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ON THE MULTIPLICITY OF AN ANALYTIC
OPERATOR-VALUED FUNCTION

ROBERT MAGNUS

Abstract.

A definition of the concept of a multiplicity theory for analytic operator-valued mappings is suggested
and an example of such a theory is constructed. It generalizes the notion of multiplicity of a singular
point for analytic Fredholm operator functions.

1. Restricted multiplicity theories.

Let Y be a complex Banach algebra and let € be a set of analytic mappings from
open subsets of the complex plane C into Y. The domain D(f) of an element f of
% need not be connected and we assume no relation between the values of f on
distinct components. This is sometimes expressed by saying that the functions
are locally analytic. We assume that € satisfies the conditions:

(a) If f €% then the restriction of f to any open subset of D(f) is in €.
(b) If £, ge ¥ and D(f) = D(g) then the pointwise product fg is in €.

For each f € € welet Z( f) denote the set of points z € D(f) such that f(z) is not
invertible, that is, Z(f) is the singular set of f. The regular set of f consists of the
points z where f(z) is invertible.

Let fe%. An open subset Q of D(f) will be called admissible for f if it is
bounded, its closure lies in D(f) and its boundary is disjoint with X( f). The pair
(f, ) will then be called an admissible pair. If, in addition, 2 is a Cauchy-domain,
that is, its boundary consists of a finite collection of pairwise disjoint rectifiable
Jordan curves, then we shall call (£, 2) an admissible Cauchy-pair. If (f; Q) is an
admissible pair then there exists an admissible Cauchy-pair (f, Q') such that
Q < Qand Z(f) " Q < Q. For a reference to a proof see [10] page 289.

By a restricted multiplicity theory for € we shall mean an additive semigroup
M together with a mapping ( f, 2) — m(f; Q) which associates with each admiss-
ible pair an element of M in such a way that the following axioms are satisfied:
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(i) If2(f)nQ =0 then m(f;Q) = 0.

(i) Theelement m(f; Q)depends only on the restriction of f to Q. (We denote the
restriction by f| Q.)

(i) If ©, and 2, are admissible for f and disjoint then

m(f; 2,0 Q) =m(f;2,) + m(f;Q,)
(iv) If D(f) = D(g) and Q is admissible for both f and g, then
m(fg; Q) = m(f, Q) + m(g; Q)

The last property is often referred to as the product theorem.

2. Examples of restricted multiplicity theories.

For the first non-trivial example of a restricted multiplicity theory we take
Y = C, M = N (the non-negative integers), and let € be the set of all locally
analytic functions. Then we take m(f; ) to be the sum of the multiplicities of the
zeros of f in Q.

We obtain a second example by extending this to the case of Y = C"*" (the
algebra of n x nmatrices). We take € to be the set of all locally analytic Y-valued
mappings and define m(f; Q) to be the sum of the multiplicities of the zeros of
det f in Q.

For a third example we ascend to infinite dimensions and let Y = L(E, E)
where E is a Banach space. Quite drastic restrictions have to be made on the
mappings involved to define multiplicity by methods analogous to those used in
the first and second examples. The purpose of this article is in fact to remove
those restrictions. The best previous theory is as follows. Let € be the set of all
analytic mappings whose values are Fredholm operators of index zero. For such
a mapping it can be shown that in each connected component of D which
contains a regular point of f the singular set is discrete. So we can define m(f; Q)
to be the sum of the multiplicities (to be defined) of the singular points of f in Q.
The multiplicity of a singular point z, may be defined as follows. Choose
a continuous projection n, with range ker f(z,) and define

f1(2) = f@)z — z0) 'mo + I — 7o)

Define f, inductively by choosing a continuous projection m,_, with range
ker fi - 1(zo) and setting

fil2) = fie 1z — z0) 'm—y + T — Wy y)

It may be shown [5] that there is an integer n such that f,(z,) is invertible. Then
the multiplicity of the singular point z, is the sum ) 4 —§ rank 7, and this is a finite
number. The axiom (iv) is proved in [5] under the name of product theorem.
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We may add that the least n such that f,(z,) is invertible has been called the
ascent of zy and that in [S] it was incorrectly asserted that ascent was additive for
products just like multiplicity. In fact it is only subadditive, as was pointed out by
Sarreither [7].

The idea of defining the multiplicity of a singular point of a Fredholm mapping
goes back to Keldys, and has been investigated in a number of important papers
some of which we shall have occasion to refer to later. See for example references
[6]1,[9],[8],[1]and [2]. The definition used in these papers is different from ours
and generalizes the chains of generalized eigenvectors which occur in the con-
struction of Jordan canonical form. It is equivalent to the definition given above.
It gives more prominence to vectors in the underlying space E whereas our
definition keeps the algebra Y in the foreground.

A fourth and apparently quite different example is obtained by taking Y to be
a commutative Banach algebra, M its additive group, and defining

1
mfi ) =5~ f IO D)z

where Q' is a Cauchy-domain enclosing the same part of the singular set as Q.
Commutativity is needed to get the product theorem. If Y is not commutative we
can try the formula

i = | AU Dreds

where A is a linear functional which vanishes on commutators. In the case
Y = C"*" the only such linear functionals are multiples of the trace; so we get
essentially the second example. If E is an infinite-dimensional Hilbert space and
Y = L(E, E) then the only such A is zero since every operator is the sum of two
commutators [3]. If however we restrict to Fredholm operators of index zero we
can use the ordinary trace, and by the results of [1] we again get the third
example.

3. A non-Fredholm multiplicity theory.

Let E and F be complex Banach spaces and let f: D — I(E, E)and g: D — L(F, F)
be analytic mappings with the same domain D. We say that f and g are equivalent
if there exist analytic mappings ¢ : D — I(F, E)and y : D — L(F, E), taking invert-
ible values only, such that f¢p = yg. In each of the examples listed in section 2 the
multiplicity is invariant under equivalence.

The second and third examples of section 2 have another property not listed as
an axiom in section 1: the multiplicity is invariant under suspension. To explain
thisconceptlet f: D — L(E, E)and g: D — L(F, F). We say that g is a suspension of
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f if there exists a Banach space Z such that F = E® Z and ¢g(z) = f(z) @ 1. The
concept of suspension has been used before, notably by Gohberg, Kaashoek and
Lay, but they call it extension. We prefer the term suspension by analogy with its
use in topology to describe extending the domain of a mapping by hanging on to
it a trivial mapping in a new dimension.

There is a more general version of suspension; let us use the inappropriate term
weak suspension for want of anything better. Then g is a weak suspension of f if
there exist mappings « and f such the diagram

0 - E % F 5 7z 4 0
lf lg llz

0 - E % F 5 7z 5 0
commutes and the rows are exact. Note that in the diagram a morphism from
E to F (for example) means an analytic mapping with values in L(E, F). Weak
suspension will be investigated in a future paper.

In section I we used the term restricted multiplicity because only one space at

a time was involved. When invariance under equivalence and suspension is
included as an axiom we shall refer simply to a multiplicity theory. More precisely:
suppose that we have a category B of Banach spaces and a class € of analytic
mappings, such that for each f € € there is some object E of B such that f has all
its values in L(E, E). In addition to the properties (a) and (b) of section 1 we
suppose the following:

(c) If fe® and g is equivalent to f then g€ .

By a multiplicity theory for € we mean a semi-group M and a way of assigning
to each admissible pair (f, Q), for which f € €, an element m(f; Q) of M, such that
axioms (i}iv) are satisfied, as well the additional axioms:

(v) If f, ge ¥ are equivalent then m(f; Q) = m(g; Q).
(vi) If f,ge ¥ are such that g is a suspension of f then m(f; Q) = m(g; Q).

It should be emphasized that this definition is tentative. It reveals the author’s
feeling that a multiplicity theory should be defined over a category and an
associated class of mappings, that some notion of equivalence and suspension
should exist with respect to which multiplicity is invariant.

We proceed to define a multiplicity theory in which B is the category of all
Banach spaces, € the class of all locally analytic operator-valued mappings, and
M is the semi-group of isomorphism classes of Banach spaces. Addition in M is
by direct sum of representative spaces. We shall say that f and g are suspen-
sion-equivalent, or s-equivalent for short, if there exist Banach spaces Z, and Z,
such that the suspensions f @ I, and g @ I, are equivalent. A straightforward
argument shows that s-equivalence is an equivalence relation.
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DErFINITION. For each admissible pair ( f, Q) choose a Banach space F and an
operator T € L(F, F)such that f'| Qis s-equivalent to the mapping z + zI; — T on
Q. We define m(f; Q) to be the isomorphism class of the range of the projection

1
P=-—-7j (zlp — T) " 'dz
27'Cl o

where Q' is a Cauchy-domain such that Q' < Q and Z(f) n Q = Z(f)n Q.

It might be thought that isomorphism classes of Banach spaces are rather
uninteresting from an algebraic point of view. The main interest of this theory lies
in the complete irrelevance of dimension and its remarkable constructiveness.

The definition raises two questions the answers to which are needed to remove
ambiguity. The first pertains to the existence of at least one pair F and T having
the required properties. The second is the usual problem of well-definedness.
Given two ways to make the s-equivalence we must show that the outcome is the
same for both.

4. The GKL-process.

The problem of the existence of a suitable pair F and T is solved by the
linearization procedure of [2]. From now on we shall usually denote oper-
ator-valued mappings by the upper-case letters A, B or C.

THEOREM | (Gohberg, Kaashoek, Lay). Let A: D — L(E, E) be analytic, and let
Q be a Cauchy-domain admissible for A. Let F be the Banach space of all continuous
Sunctions from 0Q to E and define the operator T € L(F, F) by

(Tf)s) = s/ (s) — i?fag(h — AQ)S () dC

for each s€ 0Q. Then A|Q is s-equivalent to zIp — T on Q.

Actually the authors prove that A has a suspension which is equivalent to
zIrp — T on Q. They assume that 0 is in  but this is seen to be unnecessary by
a simple translation argument. It is remarkable that F depends only on E and €,
but not otherwise on A. If Q is not a Cauchy-domain we can enlarge it to be
a Cauchy-domain enclosing the same singular points before applying the the-
orem. This theorem is one example of the constructiveness of our theory.

Gohberg, Kaashoek and Lay call a function of the form zI — T which is
equivalent to a suspension of A(z) a linearization of A(z). We shall refer to the
procedure by which F and T are obtained in theorem 1 as the GKL-process.

Let us now calculate the spectral projection associated with the GKL-process.
Let A: D — L(E, E) be analytic and let Q be an admissible Cauchy-domain. As we
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saw, the GK L-process gives rise to the space F = C(0%, E), and on F the operator
T given by

(10 =160~ 512 | (= 470 8

for each s e 0Q2. We shall compute the resolvent of T. Let g€ F, let A€ Q be in the
resolvent set of T, (by theorem 1 A is a regular point for A(z)), and consider the
equation

W-Tf=4g
that is,
1
(A—=9f(s) + %j (g — AN SO dl = g(s)
o
for all se 0Q.
Multiplying by (Ig — A(s))(A — s)~ ! and integrating we obtain
[, 1= ansods = o — i [t~ acnsoac = [, 52 g as
e e e -
Hence
[, 1= aonsaz = aon+ [ =) g0
02 o2 =S
Substituting back we obtain
_ AN Iy — A©) g(s)
JO = =50 =9 Jou 1=t O%+ 75

This formula gives (A — T)~!. Now we choose a contour I', the boundary of
a Cauchy-domain, inside £ and enclosing the spectrum of T in €. Integrate the
resolvent with respect to 4 around I'. Note that we cannot integrate around 0Q
since this contour belongs to the spectrum of T as is shown in [2]. The result is
a projection which we shall denote by pr,. When integrated the second term gives
zero, since I' does not enclose s, and the result is

(LN [ AR s - AQ)
(1 @uﬂﬂ—(hg‘LLg(&_Mi_O o0 i

This formula provides an explicit means of calculating multiplicity. If we accept
for the moment that the multiplicity is well-defined, then, by theorem 1, we have
that m(A; Q) is the isomorphism class of ran pr 4. This will be used in the proof of
the product theorem.
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5. Proof that the multiplicity is well-defined.

In order to show that the multiplicity theory of section 3 is well-defined it suffices
to solve the following problem. Let E and F be Banach spaces, let 4 € L(E, E) and
Be I{F, F) and suppose that zI; — 4 and zI — Bare s-equivalent on the domain
D. Let Q be an admissible Cauchy-domain in D. It is then required to show that
the projections (1/27i) fao(zIz — A)"'dz and (1/2mi) s (zlr — B) ' dz have
isomorphic ranges.

In terms of matrices the s-equivalence of zI; — A and zI; — B amounts to

having
zZlg—A 0\ (zI[;—B 0
"’“’( 0 IU) ) < 0 IV) v

on the domain D, where ¢:D > L(E®Q U,F® V)andy:D > LE® U, F® V)
are analytic and have invertible values. Let Q be an admissible Cauchy-domain
in D. Choose a bounded domain D, in D such that @ c D, and let zoe D\D,.
Note that for ze D, we have

IE 0 ZIE—A 0
¢(z)<0 (z—zo)—m,)( 0 (z—zO)IU)

_(zlr— B 0 I 0
‘( 0 (z—zom)(o (z—zo>-‘ly>"’(z)

Hence zlggy — (A @ zoly) and zlrgy — (B @ zoly) are equivalent on D,. More-
over the projection

1
2mi

J (zlggu — (A D zoly)) "' dz = (J_J (zlg — A)~! dZ) @ 0y
oo 27 ) o

has range isomorphic to that of (1/27i) {4 (zIg — A)~* dz.

We may therefore present the problem of well-definedness in the following
simplified way. Let E and F be Banach spaces, let A € L(E, E) and B € L(F, F). Let
¢:D - I(E, F) and ¥ : D —» L(E, F) be analytic mappings with invertible values,
and suppose that

P(2)zlg — A) = (zIr — B)Y(2)

for all ze D. Let Q2 be an admissible Cauchy-domain. We must show that the
projections P, o = (1/27i) {40 (zIg — A)~ ' dzand Pp o = (1/27i) [aq (zIz — B) ' dz
have isomorphic ranges. '

By spectral theory the operator-valued mapping zI; — A4 is equivalent to
(zlg, — Ay) @ (zlg, — A,), where E, is the range of P4 o, and E, its kernel,
A;e (E,,E,)and A, € L(E,, E,). Moreover the spectrum of A4, is inside Q while
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the spectrum of 4, is outside Q. Hence zI; — A is s-equivalent to zlg, — A;on Q.
A similar reduction is possible for zIr — B.

The upshot of the previous paragraph is this: we have to show that if zIy — A
and zI — B are s-equivalent on a domain Q containing the spectra of 4 and B,
then E and F are isomorphic Banach spaces. This is a consequence of the
following theorem for which a proof may be found in [4].

THEOREM 2 (Kaashoek, van der Mee, Rodman). Let zIz — A and zIr — B be
s-equivalent on a domain Q containing the spectra of A and B. Then A and B are
similar operators.

6. The product theorem.

In this section we show that the multiplicity theory of section 3 satisfies the
product property: axiom (iv). That it satisfies the other axioms is fairly obvious.
We shall then be able to show that it generalizes the multiplicity theory for
Fredholm operators.

THEOREM 3. Let E and F be Banach spaces andlet M:D — L(E ® F,E @ F) be
an analytic mapping whose matrix representation is

A C
0 B
where A:D — I(E, E), B:D — I(F,F) and C: D — L(F, E) are analytic. Let Q be
admissible for both A and B. Then
m(M; Q) = m(A; Q) + m(B; Q)

Proor. Apply the GKL-process to M; that is, compute the projection pry, on
the space C(0Q, E @ F);see formula (1) of section 4. We may express it as a matrix

i (9'>(s)= j j <Aw-‘ —A(Ar‘cu)Bur‘)(IrA(c) —c© )(91(()) d di
Pl g, rJaa\ 0 B! 0 1-B0\g:0) - Hi-0

whence we have
_(pra S
Piv = ( 0 pr)

where S is an operator from C(0Q, F) to C(0%, E).
We now appeal to the following lemma.

LEMMA 1. Let E and F be Banach spaces and suppose that II is a projection on
E @ F with matrix representation
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P R
m-(s o)
0 0
Then P and Q are projections, and the range of I1 is isomorphic to the range of the

projection P @ Q.

PrOOF. From II? = IT we find that P> =P, Q? = Q and PR + RQ = R.
Hence

IERPOIER__PRQIER__PR_H
o zJ\o g/\o I/ \o ¢o/)\o I/ \o @/
which implies the stated result.

By the lemma, ran pr,, is isomorphic to ran pr, @ ran prg. But this says that
m(M; Q) = m(A4; Q) + m(B; Q). This concludes the proof.

COROLLARY 1. Let V = @}, E, and suppose that M : D — L(V, V) is analytic,
and has upper-triangular matrix representation, with A, :D — L(E,, E,) on the
diagonal. If Q is admissible for all A, then m(M;Q) = Y _, m(A,; Q).

PrOOF. Induction using Theorem 3.

THEOREM 4 (Product theorem). Let A:D — I(E,E) and B:D — I{E, E) be
analytic and suppose that Q is admissible for both A and B. Then

m(AB; Q) = m(4; Q) + m(B; Q).

Proor. We form the suspension 4B @ I;. Note that
0 —Ig\(AB 0\/Ig O\ (B —I
I; A 0 I.J\-B I.J \o 4
. . B —I
Hence ABis s-equivalent to o 4 ) The result now follows from Theorem 3.

We may now show that the multiplicity theory of section 3 generalizes the
multiplicity theory for Fredholm operators defined in section 2. Let
A: D — L(E, E) take its values in the set of Fredholm operators of index zero, and
for simplicity assume that D is connected and A(z) is invertible for at least one
pointin D. Let z € D. It is known [5] that in a neighbourhood Q of z,, containing
no singular point, except possibly z,, one can express A(z) as a product

A(2) = Ap(2)(my-1(z — 20) + I — 7ty )y 2(z — 20) + 1 — T, _3)
coo(mo(z = z) + I — my)

with finite-rank projections n,...,7n,-; and A,(z,) invertible. Applying the
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product theorem we find that m(4;Q) is the sum )i m(P; <), where
P(z)=(z — zo)mp + I — m. But Pz) is a suspension of the function
pi: C - L(ranm, ranm,), given by pi(z) = (z — zo)l;anr,. Clearly m(Py; Q) is the
isomorphism class of ran m, which we identify with the integer rank n,. Hence

n—1

m(A4;Q) = Y rankm,
=0

k

which is the usual expression for the multiplicity of a singular point.

7. Homotopy invariance.

If a continuous curve in L(E, E) contains only projections, then the ranges of these
projections belong to the same isomorphism class. This remark enables us to
prove the homotopy invariance of multiplicity.

THEOREM 5. Let the continuous mapping A:[0,1] x D — L(E, E) be analytic in
its second variable. Let A, denote the mapping z — A(t,z). Suppose that Q is
a Cauchy-domain which is admissible for all A, 0 <t < 1. Then m(4,;Q) is
independent of t.

Proor. Applying the GKL-process to 4, we find a Banach space F and
a continuous curve T; in L(F, F) such that A, is suspension equivalent to zIp — T,
on Q for each t. Taking a contour I', the boundary of a Cauchy-domain, just
inside 0Q2 and enclosing the singular sets in Q of all the functions A4,, we find that
m(A,; Q) is the isomorphism class of the projection P, = (1/2mi) j r(zlp — T) Ydz.
By the remark preceding the theorem this class is independent of ¢.
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