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ENTIRE FUNCTIONS WITH ASYMPTOTIC FUNCTIONS

A. HINKKANEN* and JOHN ROSSI

1. Introduction.

An entire function a is called an asymptotic function for the entire function f if
f(z) — a(z) approaches zero as z— oo along a path I' connecting 0 to oo.
Classically if f has n distinct identically constant asymptotic functions, then the
order of f is at least n/2. This leads to the following conjecture [5].

CONJECTURE. If f is an entire function having n distinct asymptotic functions
each with order less than 1/2, then the order of f is at least n/2.

Simple examples show the necessity of the order 1/2 condition in the conjec-
ture. We refer the reader to [6, pp. 575-578] for background material.

In 1983, Fenton [4] proved the conjecture true provided the orders of the
asymptotic functions are less than 1/4. In a recent paper of Dudley Ward and
Fenton [3, Theorem 4], the bound 1/4 is improved provided the asymptotic
paths are rays.

THEOREM A. Let f be analytic in the sector D = {z:|argz| < n}, where
0 < n < =, and continuous up to the boundary. Let a(z) and b(z) be two distinct
entire functions of order p < 1/(2 + 2u/n), suck that

f(te") — a(te™) >0 and f(te™™) - b(te™ ™) — 0
ast — o0. Then

log M(r, D,
(L1) lim inf-28M: D 1)

pri2n

where M(r, D, f') = sup {| f(re")|: r¢' € D}.
The authors remark that the rays in their theorem can actually be replaced by

paths that are almost straight in the sense that the length of the part of the path in
{z:]z) < r}is O(r) as r - 0.
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It is our purpose in this paper to extend Theorem A. We note that in Theorem
A, the intersection of the circle of radius r with the domain D formed by the two
rays has angular measure 27. By this we mean that for all r

meas {0: ree D} = 21.

We state our theorem with this property in mind.

Let f have two distinct asymptotic functions a and b on the asymptotic paths
I'y and I', respectively. We may assume without loss of generality that the paths
are simple and consist of finitely many line segments in any bounded set. If the
paths intersect infinitely often, denote by D, the bounded region between the nth
and (n — 1)st intersection and let D be the union of the D,. If the paths intersect
finitely often, it is no loss of generality to assume that they only intersect at the
origin and in this case we let D be one of the unbounded regions formed by the
two curves.

THEOREM 1. Let a, b, I'y, I',, and D be as above and let f be analytic in D and
continuous up to the boundary. Suppose that for all sufficiently large r, the angular
measure of D N {z: |z| = r} does not exceed 2y and that a and b have orders strictly
less than 1/(2 + 2n/m). Then I'y and I', do not intersect outside a bounded set and
(1.1) holds.

An example in [3] shows that the number 1/(2 + 2#/rn) cannot be replaced by
a larger one in Theorem 1 when # = . It is an open question whether our
theorem is sharp for any other choices of #.

2. A strong cos np theorem.

We first need a strong version of the cos np theorem due to Eremenko, Shea and
Sodin [2].(See also [8].) Recall that a sequence {r, } is a sequence of strong peaks
of order A for a function g subharmonic in the plane if

@1 N(r,g) < N(r, 9)(r/r)' (1 + mi), v lmeri re/med,
holds for some positive 7, — 0 and in addition
.22 T(r,g) < CN(r)(r/ri),  relmerirdmds

for some positive constant C. Here
' Hzl St
Nirg) = J HzHED ,
0

is the usual Nevanlinna integrated “counting” function for g with Riesz measure
wand T(r, g) is the usual characteristic function (we may and will assume that g is
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harmonic in a neighborhood of the origin). Strong peaks always exist if g has
lower order less then one [7].

THEOREM B. Let g be a function subharmonic in the plane and let {r,} be
a sequence of strong peaks of order A < 1 of g. Then

(2.3) lim inf A(sy, g)/M(sk, g) = cos mA
and
(2.4) lim inf A(sy, g)/N(sy, g) = nAcot nA,

where A(r,g) and M(r, g) are respectively the infimum and supremum of g on|z| = r
and {s,} is also a sequence of strong peaks of order A such that s, /r, —» 1 as k — oo.

We remark that in [7] the result corresponding to Theorem B is stated for
entire functions, but the proof in [7] goes through for subharmonic functions as
well.

3. Proof of Theorem 1 - infinite intersections.

First of all, without loss of generality we assume that b is identically zero. Denote
by p = p(a) the order of a. If E is a set in C we define E* to be the circular
projection of E onto the negative real axis R_. Given a measure u on C, let u* be
a measure on R which satisfies y*(C\R_) = 0 and for each positive r

WHE* A1z = 1) = WE A |2l = ).

Now let u be the Riesz measure of log™* |al. (If necessary, we replace log* |a| by
a slightly modified function without changing notation to make it harmonic in
a small neighborhood of the origin. This does not essentially affect the argument
that follows.) Since log* |a| has order p < 1, the function

p(z) = r log

0

dp*(t)

[z
t

is subharmonic in the plane with order p as well. Clearly

(3.1 N(r,log™ |a|]) = N(r,p).

Also it is easy to see that

(3.2) A(r,p) £ A(r,log™ |al) £ M(r,log™ la]) < M(r, p).

In this section we show that I'; and I';, intersect at most finitely often. Let s, be
asin Theorem B with g = p and A = p. If the paths intersect infinitely often, then



156 A. HINKKANEN AND JOHN ROSSI

corresponding to infinitely many domains D, as above, there exists an s, such
that an arc of the circle |z] = s, _is contained in D, and intersects both I'y and I',.
In other words we are dealing with two infinite subsequences, one of D, and one
of s,. For convenience and without loss of generality we assume that s, corre-
sponds to D, for all n.

Define U, to be harmonic in D, with boundary values log(| f||f — a|) and set

(3.3) Gul2) = J N 9a(C,2)du(l), z€D,,

where g,(z) is the Green’s function for D, with pole at { and u is the Riesz measure
of log* |al. Then

(3.4 U, — log" |a| = G, + h,,

where h,, is harmonic in D, and

(3.5 h(2) = K

for all ze D,. Here K is a non-negative constant independent of n.

Following an argument in [6, p. 577], let y(s,) be an arc of |z| = s, having
endpoints z; on I'y and z, on I',. Now (2.3) holds with A = p < 1/2 on s,,. This
together with (3.2) implies that a is uniformly large on |z| = s,. Then since f — a
approaches 0 on I'y and f approaches 0 on I',, we obtain

If(z1) — a(zy)l < 3laz))l and |f(z2) — a(z,)| > Fla(z2)).
Hence there exists a point z, on y(s,) such that
|/ (z,) — alzy)| = 3la(z,).

By (2.3) and (3.2), log |a(z,)| = log* |a(z,)| and so, since log(| f||f — al) is subhar-
monic and therefore majorized by U, in D,,

U(z,) 2 log|f(z,)| + log|f(z,) — a(z,)l = 2log™ |a(z,)l — C,

where C is a non-negative constant not depending on n. Thus (3.4) and (3.5) imply
that

(3.6) G,(2,) 2 log™ la(z,)l — (C + K)
Our goal is to show that (3.6) is possible for arbitrarily large n only if
(3.7 p = 1/2 + 2n/n).

This leads to the required contradiction. To do this, let D, be an unbounded
domain containing D = u;>.; D,, such that for all sufficiently large r, the angular
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measure of {6: re'® e D} does not exceed 2#. This is possible by the hypothesis on
the angular measure of D.
Define for ze Dy,

Gr(z) = J;) gr(¢, 2) du(0),

where gr(, z) is the Green’s function for D with pole at {. By the monotonicity of
the Green’s function, we have that

(3.8) Gr(z) 2 G,(2)

forallzin D,,n=1,2,....

Let Q = {z: |arg z] < n} and let go((, z) be the Green’s function of Q with pole at
{. Clearly

sup {go(lll, 2): lz| = r,zeQ} = go(ll, 7).
Then by a result of Baernstein [ 1, Theorem 5] (see also [6, pp. 658—6617)

9allll,r) 2 sup{gr((,2): |zl = r, zeDr}.

Defining
Golz) = J galt, |z) du*(2),
0
we obtain
3.9) Go(r) = sup{Gp(2): |z| =r,zeDr}.
By (3.6), (3.1), (3.2) and (2.4) we obtain
(3.10) Galss) Z (1 — o(1)) log™ |a(z,)|
2 (1 — of1))A(s,, log™ |al)
g (1 - 0(1))A(Snap)
Cos TP
g (1 - 0(1))7'Cp Sin np N(S,,, p)’
asn — oo.
On the other hand,
© t?+sb
(3.11) Gals,) = J log Frl du*(t)
0 n
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where f = n/2n. For the moment let us disregard the logarithmic singularities in
(3.11) and formally integrate it by parts twice. We obtain

(3.12) Galsa) = L K(t, 5., BIN(2, P)%

where

258 B2tP(t2F 4 s2P) >0
@ gy =

K(t, 4, p) =

for all t > 0 with t & s,. The non-negativity of the kernel K(t,s,, B) allows us to
use (2.1) and a routine argument (see, for example, [7, p. 177]) to deduce that

Sn/’l 14 d[
Galsa) = (1 + o(1))N(s,, p) K(t, %ﬂ)( )

Snlln t

dt
t

=1 +o) )N(S..,P)J K(t, S,.,l?)( )

Formally integrating the right hand side of the above inequality by parts twice
and noting by a suitable contour integral that

® ° dt i
p’ j log ( > = np—bL
0 t cos pn

for any positive r, we obtain
P'7

4
b

(3.13) Golsn) = (1 + o(1))m p

N(sy, p)-

Hence (3.10) and (3.13) yield
1 — tan(np)tan(pn) £ 0.

Since0 <n<nand0 < p < 1/2,wealsohave 0 < np < n/2and 0 < pnp < w/2
so that we further get tan(np + pn) < 0. This gives np + pn = /2, which is
equivalent to (3.7), as required.

To make (3.4) rigorous, we follow an argument used in [2, pp. 391-395] or [8,
pp. 69-71]. As in those articles, we can write for any r sufficiently close to s,

du*(t) + o(N(s,)),

Rn
Go(r) = J log
0

where R, = s,/(2n,). Also we can choose an appropriate sequence 7, = 1 with
T, = 1 as n — oo, and write



ENTIRE FUNCTIONS WITH ASYMPTOTIC FUNCTIONS 159

By b

Sn/tn R, t +
Gor) = + lo
Q( ) <J;) J;,,:,,) g t,; _ r/;
SnTn IB
+ log
Sn/tn

We integrate the first two integrals by parts twice and estimate the boundary
terms as well as the third integral in exactly the same fashion as in [2] and [8].
The only change is the use of a subharmonic version of the Boutroux-Cartan
lemma which can be found in [6, Lemma 6.17, p. 366]. Thus we have proved that
there can be only finitely many D,.

dp*(1)

B
T (O + oNGs),

4. Proof of (1.1).

We now may assume that the paths I'; and I';, intersect only at the origin and
bound the unbounded region D which has angular measure not exceeding 2. We
assume that (1.1) is false. Then there exists a sequence R, — oo on which it fails.
Let D, be the component of D n {z: |z| < R, } containing the origin on its bound-
ary. We define the harmonic function U, in D, as we did before with boundary
values log|f| + log|f — a| and obtain that

(41) Un - 10g+ |a‘ = Gn + hm

where G, is as before. The function A, is a harmonic function in D,,, with boundary
values not exceeding a positive constant K independent of n on 0D, n(I'y U T',)
and equal to log(|f||f — al) — log* |al on @D, N {z: |z| = R, }. Since (1.1) fails on
R, and since the order of a is p < n/2yn, we must have

4.2) lim sup max {h,(z)/r"'*":z€ dD,, |z| = R,} < 0.

But (4.2), the fact that the angular measure of D never exceeds n and a trivial

application of the Carleman-Tsuji inequality [9, p. 116], show that given ¢ > 0
and r, there exists n such that

sup{h,(2): |zl =r,zeD,} <K + ¢

Thus picking a sequence s, as in Theorem B, we can find a corresponding
subsequence R,, such that
4.3) lim sup max (h,, (2): |z| = s, z€dD, } £ K.
k=
Thus by (4.3), the term h,,_in (4.1) is asymptotically at most K and we are in

exactly the same situation as in the preceding section. The proof of Theorem 1 is
complete.
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