flat resolutions of X.
The projective dimension of X € 6" is defined by
pd, X = infsup{l|P~" + 0},
P
where the supremum is taken over all projecive resolutions of X.
The injective dimension of X e 6” is defined by
id,X = infsup{/|I' + 0}
1

where the infimum is taken over all injective resolutions of X.
As in [3] for Xe®%, the complex I, (X) is introduced by
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I(X) = {xe X'|a"x = 0 for some n > 0} and Or, i) = Ox|r,x)» the restriction,
forleZ.

Furthermore, if Xe€%™* then [,(X) denotes the equivalence class of I',()
whenever I is an injective resolution of X.

We denote by X RY for the equivalence class of F ® Y whenever X%,
X~Fe% and Ye%.

Now we bring some result of [3] that we use in the rest of this paper.

2.1. LeMMA ([3;3.1.3]). Let X%~ and Ye €™ both be non-trivial and write
s=s(X)and i =i(Y). Theni(Hom(X,Y)) = —s + i and

Ext™**/(X, Y)  Hom(H*(X), H(Y)).

2.2. LeMMA ([3; 4.7]). Let X,Y €€~ both be non-trivial, and let s = s(X) and
t=5(Y). Thens(X® Y)< s+ tand

Tor_,_(X,Y) =@ HY(X) ® H'(Y).
There are three important equalities that we use many times.
2.3. THEOREM ([3; 5.2, 5.4, 5.6]). () For X,Ye¥ ™ and Ze¥™* we have
Hom(X, Hom(Y, 2)) = Hom(X ® ¥, 2).
(b) For X €6}, and Y, Z € 6" we have
Hom(X,Y)® Z = Hom(X, Y ® Z),

whenpd X < w0 orfdZ < .
(c) For X €%}, and Y,Z € ¢ we have

X ® Hom(Y, Z) = Hom(Hom(X, Y), Z),
whenpd X < o0 oridZ < .

Now we bring a definition that we need for the definition of G-dimension of
a complex of modules.

2.4. DEFINITION. A complex X e 6%, is said to be a reflexive complex if and
only if s(Hom(X,A4) < co and the canonical homomorphism X — Hom
(Hom(X, A), A) is a homology isomorphism.

Note that A is Gorenstein if and only if all X € %%, are reflexive.

2.5. REMARK. Sometimes an A-module M is said to be a reflexive module if
and only if the canonical homomorphism M — Hom(Hom (M, A), A) is isomor-
phism. Note that there is no relation between reflexive modules and reflexive
complexes. In other words if M is a reflexive A-module we can not conclude that
M is a reflexive complex or vice versa. See the next example.
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2.6. ExamPLE. (a) Let (A4, m) be a local domain which is not Gorenstein, and
let M be a 2nd syzygy of k = A/m, in other words there is exact sequence
0—-M —>F, - Fy—> K —0where F, and F, are f.g. free A-modules. Then M is
reflexive module by [1; (2.1), p. 48]. Since A is not Gorenstein we have
G-dim k = oo and hence G-dim M = co. Therefore M is not a reflexive complex
by (2.7).

(b) Let (4,m) be a local ring and depth 4 >0. Let M = A4/(x) where
xem — z(4). We have G-dimM =pd M = 1 < o0, and hence M is reflexive
complex by (2.7). On the other hand Hom(M, A) = 0, and hence M is not
a reflexive module.

The next theorem play important role in this paper and it is an unpublish result
of H.-B. Foxby.

2.7. THEOREM. Let M be a f.g. A-module. Then G-dim M < oo if and only if
M is a reflexive complex.

Proor. (Due to H.-B. Foxby). Let * = Hom(—, A).

“only if”: By induction on g, = G-dim M.

gu =0: Since Ext,(M,4)=0 for all i>0 we have that
M* = Hom (M, A)e .#. Also since Ext'(Hom(M, A), A) = O for alli > 0 we have
that M** = Hom(M, A)* = Hom(Hom (M, A), A) ~ M.

gy>0:Let 0-K—->G—-M-—>0 be an exact sequence such that
G-dimG =0. Then G-dimK =gy, —1 by [1; 3.15]. We know that
0 - M* - G* -» K* — 0 is an exact sequence of complexes so we have a long
exact sequence

--'Hi"l(K*)—"Hi(M*)—PHi(G*)’—*“'-

Since H(K*) and H'(G*) are bounded we have that H(M*) is bounded. Also
since the canonical homomorphisms K - K** and G — G** are homology
isomorphisms we have that the canonical homomorphism M — M** is homol-
ogy isomorphism, by the commutative diagram with exact rows

00— K » G > M » 0

I

00— K*¥* — , G** — > M** — 0

“If” Let gy = s(M*). We have that
Hom(k, M) = Hom(k, M**)
= Hom(k ® M*, A). (2.3a)
So i(Hom(k, M)) = —s(k ® M*) + depth A by [3; 5.8].
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Since s(k ® M*) = s(M*) by (2.2), we have that depth M = —g,, + depth A.
Now we proTe this part by induction on g,,.

gu = 0: We have depth M = depth 4 and Ext'(M,A) =0 for i %+ 0 thus
M* ~ Hom(M, A). Also the canonical map M — M** = Hom(M, A)* is
a homological isomorphism. Thus H(M) =~ Ext'(Hom(M, A), ) is zero for
i 0. In addition we have

M** —— Hom(Hom(M, A), A)
~] e
e
V-
7

M/
Hence G-dim M = 0.
gu > 0: Let0 - K - F - M — 0 be an exact sequence such that Fisaf.g. free

module. Then 0 - M* - F* —» K* — 0 is an exact sequence and hence we have
long exact sequence

o= H'"YK*) > H(M*) > H'(F*) - H(K*) > H*{(M*) > ---.

Therefore gx < gy — 1. Since M and F are reflexive complexes we have that K is
reflexive complex and hence by induction hypothesis we know that
G-dim K < o0 so G-dim M < oo.

Theorem (2.7) makes — in view of (1.2b) — the next definition possible.
2.8. DEFINITION. For a reflexive complex X € 47, we define
G-dim X = s(Hom(X, A4)).
If X is not reflexive we write G-dim X = co.

If (4, m) be a local ring and M be an A-module with G-dim M < oo. Then we
have G-dim M + depth M = depth 4 by (1.3). Now we bring the generalization
of this theorem for complexes.

2.9. THEOREM. Let (A, m)be alocalring. For X € %%, with finite G-dimension we
have that

G-dim X + depth X = depth A.

Proor. Let X* = Hom(X, A). Since G-dim X < oo we have that X is a reflex-
ive complex and hence the canonical map X — X** is a homology isomorphism.
We have
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depth X = i(Hom(k, X))
= i(Hom (k, X*¥))
= i(Hom(k ® X*, 4)) by (2.3a)
= —s(k ® X*)+ depthA by [3; 6.5 and 6.6]
= —s(X*) + depth 4 by (2.2)
= —(G-dim X) + depth 4.

The next result is generalization of (1.3a) and [1; 4.131I] in two ways complexes
and H'(Y) not finitely generated. Also it can be viewed as a generalization of [3;
6.48d] with the extra condition, fd Y < oo.

2.10. THEOREM. For X € ¢}, with G-dim X < oo and Ye6® withfd Y < oo the
following hold:

(a) s(Hom(X,Y)) <s(Y) + G-dim X
(b) (X ®Y)2i(Y)— G-dim X.
Here equality holds in both places if and only if Y € 6},.

In particular, for A-modules M and N if G-dim M < oo and N has finite flat
dimension then the following hold:

(@) Ext{(M,N) =0 for i> G-dimM
(b") Tor;(M,N) =0 for i> G-dim M.
PRroOF. (a):
s(Hom(X, Y)) = s(Hom(X,A) ® Y) (2.3b)
< s(Hom(X, A)) + s(Y) (2.2)
=s(Y) + G-dim X.
(b): i(X®Y)=iHom(X* A)Q Y)
=i(Hom(X*,Y)) (2.3p)
2 i(Y) — s(X*)
=1(Y) — G-dim X.
The next result is the dual of 2.10.

2.11. THEOREM. For X € 6}, with G-dim X < co and Ye %’ withidY < oo
the following hold:
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(a) s(Hom(X,Y)) < s(Y) + G-dim X
(b) i(X®Y)2i(Y)— G-dimX.
Here equality holds in two places if and only if Ye ‘f'f’g.

In particular, for f.g. A-module M with G-dim M < oo and A-module N with

id N < oo the following hold:

@) Ext{(M,N)=0 for i> G-dimM
(b) Tor;(M,N) =0 for i> G-dimM.
PRrOOF. (a):

s(Hom(X,Y)) = s(Hom(Hom(X*, 4), Y))
=s5(X*Q®7Y)
=s(Y)+s(X*
=s(Y) + G-dim X

(b): i(X®Y)=i(X®Hom(4,Y))
= i(Hom(Hom(X, 4), Y))
> i(Y) - s(Hom(X, 4))
=1i(Y) — G-dim X.

Let (A, m) be a local ring and X, Ye®}, with pd X < co.

(2.3¢)

(2.3¢)
@.1)

Then we have

dimHom(X,Y) < pd X + dim Y by [3; 8.29, 7.9 and 6.48d]. Now we prove

similar result when pd Y < oo.

2.12. THEOREM. Let (A, m) be a local ring and X, Y € 64, such that pd Y < co.

Then
dimHom(X,Y) £ G-dimX + dim Y.

In particular, for f.g. A-modules M and N with pd N < oo such that there exists

t with Ext'(M, N) = 0 for i # t we have

dim Ext'(M,N) + t £ G-dim M + dim N.

PrOOF. Suppose that G-dim X < co. Since pdY < co we have that fd

I'(Y) < oo by [2; 6.5]. Now
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dimHom(X, Y) = s([',(Hom(X, Y))) [3;8.29]
= s(Hom(X, [(Y) [3;7.9]
= s(Hom(X, 4) ® L'n(Y)) (2.3b)
< s(Hom(X, 4)) + s(Ln(¥)) 22)
=G-dimX +dimY [3;8.29]

Let (4,m) be a local ring and X,Ye®%}, with pd Y < co. Then we have
depth(X ® Y) = depth X + depth Y — depth A by [3; 6.46]. Now we show the
similar result when id Y < oo.

2.13. THEOREM. Let (A, m) be a local ring and X, Ye‘f’f’g with G-dim X < oo
and id Y < co. Then we have

depth(X ® Y) = depth X + depth Y — depth A.

In particular, for f.g. A-modules M and N with G-dim M and id N finite and
Tor;(M,N) = 0 for all i > 0 we have

depth(M ® N) = depth M + depth N — depth A.
PrROOF. We have
depth(X ® Y) = depth(X ® Hom(4, Y))
= depth(Hom(Hom(X, 4), Y)) (2.3¢)
= depth Y — s(Hom(X, A)) [3;6.5]
= depth Y — G-dim X
= depth Y + depth X — depth A.

If (4, m) is local, X, Ye‘ﬁ’f’g and pd X < oo thenpd Hom(X, Y) = pd Y + s(X)
by [3; 6.48¢c]. Now we prove the similar result for G-dimension.

2.14. LEMMA. Let X, Y €%}, and assume either pd X < o0 and G-dim ¥ < oo
or A is Gorenstein. Then

G-dim Hom(X, Y) = G-dim Y + s(X).
PrOOF. We have
Hom(Hom(X,Y), 4) = X ® Hom(Y,A) by (2.3¢c).
Thus
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Hom(Hom(Hom (X, Y), A), A) = Hom(X @ Hom(Y, 4), A)
= Hom(X, Hom(Hom(Y; 4), 4).

Since the canonical map Y - Hom(Hom(Y, 4), 4) is a homology isomorphism
we have the canonical map

Hom(X,Y) » Hom(Hom(Hom(X, Y), A), A)

is homology isomorphism.
On the other hand

s(Hom(Hom(X, Y), 4)) = s(X ® Hom(Y; 4))
= s(X) + s(Hom(Y, 4)) 2.2
=5(X) + G-dimY.
It is easy to prove that for X, Y € 6}, with pd X < oo and pd Y < oo we have
pdX®Y)=pdX +pd Y.
Now we extend this result to G-dim Y < oo.
2.15. LeMMA. For X, Ye %}, with pd X < o0 and G-dim Y < co we have
G-dim(X @ Y) = pd X + G-dim Y.
ProOF. We have
Hom(X ® Y, 4) = Hom(X, Hom(Y; 4)) (2.3a)
Thus
Hom(Hom(X ® Y, A), 4) = Hom(Hom (X, Hom(Y, A4)), A)
=X ® Hom(Hom(Y, A), 4) (2.3¢)

Since the canonical map Y - Hom(Hom(Y, 4), A) is homology isomorphism we
have the canonical map X ® Y » Hom(Hom(X, ® Y, 4),4) is homology
isomorphism. On the other hand

s(Hom(X ® Y, 4)) = s(Hom(X, Hom(Y, 4))) (2.3a)
=pd X +s(Hom(Y,4)  [3;6.48d]
=pdX + G-dim Y.

2.16. LEMMA. Let (A, m) be a local ring and let M, N be f.g. A-modules. Then
depth N < dim Hom(M, N).
In particular depth A < dim Hom(M, A).
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Proor. We know that depth Hom(M,N) =depth N by [3; 6.5], and
depth Hom(M, N) < dim Hom(M, N) by [3; 6.15].

2.17. THEOREM. Let (A, m)be alocal ring and let M be f.g. A-module. Let N be
a C-M A-module with pd N < oo. Then

dim N < dim Hom(M, N) £ G-dim M + dim(M ® N).
In particular, if A is a C-M ring then
dim A £ dim Hom(M, 4) £ G-dim M + dim M.

PrOOF. We know that dim Hom(M, N) = dim Ext'(M, N) + i for some i by
[3; 6.12]. Now use (1.4) and (2.16).

We recall the standard measure of non-Cohen-Macaulayness, namely its
Cohen-Macaulay defect cmd,M = dim M — depth M (Grothendick calls
cmd M the co-depth of M and denotes it by Coprof M, [5].)

In[12;3.8]itis proved that for af.g. A-module M withpd M < oo that we have
cmd Hom(M, A) £ cmd M. Now we extend this result for A-module M with
G-dim M < oo.

2.18. THEOREM. Let (A, m) be a local ring and let M be a f.g. A-module with
finite G-dimension. Then cmd Hom (M, A) < cmd M.

ProoF. We have dimHom(M,A) <dimM + G-dimM by (1.4). Also
depthHom (M, A) = depth M + G-dimM by (3; 6.5) and (1.2a). Thus
cmd Hom(M, A) < cmd M.

2.19. REMARK. We know that by general intersection theorem if M, N aref.g.
A-modules then dim N < pd M + dim(M ® N).
In (2.17) we proved that for C-M A-module N with pd N < o

dim N £ G-dimM + dim(M ® N).

Now it is natural to ask that, is it correct in general?
The next example shows that the answer is negative.

2.20. ExaMPLE. Let (4, m) be a local Gorenstein ring with dimA4 = 1 and
specA = {m,p,q} (for example A4 =k[[X,Y]]/(XY)). Let M= A/p and
N = A/q. Then M® N = A/p + q and hence dim(M ® N) =0. Since A is
a Gorenstein ring we have G-dim M < oo and hence G-dim M = depth 4 —
depthM =1 — 1 = 0. On the other hand dimN =1 so dim N > G-dim M +
dim(M ® N).
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