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THE EXISTENCE OF MEASURABLE
APPROXIMATING MAXIMUMS

GORAN PESKIR

1. Introduction.

Some statistical models are described by a family # = ({h,(,0), %, |n = 1}
|0€ ®,) of reversed submartingales defined on the probability space (2, #, P)
and indexed by the analytic metric space @, (see [2], [3], [4], [5]). From the
general theory of reversed submarginales we know that h,(6) converges P-almost
surely to a random variable h(6) as n — oo, for all 8 € @,. If the tail o-algebra
Fro = (-1 S, is degenerated, that is P(4) € {0, 1} for all A€ &, then h,(0) is
also degenerated, that is P-almost surely equal to some constant which depends
on @ for f€ . In this case the information function associated to #:
I(0) = lim h,(0) P-a.s. = lim Eh,(6)

may be well-defined for all § € @,. The main problem in the context of statistical
models just mentioned is to estimate the maximum points of I(f) on @ using
only information on the sequence {h,|n = 1}. For this, two concepts of maxi-
mum function might be introduced as follows. Let {®,|n = 1} be a sequence of
functions from Q into @, where (0, d) is a compact metric space containing @,.
Then {f,|n = 1} is called a sequence of empirical maximums associated to 5, if
there exist a function g: 2 — N and a P-null set N € # satisfying the following two
conditions:

(1.1 O (w)e®y, YweQ\N, VYn2=g(w)
(1.2) ho(w, 0,(w)) = h¥(w, 00), YoeQ\N, Vn= g(w)

where h¥*(w, B) = supggh,(w,0) for n= 1, weQ and B < ©,. The sequence
{0,|n = 1} is called a sequence of approximating maximums associated to #, if
there exist a function g: 2 — N and a P-null set N € & satisfying the following two
conditions:
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(1.3) b(w)e®@, YweQ\N, Vn=qw)
(1.4) lim inf (e, @,()) = sup I(6), YweQ\N.
n— o 0O

Note that even though h,(w, ) need not attain its maximal value on @, and
therefore (1.2) fails in this case, we can always find a sequence {f,|n = 1}
satisfying (1.4). However, the statistical nature lying behind requires 8, to be
measurable relative to %, for all n = 1. This requirement makes the establish-
ment of the existence of approximating maximums much harder, and calls for
assumptions on @, in order to make the existence of suitable measurable
selections available. Furthermore, one of the main interests in the context of
statistical models just mentioned is to characterize the sets of all possible
accumulation and limit points of all possible sequences of approximating maxi-
mums associated to . In this direction a certain convergence uniformization is
important to be established, as shown in the proof of the main Theorem 4.1
below.

Both of the problems just mentioned, namely the existence and the uniformiz-
ation, are solved in a fundamental theorem due to J. Hoffmann-Jergensen (see
[3] p. 42) in the case where the parameter set @ is an analytic metric space. In
this paper we show that a little stronger version of the same theorem remains
valid, if the parameter set @ is only assumed to be a second countable Hausdorff
space satisfying the Blackwell property. These spaces might be characterized as
the second countable analytic ones. Actually, the proof carries out without
submartingale property as well, and the only assumption which is essentially
used on J is the &, x #(O,)-measurability of h, being valid for all n = 1. Thus
the results below are formulated and stated for general families of sequences of
adapted random functions. (We think, however, that the statistical background
just explained is important, and the reader should be aware of it.) Finally, it is
shown that for separable families the Blackwell property is not needed.

2. Preliminary facts.

A measurable space (X, &) is called Blackwell, if f(X)is an analytic subset of the
real line, whenever f is an &/-measurable real valued function on X. A Hausdorff
space X is called Blackwell, if X together with its Borel o-algebra #(X) forms
a Blackwell space. In this case we shall often say that X satisfies the Blackwell
property. It is well-known that every analytic space is a separable Hausdorff
space satisfying the Blackwell property, and in particular every analytic metric
space is a second countable Hausdorff space satisfying the Blackwell property.
Moreover, one can verify that every second countable Blackwell space is ana-
lytic.
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Blackwell spaces posses nice stability properties and we shall refer the reader to
[1] for an extensive treatment of this subject. In this paper we shall need the
statement of the following well-known theorem (see [1]):

(2.1) (The projection theorem)

Let (X, of) be a Blackwell space, and let (Y, ) be a measurable space. If A is an
of x B-Souslin sets in X x Y, then the projection ny(A) of A onto Y is a B-Souslin
set.

Also, we shall need the following version of the so-called measurable selection
theorem, which follows easily by Theorem 3.4 with (3.7.10) in [1]:

(2.2) (The measurable selection theorem)

Let (Q, &, P) be a probability space, and let (X, /) be a countable generated
Blackwell space. Then for every F x of-Souslin set C in Q x X, there exists
a P-measurable map &: Q — X such that:

(@, 8(w)eC, Vweny(C)
where 1o(C) is the projection of C onto 2.

Let us say that the usefulness of these two theorems follows mainly from the
well-known fact that for some g-algebra .o/, every «/-Souslin set is universally
o/ -measurable. Note that every second countable Blackwell space is a countably
generated Blackwell space. In other words, every second countable analytic
space (for example, every analytic metric space) is a countable generated Black-
well space. Also note that every countable set together with any o-algebra of its
subsets forms a countably generated Blackwell space. Moreover, it is well-known
that every o/-Souslin subset of a Blackwell space (X, o) together with the trace
c-algebra forms also a Blackwell space. All these facts will be used more or less
explicitly in the rest of the paper.

We shall now introduce the main object under our consideration in this paper.
For this, let (2, #, P) be a probability space, let @, be a topological space, let
S0 S, > F5... be adecreasing sequence of g-algebras on 2 all being con-
tained in %, and let h,(-,0): 2 —» R be a random variable which is measurable
relative to &, for all n = 1 and all 8 € @,. Under these conditions we will shortly
say that # = ({h,(®,0), ¥,|n 2 1}|0€0,) is an adapted family (of random
functions and o-algebras) defined on (2, &, P) and indexed by @,. Let #(0,)
denote the Borel g-algebra on @,. According to [4], we will say that # is:

(2.3) measurable, if h, is &, x #B(O,)-measurable for all n = 1

(2.4) degenerated, if the tail g-algebra &, = ()% ¥, is degenerated, that is
P(A)e{0,1} for all Ae &,
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(2.5) separable relative to & < 2°° and € < 2%, if YBe ¥ there exists a se-
quence {6;|i = 1} in @ such that VC e ¢ we have:

P*( U {h,(6,)eC, V0;eB}A{h,(0)eC, VOeB}) =0
n=1

(2.6) separable, if it is separable relative to the family 4(©,) of all open sets in
®, and the family €(R) of all closed sets in R

(2.7) P-a.s. upper (lower) semicontinuous, if there exists a P-null set N € & such
that the function 8+ h,(w, ) is upper (lower) semicontinuous on @, for all
we\N and alln > 1.

By Proposition 3.1 in [4] and slight modifications of Proposition 3.3 and
Corollary 3.6 in [4] one can easily verify that the following statements are
satisfied:

(2.8) Let # = ({h,(w,0), % |n = 1}|6€ O,) be an adapted family defined on
the probability space (22, #, P) and indexed by the second countable Hausdorff
space O,. If & is separable, then there exists a dense sequence {6;]i = 1} in O,
and a P-null set N € # such that YVGe %(©®,), Vwe Q\N and Vn = 1 we have:

(2.8.1) sup h,(w, 0) = sup h,(w, 6;)
0eG 0:eG

(2.8.2) inf h,(w, 6) = inf h,(w,0;).
0eG 0,eG

Moreover, (2.8.1) remains true if J# is separable relative to %(®,) and
% - »(R) = {(— o0, p]| peQ}, and (2.8.2) remains true if # is separable relative to
%(O,) and €+ (R) = {[g, + )| ge Q}. A slight modification of (4.18) in Prop-
osition 4.3 in [4] yields:

(2.9) If an adapted family 5# is P-a.s. lower semicontinuous, then it is separ-
able relative to 4(0,) and ¢ _ ,(R).

For more information and details in this direction we shall refer the reader to

[4].

3. Uniformization.

In order to formulate a general version of the existence theorem in the next
section (Theorem 4.1), we need a definition of the uniform convergence of a given
sequence of random functions with values in a topological space to a given subset
of it. One of its particular forms, which will be suitable for our purposes, is
presented in Lemma 3.1 below. In Lemma 3.2 we state the essential point of the
convergence uniformization in the existence theorem.
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Let X be a topological space, and let 4 be a subset of X. Let (2, &, P) be
a probability space, and let {f, | n = 1} be a sequence of functions from Q into X.
We shall say that the sequence {f,|n = 1} converges uniformly to A, if for every
open set G in X containing A, there exists ny = 1 such that Va = n, we have:

(3.1 b (w)eG, YweQ

In this case we shall write , =3 4 on Q. If (3.1) is satisfied for all w € Q\ N where
N is a P-null set in &, then we shall say that the sequence {0, |n = 1} converges
uniformly P-almost surely to A and in this case we shall write 6, = 4 P-a.s.

LeEMMA 3.1. Let X be a second countable topological space, and let K be
a compact subset of X. Let (Q, #, P) be a probability space, and let {§,|n = 1} be
a sequence of functions from Q into X. Then there exists a decreasing sequence
%(K) = {G;|j 2 1} of open sets in X containing K and satisfying 6,3 K onQ,if
and only if VG € 9(K), Ing = 1 such that Vn = ny we have 8,(w) e G for all we Q.
The analogous equivalence relation holds for the P-a.s. uniform convergence as well.

PrOOF. Let ¢ = {E;|i 2 1} be a countable base for the topology on X, and let
£* be the smallest family of subsets of X which contains & and is closed under the
formation of finite unions of its elements, that is E*¥e&* if and only if
E* = )]- | E;, for some E; ,...,E; € and some n 2 1. Put 9%(K) = {E* e *|
K c E*} = {E¥|i 2 1}, and define 9(K) = {G;|j = 1} with G; = n}_ E¥ for
j 2 1. Using the compactness of K and the definition of ¢ it is easily verified that
for every open set G in X containing K there exists E}¥ € £* with k > 1 such that
K = E} = G. The proof hence follows straightforward.

If X is a Hausdorff space and a sequence {,|n = 1} in X converges uniformly
to some compact subset K of X, then the set of all accumulation points €{0,} of
the sequence {f,|n = 1} is evidently contained in K. Hence we may easily
conclude:

(3.2) Let {#,|n= 1} be a sequence of functions from a probability space
(2, #, P)into a Hausdorff space X, and let K be a compact subset of X.If §, 3 K
on ©, then ¥{0,} < K. Similarly, if §, 3 K Pa.s., then 6{f,} < K P-a.s.

Let us also note if (X, d) is a metric space, then for any two subsets 4 and B of
X the following three statements are equivalent:

(3.3) 63A0UB
(3.4) d(0,(w), AU B)30 uniformly for weQ
(3.5) d(#,(w), AU B)30 uniformly for weQ
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where d(0, C) is the distance between a point § € X and a set C e 2¥. Of course, the
analogous equivalence relation holds for the P-a.s. uniform convergence as well.

LEMMA 3.2. Let {al|n = 1} and {Bi|n = 1} be two sequences of random vari-
ables defined on a probability space (2, %, P) satisfying lim,_ o =
limsup, ., B = +00 P-a.s. for every i =1,2,...,N and every j =1,2,..., M.
Then there exists an increasing surjection a: N — N satisfying:

n— oo n— oo

P(lim inf {o} > a(n)}> = P(lim sup {# = a(n)}> =1

foralli=1,2,...,Nandallj=1,2,...,M.

ProOOF. Sinceinf;;,a} — + oo P-a.s.asn — oo and {inf;5 o} 2 ¢} < {o) = ¢}
for all ce R, we shall without loss of generality suppose that a! T + o0 P-a.s. as
n — oo. Hence for every fixed k = 1 we can find n, = 1 such that:

P{oy <k} <27k
Thus by the first Borel-Cantelli lemma we may conclude:
(3.6) P(lim inf {o; > k}> =1- P<lim sup {0, < k}) = 1.
k= oo k— o0
Let us now define a surjection o;: N — N by putting:
o) =k Vm =j<my
for all k = 1, and put o,(j) =1 for 1 £j < ny, if n; > 1. Since {a} |k = 1} is
increasing, then we have:
{a:k 2 Gl(nk)} < {Ot:k+1 = Ul(nk)} c...c {a;k+,—1 2 0'1("1:)}
for all k = 1. Using these relations and (3.6) we easily find:
3.7 P<lim inf {a} 2 al(n)}> = 1.

By our hypotheses we have sup,<;<,fj T + o0 P-a.s. asn— oo forall k = 1.
Therefore for every fixed k = 1 we can find n, = 1 such that:

P{ sup B} < k} <27k

ksjSme

Thus by the first Borel-Cantelli lemma we may conclude:

(3.9) P<lim inf{ sup B} = k}) = 1.
k= (ksjsme

Let us define a surjection 7: N — N by putting:
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)=k Vn_;<js=mn

for all k =z 1 with ny:= 0. Then by the increase of 7, from (3.8) we get:

1=P<D(%{mm/ﬁz%>=mnpﬁﬁﬁ{ﬁgrm49§

n=1k=n \kLj<n, n- o k=nj=k
Nk
<timr(() 0 {2 0})
n— o k=nj=k
Hence we easily conclude:
(3.9) P<lim sup {f = tl(n)}> =1.

In exactly the same way we can find increasing surjections ¢; and 7; associated
to the sequences {a.|n =1} and {fi|n =1} fori=2,...,Nand j=2,...,M.
Then the proof follows straightforward by putting ¢ = min{o,,0,,...,0y,
14,73, ..,Ty} and using the statements that correspond to (3.7) and (3.9) in these
cases.

4. The existence of measurable approximating maximums theorem.

Let # = ({h,(w,0), %, |n = 1} |6 Op) be an adapted family of random functions
and o-algebras defined on the probability space (2, #, P) and indexed by the
topological space @,. Let (@) denote the family of all open sets in &, and let
A'(O,) denote the family of all compact sets in @,. Let us define:

hy(w, G) = sup hy(w, )

0eG
H*(w, G) = limsup h}(w, G)
H(w,K) = inf  H*w,G)

Ge¥9(00),K=G

H¥(w, G) = liminf h}(w, G)

n-— oo

Hy(w,K) = inf  H¥w,G)
Ge¥%(00), K= G
for all weQ, all Ge¥(O,), and all Ke A(O,). Let &, = ﬂ,‘:‘;l,%, and let
&? denote the completion of the g-algebra ¥, relative to the restriction of Pto %,
for all 1 < n < o. Then we have ¥ = N2, & If # is measurable and @, is
second countable satisfying the Blackwell property, then by the projection
theorem (2.1) and the proof of Lemma 3.1 we see that H*(G), H(K), H%(G) and
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Hy(K) are #*-measurable functions from Q into @, for all Ge %(0,) and all
K e A (0,). The main theorem of the paper may now be stated as follows.

THEOREM 4.1. Let # = ({h,(w,0), &, |n = 1}|60 € O,) be a measurable adapted
family defined on the probability space (2, &, P) and indexed by the topological
space @y, let K and L be compact subsets of @, and let us suppose that one of the
Jfollowing four conditions is satisfied:

(4.1) Oy is a second countable Hausdorff space satisfying the Blackwell prop-
erty, or in other words @, is a second countable analytic space

(4.2) Oy is a second countable Hausdorff space, and # is separable relative to
%(O,) and € _ ,(R)

(4.3) O, is a second countable Hausdorff space, and 3 is separable

(4.4) O, is a second countable Hausdorff space, and 3¢ is P-a.s. lower semicon-
tinuous.

Then there exists a sequence of random functions {#,|n = 1} from Qinto @, and
a P-null set N € ¥ satisfying the following properties:

4.5) §3KuLonQ
(4.6) %{0,(»)} c KUL, forall weQ
4.7 €{0,(w)} " K % 0 and 6{0,(w)} "L % @,for all 0 ¢ N

(4.8) Hy(w,K) A H(w, L) £ liminf h,(w, §,(w)) £ Hw,K) v Hw, L),

n— o

forallwéN
(49) Hy(w,K) v H(w, L) £ limsup h,(w, 0,(0)) < Hw,K) v Hw, L),

forallw¢N
(4.10) 0, is &,-measurable for all n = 1.

Proor. Without loss of generality we shall suppose that all functions involved
are with values in R. Let %(K) = {G;|j = 1} and %(L) = {H;|j = 1} be decreas-
ing sequences of open sets in &, associated to K and L in the sense of Lemma 3.1.
Choose #7 -measurable functions ¢;: Q — ]0, co[ for j = 1 to satisfy ¢j(w) — 0 as
j— oo and Hf(w, G;) — gj{w) < H¥(w, Gj4+4) — €4+ 1(w)forallj = 1and all we Q.
(For instance, we could obtain ¢;’s from the equation Hf(w,G;) — ¢j(w) =
H¥(w,K) — 1/jfor j =z 1 and w e Q. Note that Hf(w, G;) | H§(w,K) as j — oo for
we 2, and thus ¢; just defined is strictly positive and ¥ -measurable for allj = 1.)
Similarly, choose &% -measurable functions d;: 2 — J0, co[ for j 2 1 to satisfy
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0i(w) —0asj— oo and H¥(w, H;) — 6(w) £ H¥(w, H;1,) — 0+ (w) for allj = 1
and all weQ. (For instance, we could obtain d;’s from the equation
H*w,H;) — 6{w) = H¥w,L) — 1/j for j 2 1 and we Q. Note that H*(w, H;) |
H*w, L) as j — oo for weQ, and thus §; just defined is strictly positive and
P -measurable for all j = 1.) Let us now define:

Gy = {(0,0)€Q x G| h(w,0) > H¥(®, G,) — &,(w)}
Hyy = {(@,0)€Q x Hy| h0,0) > H*(, H) = 5,(@)}
G = {0eG;|(»,0)€ G,;}

HE = {0e H;|(w,0)€ H,}

forn, j 2 1and w € Q. Since # is measurable, then we have G,;e &, x #(G;)and
H,;e #7 x #(H;), and hence G, € #(G;) and H, ;e #(H)) for all n,j = 1 and all
we Q.

Let us in addition define:

() = sup{j = 1| G}; + 0}
Buw) = sup{j z 1| Hy; + 0}

forn 2 1 and we Q. Since {&, = j} = (i ;70(Gw) and {B, 2 j} = (% to(Hu)
for all n,j = 1, then by the projection theorem (2.1) we have:

4.11) Uy Bn: Q@ = Ng are #P-measurable for all n > 1.

By definition of the functions H§(G;) and H*(H;) we see that for any given j = 1
and we Q, there exist n; ,, = 1 and infinite C; , = N satisfying:

(4.12) h(@,01,j,0.n) > H3(@, G) — &(@), Yn2n;,
(4.13) h(@, 05} 0.n) > H*o, H}) — 6)(w), VneC;,

forsome®b, ;. .€G;and b, ;. .€H;withn = 1. From(4.12) and (4.13) we easily
find:

4.14) lim a,(w) = limsup B,(w) = + 0, Vwell

Hence by Lemma 3.2 there exists an increasing surjection o: N — N satisfying:

4.15) P<lim inf {a, = a(n)}> = P<lim sup {f, = a(n)}) = 1.

Now we apply the measurable selection theorem (2.2). For this, if (4.1) holds,
then the preceding setting of the proof can stay unchanged. Moreover, if any of
conditions (4.2), (4.3) or (4.4) holds, then according to (2.8) and (2.9) we can find
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a dense sequence {6;|i = 1} in @, and a P-null set N; € # such that VG € 4(0,),
Ywe\N, and Vn = 1 we have:

sup h,(w, 08) = sup h,(w, ;).

0eG 0ieG
Hence we can easily verify that the preceding setting and all of the conclusions
remain valid if we replace the starting space @, by @, = {0;]i = 1} equipped
with the relative topology which is inherited from @,,. Since O, is countable, then
it is a Blackwell space. This observation shows that under hypothesis (4.2), (4.3)
or (4.4)it is no restriction to assume that @, satisfies (4.1). Therefore we can apply
measurable selection theorem (2.2) which implies the existence of &7-measurable
maps ,;: @ = G; and ,;: Q - H; for n,j = 1 satisfying:

b, &0(@)) > H(©,G)) — 0), Yo eng(G,)
@, Yaf@)) > H¥ (@, H)) — 8(), Vo€ ng(H,).
In order to establish (4.7) we shall define:
T (w) = inf{n 2 k| a(n) £ B.(w)}

for all k = 1. Then by (4.11) we see that 1, is #F-measurable for all k = 1. Denote
Ay = {t, = k} for k 2 1, and put B, = ();-, 4 for n 2 1. Let us now define:

G,(w) = Enom(w) if n isodd,and weB,
= Ypmw) if n iseven,and weB,
= Epoml(®) If weAn B
= Ypem(@) if weAd,nB;

for all n=1 and all weQ. Then by construction and the fact that
P(limsup,., 4,) = 1, it is easily verified that each of the terms ¢,,,(w) and
Ynem(®) on the right-hand side occurs infinitely often, for all w ¢ N,, where
N, e ¥, is a P-null set containing the exceptional sets from (4.15). Hence by the
first part of (4.15) we can easily verify that (4.7), (4.8) and (4.9) hold for the
sequence {@,|n = 1} with N, instead of N. Moreover, by the definition of the
sequences ¥(K) = {G,|j = 1} and ¥(L) = {H;|j = 1} itis easily verified that (4.5)
holds, and thus (4.6) follows as well. It is evident that 6, is #”-measurable for all
n 2 1, thus in order to obtain (4.10), let us single out points 0;€ G; U H; for all
j = 1. Since the Borel g-algebra #(0,) is countably generated, then there exists
a ¥,-measurable function §, from Q into @, satisfying 8,(w) = §,(w) for all
wé¢ M,, where M, e &, is a P-null set. Let us define:



THE EXISTENCE OF MEASURABLE APPROXIMATING MAXIMUMS 81

O () = Oy(w) if weM:
=0, if weM,

for all weQ and all n = 1. Then evidently the sequence {,|n = 1} satisfies
(4.5H4.10) with N = N; U N, U (| | M,). This completes the proof.

REMARK 4.2. Suppose that the family # in Theorem 4.1 is degenerated. Then
the functions Ho(K), H(K), Ho(L) and H(L) are degenerated, that is P-almost
surely equal to constants which depend on K and L respectively, as well as the
inferior and the superior limit appearing in (4.8) and (4.9). Also, putting K = Lin
(4.8) and (4.9) we find:

Hy(w, K) < liminf h,(w, §,(w)) < lim sup h,(w, §,(w)) = H(w, K)

n— oo n— o

for all w¢ N. Moreover, if we make a small change in the preceding proof by
putting:

G, = {(®,0eQ x G;|H}(w,G;) +j ' > hy(w,0) > H}(w,G;) — ¢j(w)}
and taking a %, -measurable map ¢,;: Q - G; satisfying:
h,,(Cl), én](w)) > H(’)k(wa Gj) - 8]'((,0), Vowe nQ(an)
H§(0,G)) + 7! > hy(, &j(0) > H3(@, G)) — ¢j(w), Vo emng(G,))

for n= 1 and j = 1, then it is easily verified that the same proof yields the
existence of a sequence of random functions {9,, |n = 1} satisfying:

(4.16) 0,3K on Q
(4.17) %{0,(w)} c K, forall we

(4.18)  Hy(w, K) = liminf h,(w, 0,(w)) < lim sup h,(w, 8,(w)) = H(w, K),

forall wé¢N
(4.19) 6, is &,-measurable forall n=1

where N € # is a P-null set.

REMARK 4.3. It is very customary in the context of statistical models men-
tioned in the introduction to imbed the topological space @, into a compact
space @ and extend functions from s by putting h,(w,0) = — o0, YweQ,
Y0e@\@, and Vn = 1. Let 4,B < &, be given sets, where &, denotes the
closure of @, in @. Suppose that the space ©, and the family # = ({h,(w, 0),
&, |n 2 1}|0e O,)satisfy one of the conditions (4. 1}(4.4), and suppose that 5 is
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measurable. Then by Theorem 4.1 there exists a sequence {f,|n = 1} satisfying
(4.5)44.10) with K = A and L = B. Note that every function 6, is @-valued in
general, and a slight modification in the proof of Theorem 4.1 by putting:

Gj_—“G;-kﬁ@o and H]=H}*m@0

for all j = 1, where ¥(K) = {G¥|j = 1} and 9(L) = {H}|j = 1} are decreasing
sequences of open sets in @, associated to K and L in the sense of Lemma 3.1,
yields the existence of a @,-valued sequence {f,|n = 1} satisfying (4.5)~(4.10).
Note, however, thet @, satisfying (4.1) is a compact analytic space and hence
metrizable.

Let us turn to some applications of Theorem 4.1. For this suppose that
H = ({hy(@,0), %, |n = 1} |0 Oy)is afamily of reversed submartingales defined
on the probability space (2, #, P), and indexed by the topological space @,
which admits a compactification @. Let us extend h, on Q x @ by putting
hy(w,0) = —0, Ywe R, V6eO®\O, and Vn = 1. From the general theory of
reversed submartingales we know that h,(6) converges P-almost surely to a ran-
dom variable h(0) as n — oo, for all € @,. Therefore the information function:

I(, 6) = lim h,(w,6)
associated to # may be well-defined for all € @, and all w € Q\ Ny, where Ny is
an exceptional P-null set for which the limit on the right-hand side above does
not exists. A sequence of functions {f,|n = 1} from Q into ® may be called
a sequence of approximating maximums associated to # , if there exists a function
q: 2 —» N and a P-null set N e ¥ satisfying:

(4.20) b, (w)e®y, YweQ\N, Vn==g(w)
4.21) liminf h,(w, 6,(w)) = sup I(w,0), YoeQ\N
n—o 0O

provided that the right-hand side in the inequality (4.21) is well-defined. Respect-
ing the statistical nature lying behind we may do it as follows:

I(w,0) = liminf h,(c, 0)

n— o0

for all weQ and all 0 @. Then it is easily verified that there always exists
a sequence of functions {f,|n = 1} from Q into @ satisfying (4.20) and (4.21).
Moreover, let us define:

M = M(#) = {0y | Hw,6) = p(w) P-a.s.}
L= L(#)={0€6,| Ay, ) = f(w) P-as.}
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where f(w) = B(w) = supyeq, I(w,0) for e Q. (These sets turn out to be the
most important for consistency of statistical models mentioned in the introduc-
tion.) Then we have the following consequence of Theorem 4.1, Remark 4.2 and
Remark 4.3.

COROLLARY 4.4. Suppose that the space @, and the family # = ({h,(w,0),
S,|n = 1}| 6 @) satisfy one of the conditions (4.1)«4.4), and suppose that # is
measurable. Then we have:

(1) For every Oe M(#) there exists a sequence of approximating maximums
{0,|n = 1} associated to # satisfying:

4.22) 0, is &,-measurable for all n =1
(4.23) 0e6{0,(w)}, forall wéN

where N € & is a P-null set.
(2) For every Oe L(#) there exists a sequence of approximating maximums
{0,|n = 1} associated to # satisfying:

4.24) 6, is &,-measurable for all n=1

4.25) 6,3{0} onQ

(4.26)  Hy(w,0) = liminf h,(w, §,(w)) < lim sup h,(w, §,(w)) = H(w, ),
forallwéN

where N € # is a P-null set.
PrOOF. (1): By definition of the information function I, we directly find:

Hy(w, @) = liminf h*(w, B) = liminf h*(w, O,) = sup I(w, ) = B(w)

n—owo n— o 0e6¢

for all we Q. Now if e M(s#), then there exists a P-null set N € # such that:
H(w,6) = H(,{0}) 2 f()
for all we Q\N. From these two facts we get:
Hy(w,8,) A H(o, {6}) 2 B(w)

for all we Q\N. Hence the proof follows straightforward by applying Theorem
4.1 with Remark 4.3 to the compact sets K = &, and L = {6}.

(2): Straightforward by Theorem 4.1, Remark 4.3, and the last part of Remark
4.2 with the compact sets K = L = {8}, for 6 € L(#) being given.
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