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GENERALIZED WEYL-VON NEUMANN
THEOREMS (11)

HUAXIN LIN

Abstract.

We show that the multiplier algebra M(A) of a -unital C*-algebra with stable rank one and (FU) has
real rank zero. We also show that the multiplier algebras M(A) of matroid C*-algebras and many
other C*-algebras have (FU). Consequently, if u is a unitary in M(A) and ¢ > 0, there are projections
{pn} € A such that

o

u= Y ap,+a

n=1
u= Y p,=1,where|a,| =1,ae4 and a| <.

n=1

0. Introduction.

Let H be a separable, infinite dimensional Hilbert space, K be the C*-algebra of
compact operators on H and B(H) the C*-algebra of bounded operators on H.
The Weyl-von Neumann theorem says: if T'is a self-adjoint operator in B(H) and
¢ > 0, then there is a diagonizable self-adjoint matrix D in B(H) and a compact
operator ke K such that

T=D+k
with |k|| <e. Let A4 be a C*-algebra and M(A) its multiplier algebra
(M(A) = {me A**: ma, ame A, VaeA} where A** is the enveloping
von-Neumann algebra. So M(A) is the idealizor of 4 in A**)) We say that the

Weyl-von Neumann theorem holds for 4 and M(A) if for any T € M(A),.,. and
¢ > 0, there are projections p, in A and ae A4 such that

T= Z}'npn'*'as

i=1

where ) 2 | p; = 1, A, is a bounded sequence of real numbers and [|a|| < &. It has
been shown ([M] and [Zh 1]) that the Weyl-von Neumann theorem holds for
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A and M(A) if and only if M(A) has real rank zero. (A C*-algebra A has real rank
zero if the set of self-adjoint elements with finite spectra is dense in A, . If A has
real rank zero, we will write RR(4) = 0. See [BP]) When is RR(M(A)) = 0?
A necessary condition is RR(A4) = 0. W*-algebras and AW*-algebras all have
real rank zero. AF-algebras, Bunce-Denddens algebras and all purely infinite
simple C*-algebras have real rank zero (See [BP]). The question whether
RR(M(A)) = 0if A is an AF-algebra was raised formally in [BP]. However, as
early as 1974, George A. Elliott raised the same question at Tohoku. It has been
shown by L. G. Brown and G. K. Pedersen [BP], S. Zhang[Zh 3,7, 8] and by N.
Higson and M. Rerdam [HR] that the above question has an affirmative answer
in the case that A4 is a matroid C*-algebra. The author shows recently that
RR(M(A)) = 0 for every o-unital AF-algebra ([Li3]). For more information
concerning the generalized Weyl-von Neumann theorem readers are referred to
[Zh 1-8] and [Li 3]. One key result we established in [Li 3] is the following:

THEOREM A ([Li 3, 3.2]). Let A be a o-unital C*-algebra. Then M(A)/A has real
rank zero if K{(B) =0 for every hereditary C*-algebra B of M(M,(A)) which
contains M,(A), where n = 1,2,....

We will show in section 2 that every g-unital C*-algebra with real rank zero,
stable rank one, zero K,-group and satisfying a certain condition (a) satisfies the
conditions in Theorem A. By combining [BP, 3.13 and 3.14] as in [Li 3], we
conclude that RR(M(A)) = 0 for these C*-algebras. We also show, in section 3,
that every simple C*-algebra with real rank zero, stable rank one and satisfying
the condition (a) satisfies conditions in Theorem A. Therefore corona algebras of
those C*-algebras have real rank zero. In section 4, we show that the
Weyl-von-Neumann theorem for unitaries holds for the multiplier algebras of
matroid algebras and other C*-algebras with real rank zero. Applications of
these results to the theory of C*-algebra extensions will appear elsewhere.

We would like state the following definitions.

DEerINITION 1.1. [Ph 1, 1.2] Let 4 be a unital C*-algebra and let Uy(A) be the
connected component of the unitary group U(A) of A. The exponential rank of A,
written cer(A), is the largest element of the set of symbols 1,1 + ¢,2,2 + ¢,..., 00
(with the obvious order) consistent with the following restrictions:

1. cer(A) £ nifevery u e Uy(A), the identity component of the unitary group, is
the product exp(ih,) exp(ih,)...exp(ih,) for some hy, h,,..., h,€ Ag,;

2. cer(A) £ n + eif every ue Uy(A) is a norm limit of products of n exponen-
tials as in (1).

For nonunital A4, set cer(4) = cer(A).

DEFINITION 1.2. A unital C*-algebra A is said to have (FU) (weak (FU)) if the
set of unitaries with finite spectra is norm dense in U(A) (Uy(A4)). For onunital A4,
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we say A has (FU) (weak (FU)), if A has (FU). It is known that W*-algebras,
AW*-algebras, AF-algebras and many other (see [ Ph 1]) have (FU). On the other
hand, if 4 has weak (FU), then RR(4) = 0 and cer(4) < 1 + ¢. Itis shown in [Ph
1] that the irrational rotation algebras 4, have weak (FU) for 6 in a dense G;-set
of [0, 1]\Q and that Elliott’s C*-algebras 4 of inductive limits of basic building
blocks have weak (FU). It is shown in [ Ph 2] that for every purely infinite simple
C*-algebra A, cer(4) £ 1 + & Our results in section 3 show that for matroid
C*-algebras and purely infinite simple C*-algebras 4 (and many other C*-alge-
bras), cer(M(A)/A) £ 1 + «.

We will use the following notations throughout this paper. K is the C*-algebra
of compact operators on a separable infinite-dimensional Hilbert space. M,(A4) is
the n x n matricies over 4. Her(a) denotes the hereditary C*-subalgebra gener-
ated by element a and C(A) denotes the corona algebra M(A)/A.

This work was done while the author visited Mathematical Institute, Copen-
hagen University and University of Toronto. The author has benefited from
conversations or electronic correspondence with Larry Brown, George Elliott,
Mikael Rerdam, Gert K. Pedersen, N. C. Phillips and S. Zhang. This work is
partially supported by a grant from the Danish Natural Science Reeeeeesearch
Council, a grant from the Natural Sciences and Engineering Research Council of
Canada and a grant from the National Natural Science Foundation of China.
The author would also like to thank George A. Elliott and Gert K. Pedersen for
their kind arrangement for these visits.

1. Generalized Weyl-von Neumann theorems for self-adjoint elements.

The main result in this section is Theorem 2.9 which improves our earlier results
in [Li 3]. We start with the following lemma.

LEMMA 2.1 ([Zh 10]). Let A be a C*-algebra with real rank zero and stable rank
one, n be a positive integer. Suppose that

p=7Y p®ei,
i=1

P1EP2S... = Pns

where the p;’s are projections in A and {e;;} is a matrix unit for M,, the n x n
matrices. Then

cer(pM,(A)p) < d(n) + cer(p,Ap,) + ¢,
if n = 24;

cer(pM,(A)p) < d(n) + 1 + cer(p,Ap,) + &,
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if 24" < n < 29™* Y where d(n) = {In(n)/In2} and {k} is the largest integer
smaller or equal to k. Moreover, if the unitary group of p,Ap. is connected,
U(pM,(A)p) is also connected.

REMARK 2.2. Our earlier estimate is
cer(pM,(A)p) < 3(n — 1) + cer(p,Ap,),

which is enough for our purpose in this paper. But since 2.1 is much better, with S.
Zhang’s permission, we quote it from [Zh 10].

ADDED IN PROOF: It has been shown by the author (Exponential rank of
C*-algebras with real rank zero and the Brown-Pedersen Conjectures, J. Funct.
Anal. 114(1993), 1-11) that cer(B) < 1 + ¢forevery C*-algebra of real rank zero.

LemMA 2.3. Let A be a C*-algebra with real rank zero. Then the map:
K (I) > K (A) is injective for any ideal I of A.

Proor. For each n, by [BP, 2.10],
RR(M,(4)) = RR(M,(I)) = RR(M,(A/I)) = 0.

It follows from [Zh 3, 3.2] that every projection in M, (A/I) life to a projection in
M, (A).
From the six-term exact sequence in K-theory

Ko(I) — Ko(4) — Ko(A/D)

1 !
KA/ « Ki(4) < K,(),

we see that the map Ky(4) - Ky(A/I) is surjective. Hence K (I) - K(A) is
injective.

LEMMA 2.4. Let A be a C*-algebra with real rank zero and K{(A) = 0. If B is
a hereditary C*-algebra of A, then K(B) = 0.

Proor. We may assume that A4 is unital. We first consider the case B = pAp
for some projection pin A. Let B; = (4 ® K) and {1 ® e;;} be a matrix unit for
C-1 ® K.For aninteger n, let w be a unitaryin (37, p ® e;)BQ -, p ® e;;) and
u=1-Y",p®e;+ w.Itisenough to show that uis connected to the identity
of (pAp ® K).

Let A, be the C*-subalgebra of B, generated by {1,1 ® ¢;;,i,j = 1,2,...} and
w. Supposethat separable C*-algebra A, is constructed. Since B, has real rank
zero (see [BP]), there is a sequence of projections {p, } such that every self-adjoint
element in A4, can be approximated by elements with the form Y J* | 4;p , where
{A;} are real numbers and {p, } are mutually orthogonal. Suppose that {u,} is
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a dense sequence of unitaries of 4,. Since K (4) = 0, each u, is connected to the
identity in By. Let uy), Uiy, -.., Uxem be the unitaries along the path which
connectes u, to 1 such that

lue — wyll < 1, luemy — 11 < 1

and

Nty — i+ 1)l < 1,

i=12...m—1.
Let 4, be the C*-subalgebra of B, generated by A, px, {tx: Uk(1ys - - - Ukm) } -

Set
A, = < U A,,).
n=1

By the construction, 4, has real rank zero and the unitary group of A, is
connected. Let 4, be the norm closure of

U(Zl@e,_’)Aw( 1®e”>
n=1\i=1 i=1

Then 4, = A,,. Moreover,

(1®ei)do(l ®e;) ® K = A,.
Thus K (Ao) = 0. Let I be the ideal generated by

(p ® ellep ® e11) ® K.
By Lemma 2.3, K ((I) = 0. Since, by [Bn 1],

I®K =(p®ei)Adolp®ey) ®K,

Ki((p®ey1)Ao(lp ®e;1)) =0. Hence u is connected to the identity in
(PAp ® K) .

Now we consider the case that B is not unital. Let u be a unitary in
B’ = (B® K). Again, it is enough to show that u is connected to the identity of
(B®K)™. It is easy to see that u is close to a unitary of the form
(1 =¥ 1®e;)+w, where w is a unitary in (3 f-; 1 x e;)B (Y ¥_, 1 ® e;).
Since B has real rank zero, by [BP, 2.6], B has an approximate identity {d,}
consisting of projections. This implies that w is close to a unitary of the form
QF_ i 1®e;—p)+ w,wherep < Y¥_, 1 ® e;is a projection and w' is a unitary
in pB'p. So u is connected to the unitary (1 — p) + w'. Since B is a hereditary
C*-subalgebra of 4, we have that

pB'p = pM,(A)p.
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Since K (M, (A)) = 0, from what we have shown, K,(pM,(A4)p) = 0. We also have
that (pB'p ® K) =~ B'. Therefore (1 — p) + w’ is connected to the identity of B'.
This implies that u is connected to the identity of B". This completes the proof.

DEFINITION 2.5. A C*-algebra A4 of real rank zero is said to satisfy condition (a)
if there is an integer k such that for every projection pe A

cer(pAp) < k.

From [Li 3, 1.3], every C*-algebra with (FU) satisfies the condition (a). It follows
from 2.1 and [Zh 5, 3.3] that if A has stable rank one and satisfies condition (a),
then M, (A) satisfies condition (a) (with different k though).

LEMMA 2.6. Let A be a o-unital C*-algebra with real rank zero, stable rank one
and K (A) = 0. Suppose that A satisfies condition (a) with the integer k. Then for
any integer m, if B is a unital hereditary C*-subalgebra of M, (M(A))
(= M(M,,(A))), then

cer(B) £ 2({In(m)/In2} + 1 + k) +¢
and the unitary group of B is connected.
Proor. Fix an integer m. Let B = pM(M,,(A))p for some projection p in
M(M,,(A)). If pe M,,(A), by [Zh 5, 3.3], we may assume that p = ) ;_, p; ® ey,

where p| is a projection in 4 and {e;;} is a matrix unit for M,,. Moreover, we may
assume that

PSP, S...S P

Therefore the estimate of cer(B) follows from 2.1. Since K(M,,(4)) = 0, by 2.4,
K(B) = 0. It follows from [Rff, 2.10] that the unitary group of B is connected.
Now we assume that pe M(M,,(A))\M,,(A). For any unitary u in B, by an
Elliott’s trick (see [Ell 1, 2.4], [Zh 6, 1.6] or [Li 3, 2.1]), for ¢ > 0 there are
projections {e,} in M,,(A) and unitaries uy, u, in pM,,(4)p such that

lu — uguy |l <e/2

and

0

U = Z (€20 — €20 2)U1(€2n — €20 -2),
i=1

U = Z (€2n+1 — €2n—1)U2(€2n+1 — €20—1).
i=1
By 2.1 and our condtion (a), there are
bg) € (eZn — €2p- Z)Mm(A)(eZn — €2, 2)s.a.a

i=2Z, 2, ...1such that
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< 8/2"+2,

1
(€2n — €2n—2)1(€2, — €21-2) H exp(lb""

where | = {In(n)/In2} + k + 1. Furthermore, since 4 has real rank zero, we may
assume that ||| £ 2n. Clearly,

e o)

P =Y b® e pM(M,,(A))ps.a..

n=1

Hence

< ) g2"t? =g/

n=1

1
— [1 exp(rt)
k=1

Similarly, there are K% e pM(M,,(A))p, k = 1,2,...,1 such that

< ¢/4.

1
— ] exp(ih$’)
k=1
Therefore

<eé&.

]
— Y. exp(ih{) exp(ihy)
k=1

This completes the proof.

THEOREM 2.7. If A is a o-unital C*-algebra with real rank zero, stable rank one
and K ,(A) = 0, and satisfies condition (a), then for any hereditary C*-subalgebra
B of M,,(M(A)), K,(B) = 0.

Proor. The proof is similar to that of [Zh 6, 2.17].

If B is unital, Lemma 2.6 applies. So we may assume that B is not unital.
Moreover, by 2.4, we may assume that B ¢ A4.Set B’ = (B® <) . Itisenough to
show that a unitary ue B’ can be connected to the identity of B’ by a path of
unitaries in B'. As in the second part of the proof of Lemma 2.4, without loss of
generality, we may assume that u = (1 — F,) + w, where F, = Z}; 11 ®e; and
w is a unitary in F,B'F,.

Now consider the map

. F,B'F, =~ M,(B) » M,(B/B) =~ M,(C).

Set v = 1(w). If we use the same notation v for the corresponding scalar matrix in
M,(B), then we may write w = v + b for some b € M, (B). Clearly wis connected to
a unitary with form F, + b’ in the unitary group of M,(B) for some b’ € M,(B).
Therefore we may assume thatu = 1 + b = (1 — F,) + (F, + D).

Notice that for any integer m = 1, M,,(B) is a hereditary C*-subalgebra of
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M, (M(A)) = M(M,,(A)). Since M,,(A) has real rank zero (see [BP, 2.10]), it
follows from [Zh 2, 1.1] that M,,(B) has LP forany m = 1 (A4 C*-algebra A is said
to have LP if A is the closed linear span of its projectioxfs). It is then routine to
show that B® K has LP. By [Zh 6, 1.1], B® K has an approximate identity
consisting of projections. Then, as in the second part of the proof of Lemma 2.4, it
iseasy to see that u = 1 + b’isclose to a unitary with the form (1 — p) + v where
pisaprojectionin B® K and v is a unitary in p(B ® K)p. So we may assume that
u=(1—p)+ 0. It easy to see that p is close to a projection which is in
F.(B ® K)F, for some k = n, without loss generality, we may further assume that
p=F.

We notice that p(B ® K)p = pM,(B)p = pM,(M(A))p. 1t follows from 2.6 that
v" is connected to the identity of F.(B ® K)F, by a path of unitaries in
F(B ® K)F,. This proves that u is connected to the identity of B’ by a path of
unitaries in B'.

COROLLARY 2.8. Let A be a g-unital C*-algebra with FU) and stable rank one,
then for any hereditary C*-algebra B of M,,(M(A)) for any m, K (B) = 0.

Proor. Itfollowsfrom [Li 3, 1.3], pAp has (FU)for all projectionsin 4. Hence
A satisfies condition (a). Moreover, by 2.1, K;(A4) = 0.

THEOREM 2.9. Let A be a g-unital C*-algebra with real rank zero, stable rank
one and K(A) = 0. If A satisfies condition (a), then M(A) has real rank zero.
Equivalently, for any T € M(A), ,. and ¢ > 0, there are an approximate identity {e,}
of A consisting of projections and an element a€ A, , such that

T=73 Jlei—ei_1)+a,
i=1

where ||la| < ¢ and {4;} is a bounded sequence of real numbers.
Proor. It is an immediate consequence of 2.7, Theorem A and [BP, 3.14].

COROLLARY 2.10. Suppose that A is a g-unital C*-algebra with (FU) and stable
rank one. Then M(A) has real rank zero.

COROLLARY 2.11([Li3]). If Ais ao-unital AF-algebra, then M(A) has real rank
zero.

2. Corona algebras M(A)/A with real rank zero.

If M(A) has real rank zero, then the corona algebra C(4) = M(A)/A has real rank
zero. However, there are examples of C*-algebras with RR(A4) = RR(C(4)) =0
but RR(M(A)) £ 0. It is shown in [Zh 3] that if 4 = B® K, where B is the
Bunce-Deddens algebra, then RR(A4) = RR(C(A4)) =0 but RR(M(A)) + 0. Wese
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from Theorem A that if 4 is a g-unital C*-algebra such that for any n, K,(B) = 0
for every hereditary C*-subalgebra B of M,(M(A)) which contains M,(A4) but is
not M,(A), then the corona algebras C(A4) has real rank zero. It was shown by
Larry Brown that K, (M(B)) =0, where B is stably isomorphic to
a Bunce-Deddens algebra. Notice that K,(B) + 0. We show in this section that
many simple C*-algebras 4 with real rank zero have this phenominon. Hence
corona algebras of these algebras have real rank zero.

LEMMA 3.1. Let A be a non-elemetary simple C*-algebra with real rank zero and
p a non-zero projection in A, then for any positive integer k, there are k non-zero
mutually equivalent and mutually orthogonal projections q; < p (i = 1,2,...,k).

ProoF. Since A4 is a non-elemetary, pAp is also non-elementary. Moreover
pAp has real rank zero (See [BP, 2.8]). We may assume that p = 1. There is
a nonzero projection g in 4 such that 1 — g + 0. Suppose that a is a nonzero
positiveelementin (1 — q)4(1 — g). By [Cu 1, 1.8], there is a nonzero element yin
A such that

y*y€eqAq, yy*e(l — @)A(l — g).
Let y = u|y| be the polar decomposition of y in A**. Then by [Li, 1.2], the map
d(x) = uxu*

is an isomorphism from Her (]y|) onto Her(|y*|). Let g, be a nonzero projection in
Her(]y]). Then uq, € A (See [Li 2, 1.2]). Moreover,

(uq:)*(uq1) = g,
and
(ug)(uqy)* = q2
is a projection in
Her (ly*)) = (1 — pA(1 — p).
The lemma then follows by induction.

LEMMA 3.2. Let A be a simple C*-algebra with stable rank one and p and q two
nonzero, mutually orthogonal projections in A. Suppose that ue U(pAp), then there
is ave U(qAq) such that

u+veUo((p + 9A(p + 9)).

ProOF. We may assume that p + g = 1. Working in 4 ® K, let
e = diag(0,1,1,...).
By [Bn 1], there is a We M(A ® K) such that
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W*W =pR@®e, WW*=gq®e.
By [Rff, 2.10], there is ve U(qAq) such that
[diag(v,4.q,..)] =[q + Wu* Q@ e, W* + (q® e — q4)]
in K,(qAq), where {e;;} is a matrix unit for K and
4y = WUu® e ) W*Wu* @ ey)W* = Wip ® ey )W
Set Wo = W(p ® ) + W*(q ® e), and W, = diag(1, W,). Then
[Widiaglv + pu+ ¢, L,1,.. )W¥]=[v+ Wu® e ) W* + (e —q;)] =0

in K,(A). So [diag(v + p, u + g, 1, 1...)] = 0 in K,(A). Hence, by [Rff, 2.10],
u + ve Uy(A). This completes the proof.

LEMMA 3.3. Let A be a (non-unital) o-unital simple C*-algebra with real rank
zero and stable rank one. Suppose that A satisfies condition (a), then the unitary
group of M(A) is connected.

Proor. We may assume that A is non-elementary. Suppose that v is a unitary
in M(A). It follows from [Ell 1, 2.4] (see 2.6 also) that there are unitaries u; and u,
in M(A) such that

lu — ugus|| <1

and

oo
U = Z (€20 — €2n—2)U1(€2n — €24 2)
n=1

o)

U, = Z (€2n+1 — €2n-1)Uz(€2n+1 — €2n-1)
n=1

where e,(e, = 0) is an approximate identity for A. So uis connected with u,u,. To
show that u is in Uy(M(A)), it is enough to show that both u, and u, are in
Uy(M(A)). Therefore we may assume that

o

u= Z (en - en—l)u(en - en—1)~

n=1

Set u, = (e, — e, ,)ule, — e,_ ). These u, are unitaries in

(en - en—l)A(en - en—l)-

By factoring u further, we may assume that u,, = (e;, — ez,-1),n = 1,2,.... By
Lemma 3.1, we write
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2n+1
_ i
€n — €p—1 = Z p‘zi.,
i=1

where each p}), is a projection, p), # 0ifi & 2n + 1, p) are mutually orthogonal
and p§) ~ pY if i,j 4 2n + 1. Suppose that s{ are partial isometries in
(e2n — €2n-1)A(€2n — €3, 1) such that

(SEDSEN* = PS5, (SSN*(s5) = P,

i,j =1,2,...,2n. By Lemma 3.2, there is a unitary v%/ ~ ! in p2~ Y 4p2i~ 1 such
that v~ Y + u¥,_ € Ug(A),i = 1,2,...,n. Set

sH) = pE " Vcost — sE120sint + (s 120 *sint + pPcost,

n

— 2i—1 2i—1 2 2 +1

= Z 0(2"' )P{an )+ Z p( l) ( n )’
i=1 i=1

n
Z pEi—b 4 Z (VF~ Dy*pED 4 p2n+1)
i=1 i=1

and
- [0) *
Wa,(t) = Y2n< Z s‘z‘:.(t) + p(2n+ 1)) 22,.(2 S(z':,(t) + p(2n+1)>
i=1 i=1
Won—1(t) = Uzp— 4.

So {w,(t)} is equi-continuous on [0,7/2]. Thus w(t) =Y 2, w,(t) is a norm
continuous path in U(M(A)) with w(0) = u and

W(TC/z) Z Upp—1 + Z <Z v(lt 1) (21—1) + i(v(zzni——l)) p(Zl) +p(2n+l)>

n=1 i=1

By rearranging terms, we may write

wn/2) = ) w,
where each w, is a unitary in

Uo((e, — .- 1)Ale, — €, 1))

and {e,} is an approximate identity consisting of projections. Therefore, since
A satisfies condition (a), there is an integer k such that for each n there are

h},i)e(e; - e;_l)A(e:, - e;—l)s.a.’ i= 1’2""’k

such that



140 HUXAXIN LIN

<12

k
w, — [] exp(ihy)

j=1

Since A has real rank zero, we may further assume that 0 < hY < 2n. Thus

W) — 3 (ﬁ exp(ih:f’))

n=1\j=1

}<1

Hence w(n/2) and Y =, ([ 4~ exp(ih{”)) are in the same connected component in
U(M(A)). Notice that {[ [5-, exp(ih{)(1 — 1))} is equi-continuous on [0, 1]. Set

o(t) = i <[k] exp(ih¥(1 — t))>.

n=1 \j=1

Then v(¢) is a norm continuous path in U(M(A)) and
k ©
v(0) = [] exp <i Y hf,”),v(l) =1
j=1 n=1

This completes the proof.

COROLLARY 3.4. Let A be a o-unital simple C*-algebra with real rank zero and
stable rank one. If A satisfies condition (a), then for any n and any unital hereditary
C*-subalgebra B of M(M,(A)) which contains M,(A) but not M,(A), the unitary
group of B is connected.

ProoF. Suppose that B = pM(M,(A))p for some projection p in M(M,(A)). If
qis aprojectionin pM,(A)p = M,(A),then by [Zh 5,3.3], q has the form described
in2.1. By 2.1, pM,(A)p has the same properties A has. Since B = M(pM,(A4)p), 3.4
follows from 3.3.

THEOREM 3.5. Let A be a g-unital simple C*-algebra with real rank zero and
stable rank one. If A satisfies condition (a), for any n and hereditary C*-subalgebra
B of M(M,,(A)) which contains M, (A) but is not M,(A), K{(B) = 0.

Proor. It follows from 3.4 as in 2.7.

REMARK 3.6. A special case of 3.5 was proved by Larry Brown a few years ago.
He showed that 3.5 is true for non-unital C*-algebras which are stably isomor-
phic to Bunce-Deddens algebras.

THEOREM 3.7. Let A be a o-unital simple C*-algebra with real rank zero and
stable rank one. If A satisfies condition (a), then

RR(M(A)/4) = 0.

Proor. This follows from 3.4 and Theorem A immediately.
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3. The Weyl-von Neumann theorem for unitaries.

We have shown that the Weyl-von Neumann theorem for self-adjoint elements
holds for AF-algebras and their multiplier algebras. In this section, we show that
ifuis a unitary in the multiplier algebra of a -unital C*-algebra with stable rank
one, (FU) and finitely many ideals in its corona algebra A, then for any ¢ > 0,
there is an element a € A and an approximate identity {e,} consisting of projec-
tions such that

u= Z !X,,(e,, - en*l) +a
n=1
with |a,| = 1 and ||a| < &. Consequently, in these cases, cer(C(4)) £ 1 + .
Our 4.1 is inspired by a result of Mikael Rerdam that if both I and Q have
stable (FU), then A4 has (FU), where I, Q and A are as in 4.1. However, we do not
need the stable assumption and our proof is different.

THEOREM 4.1. Let
0-1-4-0-0

be a short exact sequence of C*-algebras.
(1) If I has (FU), Q has real rank zero and cer(Q) < 1 + ¢ then A has real rank
zero and cer(A) £ 1 + ¢
(ii) In ((i) if A has connected unitary group, A has (FU);
i) If A has (FU), then I has (FU) and Q has real rank zero and cer(Q) < 1 + ¢;
(iv) If I has (FU), Q has (FU), then A has (FU).

ProOF. By [Ph 1, 1.4], we may assume that A is unital.
(i) Since I has(FU), it follows from [Zh 3,3.3] and [Ch, 2] that 4 has real rank
zero. Let

I*={beA:bi=ib=0,ViecA}

Then I is an ideal of A. Moreover I* + I is an essential ideal of 4. By [P 2], we
may assume that 4 is a C*-subalgebra of M(I* + I) = M(I*) ® M(I). Hence
A may be written as A; @ A,, where A, is a C*-subalgebra of M(I*) and A4, is
a C*-subalgebra of M(I). Since A, is isomorphic to a hereditary C*-subalgebra of
0, by [Li 3, 1.4], A, has weak (FU). Therefore we may assume that I is an
essential ideal of 4. Next we assume that I is o-unital. It follows from [M,
Theorem 9 and Introduction] (see [Zh 1, 3.1] also) that for any selfadjoint
element he A;, and 6 > 0, there are an approximate identity {e,} consisting of
projections and an element ce I, , such that
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h=Y e, —e,—1) +c¢

n=1

and |c| < é, where {4,} is a bounded sequence of real numbers. Let ue Uy(A).
Then n(u) € Uy(Q), where = is the map: 4 » Q. For 1 > &> 0, there is he Q,,
such that

() — exp(ih)| < &/2°.
Therefore, there is he A;, and bel such that
lu — exp(ih) — b| < &/28.

Therefore, by choosing a small §, one obtains

0

exp(zh) - Z eiln(en — € 1)

n=1

< 28,

(Notice also that
exp(ih) — Y. e*(e, — e,—,)el)
n=1
There is an integer N such that

lexbey — bl < &/27.

Therefore
© . 3
u— Z ed"(e,, - e,,_l) d ereN < 8/2k+4.
n=1 k=1
Let x = YN_, e*e, — e,_,) + eybey. Clearly

3 3
lenu — ueyll < Y, &/25*2 4+ Y g/2**4 = 4/16e.
k=1

k=1
Set v = x|x| ! (the inverse is taken in ey Aey), then
lo— x|l < IIx]l |1x]™* — enll < (1 + 3/16¢)/(1 — 3/16¢)(3/16¢) < 5/16¢.

Hence

0

u— Y e, —e,_q)—v
n=N+1

By [Li 3, 1.3], ey Aey = eyley has (FU). So there is an h' € (eyley)s.. such that

&/24*4 + 5/16¢ = 6/16¢.

1

<

3
k=

< 10/16.

v—ey— Y, (iNy/n!
k=1
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We conclude that there is an hy € A, , such that
lu — exp(iho)ll <.

Hencecer(A) =1 + &

Now we reduce the general case to the case that I is o-unital. There are {h,} in
A, and {j,} in I such that

llu — exp(ih,) — jull = 0.

Let A, be the C*-subalgebra generated by {h,, j, } and I, be the ideal 40 N I. Since
Iy is separable and I has real ranks zero, there is an increasing sequence of
projections {p(0,n)} in I such that

la(l = p(0,n))| =0

forallael. Let A, be the C*-subalgebra generated by A, and {p(0, n)} and I, be
ideal A; N I. Suppose that {, } is a dense sequence of normal partial isometries in
I,. Since I has (FU), there are projections {p(1,n)} in I such that each u, can be
approximated by linear combinations of finitely many orthogonal projections in
{p(1,n)}. Let A, be the C*-subalgebra generated by A, and {p(1,n)} and I, be the
ideal A, n I. If A4,, and I,, have been constructed, choose an dense sequence of
normal partial isometries {v,} in I,, and a sequence of projections {p(m,n)} in
I such that each v, can be approximated by linear combinations of finitely many
orthogonal projections in {p(m,n)}. Then let A, .+, be the C*-subalgebra gener-
ated by 4,, and {p(m,n)} and I be the ideal 4,,.; N I. Set A, = (U A4,,)” and
I,=(ulm)"(=1nA,) It is then easy to check A, is separable and I, is
separable and has (FU). Now consider the elements w, = exp(ih,) + j,. As
before, we may assume that I, is essential in 4. Then we can apply the above
argument to the elements w, and (i) follows.

(i) This is an immediate consequence of (i).

(iii) That I has (FU)follows from [Li 3, 1.3] and that Q has real rank zero and
cer(Q) < 1 + ¢ follows from [Ph 1, 1.6].

(iv) For every ue U(A), n(u)e Uy(A). So (iv) follows from the proof of (i).

THEOREM 4.2. Let A be a g-unital C*-algebra with (FU) and with stable rank
one. If there is a sequence of ideals

A=10g11912§.§1"=M(A)

such that L /I, _, is simple for each k = 1,2,...,n, then cer(M(A)) £ 1 + ¢ and
M(A) has real rank zero. Moreover, if ue M(A) and ¢ > 0, then there are ac A and
an approximate identity {e,} consisting of projections such that
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©
u= Z an(en —en~1) +a
n=1

with |o,| = 1 and ||a| < &. Consequently cer(C(4A)) =1 + &.

Proor. It follows [Zh 2, 1.3] that I,/ A is purely infinite. It then follows from
[Ph 2] thatcer(I;/4) < 1 + & Moreover, I;/A has real rank zero. It follows from
4.1 that cer(I;) £ 1 + ¢ and I; has real rank zero. By induction and repeated
application of 4.1, we conclude that cer(M(4) < 1 + ¢ and M(A) has real rank
zero. Since M(A) has connected unitary group, then by 4.1, M(A) has (FU). To
show that every unitary ue M(A) has the form

o]

u= Z o(n(en_en~1)+a

n=1
as described in the theorem, we use the proof of 3.1 in [Zh 1]. Since M(A) has
(FU), for any e > 0, there is a selfadjoint element he M(A) such that

lu — exp(ih)| <e.

Since M(A) has real rank zero, this implies that

[ o)
u— Y e*(e, — e, 1)

n=1

<,

where {,} is a bounded sequence of real numbers and {e,} is an approximate
identity for 4 consisting of projections. It follows from [Zh 1, 3.9] (the equival-
ence of (b) and (e)) that we may assume that

u= Z (en - enAl)u(en - en‘l) +a
n=1

with ae 4 and ||a| < &/4. Since
(1 —eyall -0, as n— o0,
by passing a subsequence if necessary, we may assume that
ll(en — es—1)u — ule, — e, 1)l >0
as n — oo. As in the proof of 4.1 (i), by a standard argument, we may write
(en — en—pJule, — €y—1) = W, + ay,

where w, is a unitary in (e, — e, )A(e, — e,- 1), a,€(e, — e,-1)A(e, — e, ) and
la.ll <e/2"*4. For each n, there is a selfadjoint element h,e(e, — e, ;)
Ale, — e,_,) with ||h,|| £ 27 such that

lw, — exp(ih,)|| < &/2"**.
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This implies that there is x € M(A), such that

u = exp(ix) + a + b,
where b = Z:’: 1a,€ Aand ||b,| < ¢/4. Again, since M(A) has real rank zero, we
obtain

u= Y oue,—e,—y)+@+b+o),
n=1
where |c|| < ¢/2. Finally, we notice that, since M(A) has real zero, the last
conclusion follows immediately from 4.1. This completes the proof.

REMARK 4.3. If we assume that A4 has stable rank one then it follows from
section two that M(A) has connected unitary group.

THEOREM 4.4. The multiplier algebra M(A) of any matroid C*-algebra A has
(FU). Moreover, for any ue U(M(A)) and ¢ > 0, there is an approximate identity
{e,} of A consisting of projections and an element a€ A such that

0

u= z ole; —e;—1) +a,
i=1

where |o;| = 1 and ||a|| < &. Furthermore, cer(C(4A) £ 1 + «.

Proor. If A is a finite matroid C*-algebra then, by [Ell 1, Theorem 3.1],
M(A)/A is simple. If A is infinite, then by [EIl 1, 3.2], M(A4)/4 has only one
nontrivial ideal. So 4.2 applies.

ExAMPLEs 4.5. There are many examples of C*-algebras satisfying the condi-
tions in 4.2. It follows from [Li 1, Theorem 2] that every simple AF-algebra with
trace space having finitely many extreme points satisfying the condition in 4.2.
For simple AF-algebras with infinitely many points in their extreme sets of trace
spaces, if they have continuous scales then, by [Li 1, Theorem 1], M(A4)/4 are
simple. In fact every o-unital simple C*-algebra with continuous scale has
a simple corona algebra M(A4)/A. We also notice that every o-unital simple
C*-algebra with real rank zero has many hereditary C*-subalgebras with con-
tinuous scales (see [Li 5]).

COROLLARY 4.6. Let A be a o-unital simple C*-algebra with stable rank one,
(FU) and continuous scale, then M(A) has (FU). Moreover cer(C(4)) <1 + «.

THEOREM 4.7. Let A be a o-unital purely infinite simple C*-algebra. If
K{(A) = 0, then M(A) has (FU). Moreover, cer(C(A)) = 1.

Proor. It follows from [Zh 3, 1.2 and 2.6] A is stable, M(A) has real rank zero
and M(A) has connected unitary group. By [Ph 2], cer(4) <1+ ¢ and
cer(C(A)) £ 1 + ¢ Since A4 is stable and K,(4) =0, 4 has (FU). By 4.1,
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cer(M(A)) £ 1 + ¢. Since M(A) has real rank zero and connected unitary group,
M(A) has (FU).

4.8. We notice that C*-algebras O, are purely infinite, simple and have
K,(0,) = 0. So, by 4.8, M(0,) has (FU).
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