COPIES OF C₀ IN CERTAIN VECTOR-VALUED FUNCTION BANACH SPACES

J. C. FERRANDO

Abstract.

In this note we study some vector-valued function spaces which contain a copy of c_0 , and have the property that the lack of a copy of c_0 in the range space guarantees the presence of a copy of ℓ_{∞} in the whole space.

Assuming X and Y are two normed spaces over the field K of real or complex numbers, $\mathcal{L}(X,Y)$ will denote the linear space of all bounded linear operators from X to Y equipped with the operator norm topology. If X and Y are Banach spaces, then $\mathcal{K}(X,Y)$ will stand for the closed linear subspace of $\mathcal{L}(X,Y)$ of all those compact mappings. If X, Y and Z are normed spaces, $\mathcal{B}(X \times Y,Z)$ will denote the normed space of all continuous bilinear mappings from $X \times Y$ into Z with the supremum norm. As usual we will write $\mathcal{B}(X,Y)$ instead of $\mathcal{B}(X \times Y,K)$.

If Ω is a non-empty set, Σ a σ -algebra of subsets of Ω and X is some Banach space, ba (Σ,X) and ca (Σ,X) will respectively stand for the Banach space of all bounded vector measures and all countably additive vector measures $F\colon \Sigma \to X$, both equipped with the semivariation norm $\|F\| = \sup \{\sum_{A \in \Pi} |x^*F(A)| \colon x^* \in X^*, \|x^*\| \le 1, \Pi \in \mathscr{P}\}$, where \mathscr{P} is the family of all finite partitions of Ω by elements of Σ . Finally, bvca (Σ,X) will represent the Banach space of all X-valued countably additive measures of bounded variation defined on Σ , provided with the variation norm $|F| = \sup \{\sum_{A \in \Pi} \|F(A)\| \colon \Pi \in \mathscr{P}\}$.

In this paper we are going to consider some classes of Banach spaces E(X) of X-valued functions, containing a copy of c_0 , with the property that the lack of a copy of c_0 in the range (Banach) space X guarantees the presence of a copy of ℓ_{∞} in the whole space E(X).

THEOREM 1. Let X be a normed space and let Y be a Banach space. Then $\mathcal{L}(X,Y)$ contains a copy of c_0 if and only if one of the following two conditions holds:

Received March 22, 1994.

- (i) Y contains a copy of c_0 , or
- (ii) $\mathcal{L}(X,Y)$ has a copy of ℓ_{∞} .

PROOF. Assume that $\mathcal{L}(X,Y)$ has a copy of c_0 but Y does not contain a copy of c_0 . Let J be an isomorphism from c_0 into $\mathcal{L}(X,Y)$ and set $T_n := Je_n$ for $n \in \mathbb{N}$. Then, the formal series $\sum_n T_n$ is weakly inconditionally Cauchy and hence there is some C > 0 so that $\sup_n \|\sum_{1 \le i \le n} \xi_i T_i\| \le C \|\xi\|_{\infty}$ for each $\xi \in \ell_{\infty}$. Since for each x in X the linear mapping $T \to T(x)$ from $\mathcal{L}(X,Y)$ to Y is bounded (and hence, weakly continuous), it follows that $\sum_n T_n(x)$ is weakly unconditionally Cauchy for each $x \in X$. But, as Y does not contain a copy of c_0 , $\sum_n T_n(x)$ is unconditionally convergent in Y for each $x \in X$ as a consequence of a result of Pelczynski ([1, p. 45]).

Let us define $\phi: \ell_{\infty} \to \mathcal{L}(X, Y)$ by $\phi \xi(x) = \sum_{n} \xi_{n} T_{n}(x) \, \forall x \in X$. Given $x \in X$ and $\xi \in \ell_{\infty}$, let $\varepsilon > 0$ and let $n \in \mathbb{N}$ be so that $\|\sum_{j>n} \xi_{j} T_{j}(x)\| < \varepsilon$. Then, $\|\phi \xi(x)\| \le \|\sum_{1 \le k \le n} \xi_{k} T_{k}(x)\| + \|\sum_{k > n} \xi_{k} T_{k}(x)\| \le C \|\xi\|_{\infty} \|x\| + \varepsilon$. Hence, $\|\phi \xi(x)\| \le C \|\xi\|_{\infty} \|x\|$. This shows that $\phi \xi \in \mathcal{L}(X, Y) \, \forall \xi \in \ell_{\infty}$ and that ϕ is bounded. Since $\inf_{n} \|T_{n}\| > 0$, there exists an infinite subset M of N such that the restriction of ϕ to $\ell_{\infty}(M)$ is an isomorphism ([7]). Thus $\mathcal{L}(X, Y)$ contains a copy of ℓ_{∞} .

Conversely if Y contains a copy of c_0 , then $\mathcal{L}(X, Y)$ contains a copy of c_0 since, given some $x^* \in X^*$ with $||x^*|| = 1$, the map $\varphi : Y \to \mathcal{L}(X, Y)$ defined by $\varphi(y)x = (x^*x)y$ for $x \in X$ and $y \in Y$ is an isometry into.

REMARK 1. If X is an infinite-dimensional normed space and Y is any Banach space containing a copy of c_0 , then $\mathcal{L}(X,Y)$ contains a copy of ℓ_∞ . Indeed, assuming without loss of generality that Y coincides with c_0 and choosing a Josefson-Nissenzweig sequence (x_n^*) in X^* [1, p. 219], we may define $\phi:\ell_\infty\to \mathcal{L}(X,c_0)$ by $\phi\xi(x)=(\xi_nx_n^*x)$. Clearly, $\|\phi\xi\|\leq \|\xi\|_\infty$, and hence $\phi\xi\in\mathcal{L}(X,Y)$ and ϕ is bounded. Since $\inf_n\|\phi(e_n)\|=1$, we conclude as in the theorem above that $\mathcal{L}(X,Y)$ has a copy of ℓ_∞ .

COROLLARY 1. Let X be an infinite-dimensional normed space and let Y be a Banach space. Then $\mathcal{L}(X,Y)$ contains a copy of c_0 if and only if it contains a copy of ℓ_{∞} .

PROOF. Assume $\mathcal{L}(X, Y)$ contains a copy of c_0 . If Y does not contain any copy of c_0 this is consequence of the previous theorem. If Y has a copy of c_0 , then apply the preceding remark.

COROLLARY 2. Assume that X is a Banach space and Σ is any infinite σ -algebra of subsets of a Ω . Then $ba(\Sigma, X)$ has a copy of c_0 if and only if $ba(\Sigma, X)$ has a copy of ℓ_{∞} .

PROOF. With $\ell_0^{\infty}(\Sigma)$ standing for the space of all Σ -simple functions on Ω endowed with the supremum norm, the linear operator $\phi: \mathcal{L}(\ell_0^{\infty}(\Sigma), X) \to ba(\Sigma, X)$

defined by $(\phi T)(E) = T(E)$ for $T \in \mathcal{L}(\ell_0^{\infty}(\Sigma), X)$ and $E \in \Sigma$ is an isometry between these two Banach spaces. So Corollary 1 applies.

COROLLARY 3. If X and Y are normed spaces and Z is a Banach space, then $\mathcal{B}(X \times Y, Z)$ has a copy of c_0 if and only if either Z has a copy of c_0 or $\mathcal{B}(X \times Y, Z)$ has a copy of ℓ_{∞} .

PROOF. This is a direct consequence of the previous theorem, since $\mathcal{B}(X \times Y, Z)$ is isometric to $\mathcal{L}(X \otimes_{\pi} Y, Z)$.

EXAMPLE 1. Assuming X is a Banach space without the compact range property (CRP) it has been proved in [4] that $\mathcal{K}(C[0,1],X)$ has a copy of c_0 . On the other hand each copy of ℓ_1 in C[0,1] is non-complemented (it is easy to construct a copy of ℓ_1 in real C[0,1], [1,p.203]; this copy cannot be complemented in C[0,1] since the space $\operatorname{rca}(\mathcal{B}_{[0,1]})$ of regular Borel measures defined on the σ -algebra of Borel sets of [0,1] does not have a copy of c_0 : otherwise there would be a $\lambda \in \operatorname{rca}^+(\mathcal{B}_{[0,1]})$ so that $L_1(\lambda)$ would have a copy of c_0 , a contradiction). As it has been proved in [6] that if X and Y are Banach spaces, $\mathcal{K}(X,Y)$ contains a copy of ℓ_∞ if and only if either X has a complemented copy of ℓ_1 or Y has a copy of ℓ_∞ , it follows that if a Banach space X does not have the CRP and does not contain a copy of ℓ_∞ , then $\mathcal{K}(C[0,1],X)$ has a copy of ℓ_∞ but not of ℓ_∞ . According to Corollary 1, $\mathcal{L}(C[0,1],X)$ has a copy of ℓ_∞ .

It is known that if Z is a Banach space having a non-complemented copy of ℓ_1 , then Z^* does not have the CRP and does not have any copy of c_0 . Thus $\mathcal{L}(C([0,1],C[0,1]^*)$ has a copy of ℓ_∞ but not $\mathcal{K}(C[0,1],C[0,1]^*)$.

On the other hand, $\mathscr{K}(\ell_p,\ell_p)$ has a copy of c_0 for $1 \leq p < \infty$ (if (e_n) is the unit vector basis of ℓ_p , for each n define $T_n:\ell_p \to \ell_p$ by $T_n\xi = \xi_n e_n$; then (T_n) is a basic sequence in $\mathscr{K}(\ell_p,\ell_p)$ equivalent to the unit vector basis of c_0) and so $\mathscr{L}(\ell_p,\ell_p)$ contains a copy of ℓ_∞ for $1 \leq p < \infty$. Moreover, because of the aforementioned result of [6], $\mathscr{K}(\ell_p,\ell_p)$ does not contain a copy of ℓ_∞ for 1 .

Assuming that $p, q \ge 1$ with 1/p + 1/q = 1, if X contains a copy of ℓ_q while Y has a copy of ℓ_p , and moreover X^* or Y has the approximation property, one has $\mathscr{K}(\ell_p,\ell_p) \cong \ell_q \overset{\vee}{\otimes}_{\epsilon} \ell_p \longrightarrow X \overset{\vee}{\otimes}_{\epsilon} Y \cong \mathscr{K}(X^*,Y)$. So $\mathscr{K}(X^*,Y)$ has a copy of ℓ_{∞} . Hence $\mathscr{L}(X^*,Y)$ has a copy of ℓ_{∞} . In particular, if (Ω,Σ,μ) is any finite measure space $(\Sigma$ being infinite), then $\mathscr{L}(L_p(\mu),L_p(\mu))$ has a copy of ℓ_{∞} for $1 while <math>\mathscr{K}(L_p(\mu),L_p(\mu))$ does not contain ℓ_{∞} for 1 .

THEOREM 2. Assume that X is a Banach space. Then $ca(\Sigma, X)$ contains a copy of c_0 if and only if one of the following two conditions holds:

- (i) X contains a copy of c_0 , or
- (ii) $\operatorname{ca}(\Sigma, X)$ has a copy of ℓ_{∞} .

PROOF. Let J be an isomorphism from c_0 into $\operatorname{ca}(\Sigma,X)$. Since the map $F \to F(E)$ from $\operatorname{ca}(\Sigma,X)$ into X is continuous for each $E \in \Sigma$, the series $\sum_n Je_n(E)$ is weakly unconditionally Cauchy in X for each $E \in \Sigma$. Assuming that X does not have any copy of c_0 , then for every $E \in \Sigma$, the series $\sum_n Je_n(E)$ is unconditionally convergent in X. Then we define the linear operator $T: \ell_\infty \to \operatorname{ca}(\Sigma,X)$ by $T\xi(E) = \sum_n \xi_n Je_n(E)$ for each $\xi \in \ell_\infty$ and each $E \in \Sigma$. Setting $\xi^n := (\xi_1,\ldots,\xi_n,0,\ldots,0,\ldots)$ then we have $\|T\xi(E)\| = \|\sum_n \xi_n Je_n(E)\| = \lim_n \|J\xi^n(E)\| \le \sup_n \|J\xi^n\| \le \sup_n \|J\| \|\xi^n\|_\infty \le \|J\| \|\xi\|_\infty$. This shows that $T\xi$ is a bounded vector measure and $\|T\| \le 4\|J\|$. On the other hand, according to a theorem of Bartle-Dunford-Schwartz (see [2,p,14]) there is a $\mu \in \operatorname{ca}^+(\Sigma)$ such that $J\xi^n \ll \mu$ for each $\xi \in \ell_\infty$ and each $n \in \mathbb{N}$. Since $\lim_n J\xi^n(E) = T\xi(E) \in X$ for $\xi \in \ell_\infty$ and $n \in \mathbb{N}$, the Vitali-Hahn-Saks theorem guarantees that $T\xi \ll \mu$ for each $\xi \in \ell_\infty$. Hence $T\xi$ is countably additive for each $\xi \in \ell_\infty$ and so $T(\ell_\infty) \subseteq \operatorname{ca}(\Sigma,X)$. Then as $\inf_n \|Te_n\| > 0$, $\operatorname{ca}(\mu,X)$ must contain a copy of ℓ_∞ .

Conversely, assuming that X contains a copy of c_0 and $\mu \in \operatorname{ca}(\Sigma)$ has semivariation one, as the map $\psi: X \to \operatorname{ca}(\Sigma, X)$ defined by $\phi(x)(E) = \mu(E)x$ for $E \in \Sigma$ and $x \in X$ is an isometry into, $\operatorname{ca}(\Sigma, X)$ contains a copy of c_0 .

EXAMPLE 2. If λ stands for the Lebesgue measure on [0,1] while R_1 denotes the closed subspace of $L_1[0,1]$ (isomorphic to l_2) spanned by the Rademacher functions, then $R_1 \overset{\vee}{\otimes}_{\epsilon} \ell_2$ is isometric to a subspace of $L_1[0,1] \overset{\vee}{\otimes}_{\epsilon} \ell_2$. This last space is isometric to a subspace of $\operatorname{ca}(\mathscr{A},\ell_2)$, where here \mathscr{A} denotes the σ -algebra of all λ -measurable sets of [0,1]. Given that $\mathscr{K}(\ell_2,\ell_2)$ is isometric to $R_1 \overset{\vee}{\otimes}_{\epsilon} \ell_2$, then $\operatorname{ca}(\mathscr{A},\ell_2)$ has a copy of c_0 . Thus, by Theorem 2, $\operatorname{ca}(\mathscr{A},\ell_2)$ contains a copy of ℓ_{∞} .

THEOREM 3. Assume that X is a Banach space. Then $bvca(\Sigma, X)$ has a copy of c_0 if and only if one of the following two conditions holds:

- (i) X contains a copy of c_0 , or
- (ii) bvca(Σ , X) has a copy of ℓ_{∞} .

PROOF. Let J be an isomorphic from c_0 into $\operatorname{bvca}(\Sigma,X)$. Assuming X does not contain a copy of c_0 , then as in the theorem above the series $\sum_n J e_n(E)$ is unconditionally convergent in X for each $E \in \Sigma$. Again the linear operator $T: \ell_\infty \to \operatorname{bvca}(\Sigma,X)$ defined as before is bounded. In fact, if $\{E_i, 1 \le i \le n\}$ is a partition of Ω by elements of Σ , then

$$\sum_{i=1}^{n} \|T\xi(E_{i})\| = \sum_{i=1}^{n} \|\sum_{j} \xi_{j} J e_{j}(E_{i})\| = \sum_{i=1}^{n} \lim_{k} \|J\xi^{k}(E_{i})\| \leq \sup_{k} \sum_{i=1}^{n} \|J\xi^{k}(E_{i})\| \leq \sup_{k} \|J\xi^{k}\| \leq \sup_{k} \|J\| \|\xi^{k}\|_{\infty} \leq \|J\| \|\xi\|_{\infty}$$

Setting $\mu := \sum_{n} 2^{-n} |Je_n|$, clearly $J\xi^n \ll \mu$ for $\xi \in \ell_\infty$ and $n \in \mathbb{N}$. Now, since

 $\lim_{n} J \xi^{n}(E) = T \xi(E)$ for $\xi \in \ell_{\infty}$ and $E \in \Sigma$, then $T \xi \ll \mu$ for each $\xi \in \ell_{\infty}$ and so $T(\ell_{\infty}) \subseteq \text{bvca}(\Sigma, X)$. As $\inf_{n} ||Te_{n}|| > 0$ the conclusion follows.

The converse is obvious, since X is isometric to a subspace of byca (Σ, X) .

REMARK 2. If X is a normed space, as $X^* = \mathcal{L}(X, K)$ Theorem 1 implies the well-known fact that X^* contains a copy of c_0 if and only if X^* has a copy of ℓ_∞ . On the other hand, it has been shown in [3] that if each nonzero finite positive measure on Σ is purely atomic, then $\operatorname{ca}(\Sigma, X)$ has a copy of c_0 or ℓ_∞ if and only if X does, and it has been shown in [5] that under the same hypothesis on Σ , then $\operatorname{bvca}(\Sigma, X)$ contains a copy of c_0 or ℓ_∞ if and only if X does.

Finally, it is worth mentioning that in [8] a Banach space X has been constructed which does not contain a copy of c_0 while $bvca(\mathscr{B}_{[0,1]}, X)$ does contain a copy of ℓ_{∞} .

REFERENCES

- J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag. New York, Berlin, Heidelberg, 1984.
- 2. J. Diestel and J. J. Uhl, Jr., Vector Measures. Math. Surveys Monographs 15, 1977.
- 3. L. Drewnowski, When does ca(Σ , Y) contain a copy of ℓ_{∞} or c_0 ? Proc. Amer. Math. Soc. 109 (1990), 747–752.
- 4. G. Emmanuele, Dominated operators on C([0,1]) and the CRP. Collect. Math. 41 (1990), 21-25.
- 5. J. C. Ferrando, When does byca (Σ, X) contain a copy of ℓ_{∞} ? Math. Scand. 74(1994), 271–274.
- 6. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- 7. H. P. Rosenthal, On relatively disjoint families of measures, with some application to Banach space theory, Studia Math. 37 (1979), 13-36.
- 8. M. Talagrand, Quand l'espace des mesures a variation bornée est-il faiblement sequentiellement complet? Proc. Amer. Math. Soc. 90 (1984), 285–288.

E.U. INFORMATICA
DEPARTAMENTO DE MATEMATICA APLICADA
UNIVERSIDAD POLITECNICA
E-46071 VALENCIA
SPAIN