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A LUSIN TYPE APPROXIMATION OF BESSEL
POTENTIALS AND BESOV FUNCTIONS BY
SMOOTH FUNCTIONS

B. M. STOCKE

0. Introduction.

Lusin’s theorem is a simple and important result in classical analysis. One way of
stating the theorem is for measurable functions f on an interval. For every ¢ > 0
there is a continuous function g such that f(x) = g(x) except on a set of measure
less than ¢. F. C. Liu proved the following, v. [6]. If f is a Sobolev function,
f €W, then for every & > 0 there is a ge C' such that if E is the set for which
f(x) # g(x) then the Sobolev norm of f — g, restricted to E, is less than &. In [7],
J. H. Michael and W. P. Ziemer obtained refinements of these results, see also
[13], Chapter 3.

In this paper we will prove that if a function f is a Bessel potential or a Besov
function, then f can be approximated by smooth functions both in appropriate
norm and capacity. This is again a refinement of the results of Liu and
Michael-Ziemer.

The main result is stated for Bessel potentials in section 2 and for Besov
functions in section 4. Proofs are given in section 3.

1. Notation and definitions.

Let R"n = 1, denote the n-dimensional Euclidean space. Let Q denote an
arbitrary open subset of R". Let I7(2), 1 < p < oo, denote the usual Lebesgue
space of measurable functions on © and let | - ||, denote the norm. The space of
Bessel potentials L2(R") is defined by

LE(R") = {G, * g: g€ L/(R")}.

Here G, denotes the Bessel kernel of order a > 0, v. [8]. The norm in L(R") is
given by |G, *gll.., = llgl,- For 0 <a < oo and 1 <p < oo we define, for
a compact set K = R", the Bessel capacity
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B, »(K) = inf| f7 ,

where the infimum is taken over all functions f' e CJ(R") such that f > 1 on K.
C§ denotes the infinitely differentiable functions on R" with compact support, v.
[2] and [9].

For 0 < o < 1the Besov space A2"4(R") consists of all functions f for which the
norm is finite, i.e.

_ q 1/q
1f pg = 11, + { J I/ (x jt‘i)mf Gl dt} < oo,

R"

For 1 < a < 2 the first difference is replaced by the second difference. For o > 1
the space A2 9(R") consists of those functions f for which

n
”f”a,p,q = ”f”p + Z ”DJf”a—l,p,q < 0.
j=1

Here the derivatives are taken in the sense of distributions, v. [8], Chapter 5.

The Besov space B2 (E)is defined as in [ 5] for a set E = R", with sequences of
families { /} ;<o ¥ = 0, 1,2, .., where f,¥ € L”(u), approximating f in norm.
Let E be an arbitrary Borel set and let m; denote the d-dimensional Hausdorff
measure. The set E is a d-set if for any closed ball B(x, r)

e Emy(B(x,r)"E) L cor!, xeE, r <1

for constants ¢;,c, > 0.
In [5] it is shown that

1 AP YR")|g = B2 E) when E is an n-set,i.e.d =n
and that
@ AZ(R") = BE(R)

ForO0<a < 00,1 <p<ooandl < g = oo the Besov capacity for a compact
set K is defined by

inf|| f1I7,,,, for p=gq
inf| f|14 for p>q

@, p,q

Ay, p.o(K) = {

where the infimum is taken over all f € CF(R") such that f = 1 on K, v. [10]. The
extension to all sets is made by

Ay p.o(E) = sup 4, , (K).
K<E
If the function Y e AP4(R"),0 <y <a, 1 <p < oo, then f = G,_, *y is well
defined, i.e.
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jGa'y(x - Yy)ldy <

A, , ,a.e. The corresponding result is true for Bessel potentials.

Differentiability in the [”-sense will be used. A function f has an I”-derivative
oforderjatxy, 1 < p < oo, ifthereis a polynomial P, of degree less than or equal
to j such that

1/p
4 <r‘" J [f(xo + y) — P, dy) = o(r)
Iyl sr

asr — 0. Thisis equivalent to f belonging to the Calderon-Zygmund class t/-?(x,)
which is the original concept from [4].

2. Lebesgue points of Bessel potentials and the main approximation result for
Bessel potentials.

A Bessel potential ue L2(R") can be defined everywhere except for a set of
capacity zero by integral avarages, c.f. [3].

THEOREM A. Let o > 0,ap < n,p > 1 and let u€ L5(R"). Then there exists a set
E, such that B, ,(E) = 0 and

lim ][ u(y)dy = i(x)
60+
B(x,d)

exists for all xe R"\E.

Besselpotentials do not have smoothness properties in the classical sense for
ap < n. But we will show that the function defined quasi almost everywhere with
the help of integral averages can be approximated by smooth functions both in
norm and capacity. The main result for Bessel potentials can now be stated.

THEOREM 1. Let 1 < p < 00,0 < j £ a,j integer, and let (x — j)p < n. Then, for
ueIZ(R") and each ¢ > 0, there exists a function ve C(R") such that if

F = {x:u(x) % v(x)}
then
B,_; (F)<e and |u—v|;,<e

When a is a positive integer L% (R") = WP(R") and as Bessel- and Rieszcapacity
are comparable, this result is a generalization of Theorem 3.11.6 in [13]. The-
orem 1 is proved in section 3.
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3. Proof of Theorem 1, the Bessel case.

The proof depends as in [12] on the Whitney Extension Theorem. We formulate
the theorem with Calderon-Zygmund classes.

THEOREM B. Let E = R" be closed and let U = {x: d(x, E) < 1}. If ue L’(U),
1 £ p £ o and uet'(x) for all xe E with condition (4) holding uniformly on E,
then there exists iie C(U) such that

DFPii(x) = DPP,(x)
for xe E,0 < |Bl <.

We will now show that the hypothesis of the Whitney Extension Theorem is
satisfied by u € L%(R").

LEMMA 1. Let 0 < j £ k, jinteger, and let (k — j)p < n. Let ue€ LE(R"). Then, for
every & > 0, there exists an open set U with B, _; (U) < & such that

Q) rd J[ lu(y) — Py(y)ldy — 0
B(x,r)

uniformly on R"\U as r — 0, i.e. uet’(x) holds uniformly when x e R"\U. P,(y) is
a polynomial of degree at most j.

PROOF OF LEMMA 1. The lemma is proved for j = 1. Choose ¢ > 0 arbitrarily.
We write u(x) = (G, * )(x), ¥ € [P(R"). Then there exist a constant C and a set E,
such that (G, * |y/|)(x) < Cforall xe R"\E,, where B, ,(E,) < ¢.Choose Cand E,
such that (G, *|y|(x) < C, (Gx—y *¥|)(xo) < C and B, _, ,(E,) < &/2. Choose
a point x outside E. Consider the Taylor polynomial

0G;,
8x,-

Py =+ 5 [0 5% = s~

We investigate the L'-derivative and get

—

1
n+1 J‘ |u(y)_ Px(Y)|dY§

Ix-ylsr
1
S S J dy J (O |Gily — £) — Gilx — 1) —
|x=ylsr |x-tis2r
" 3G,

- Z —"‘(X — B)(x; — yi)|dt +
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1
+ T J dy J (@)l

Gy — 0 — Gux — 1) —

Ix=y|<r 2r<|x—t|s1
" 0Gy
- l;l ox; (¢ — B)(x; — y;){dt +
1
+ T dy WO Ge(y — 1) — Glx — t) —
[x=ylsr |x~t]>1
" 0G
-y axk (x — 00 — y)|dt = J, + J, + Js.
i=1 i

Make a dyadic decomposition of the set {r:2r <|x,—t/ <1} and let
1

2M+1

1 cq c,r
Jl é r,.+1 J W(t)| j (ly_ t|,,_k + lx _ tln-k+1>dydt é

|x—t]=2r [x=ylsr

< r < —, M a positive integer. If we choose M large enough then

24

Sc j WO Gi—y(x — t)dt < ¢
Ix—tj21-M

except on a set E,, By_; ,(E;) <¢/2. To see this, we observe that there is
afunctiony;€ &, ; > Y in LP-norm asi — o0. We use & for the Schwartz spaces
of C* rapidly decreasing functions on R". Then

{X: J [W(t) — (el ‘—%‘ﬁdl = 8} <

Ix—t|sr
c {XZ Jll//(t) =i G- y(x —1)dt 2 8} =E,
and hence

By_1,,(Ey) = Bkﬂ,p({x JM Gy_1(x — t)dt = 1}) <

gIl//—l//i ?
4

=W -l < 2

if only i is chosen sufficiently large. Thus, there exists an integer M, so that for
M ; Mla
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1

']1 ]X—— [ln‘k+1

IIA

[(t) — yi(t) dr +

[x—tjg21-M

1
+ J ll/]l(t)llx_——tmdt < 2

|x—t|s21-M

as the functions y; are continuous with compact support and therefore bounded.
Using wellknown properties of the Bessel kernel when 2r < |x — t| < 1 and
ly — t]| = 1 + r we get for sufficiently small r > 0, (M = M,) that

n

G
Gy — 1) — Gelx =) — 3 2 (x — (s — x| £ —C8 g

S—— sl —x
i1 0x; |x —g"k*2

Hence,

1
Jy Zcr J' ll//(t)lwmdl

2r<|x—t|=1

Using the dyadic decomposition and choosing (M + 1)/2 in the sum below if M is
odd we have

c M2 1
L =5 22" j ll//(t)IT;:Tlmdf +

b Y W)t di <
M m=M/2+1 Ix —¢r 7kt =

M/2 1
= <2M//2 J |'//(t)|{x—_Wdl+ j 1 ]l//(t)|-|~;_—t|"—_k+—1dt>

|x—t]=1 lx=tl s 5373

so(grGomm s [ WG i) <2
bt £ 57473
The lastinequality follows as before for all x ¢ E; U E, and M sufficiently large.
Now consider |x —t|>1 and |x —y|<r. Then |y—t|>1—r. For
|x —t 4+ 6(y — x)| > 1 and r small enough we have

oG

— (= ) + 0 — x))| S Gy—y(x — 1),

0x

Hence J; £ ¢,rG,_1(x — t), where the constant only depends on the dimension.
Now
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Jyser J WO Ge-1(x — )dt < c27M(G— *WD)(x) < &
lx—t[>1

for x¢ E, U E,, if M is chosen large enough. Now let U be an open covering of
E, UE, with B, (U) <e.

For j =0 and j = 2 we use the same method. This completes the proof of
Lemma 1.

THEOREM C. Let 0 <j < a, j integer. Let 1 < p < oo and (x — j)p < n. Let
ueLZ(R" and ¢ > 0. Then there exist an open set U = R" and a C’ functionv on R",
such that

B,_;  (U)<e
and
DPu(x) = DPu(x)
forall xe R\U and 0 < |B| <.

Theorem C is a direct consequence of Theorem B and Lemma 1. To make the
approximation close to u in norm we need the following lemmas.

LEMMA 2. Let « > 0 and let u e LE(R") which vanishes outside a bounded open set
U. Let 6,0€(0,1) and let

E=6Un {x: inf m(K(x, 1) 0 (RN U)) > O'}

n
0<t<o t

where K(x,t) denotes the closed cube with center x and side-length t. Let f be
a positive real number such that f < a and let ¢ > 0. Then there exists a function
ve L(R") and an open set V such that

) lu—ollp, <e

(ii) E = V and v(x) = O when xe V U (R"\U).

Proor oF LEMMA 2. The function vis constructed as in [13]. It is given here for
completeness and for the proof of (i). Let A€ (0, 1] and let K, denote the set of all
closed cubes

[(y — DA, i A] x [(i; — DA, iz4] x ... x [(i, — DA, i,4]

. 1)
where iy, i,,...,i,are arbitrary integers. Let A < 3 andlet K,,..., K, be the cubes

of K, that intersect E. Let a; be the center of K; and let P; = K(a;,44). Let { be
a C® function on R", such that 0 £ { < 1 and '
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{0, xeK(,1)
C(x)’{u x¢ K(0,3/2).

Define

! X —q;
uz(x) = u(x) il;ll 4 (T)
Then u,(x) = 0 when d(x, E) < 1/, so that, for any sufficiently small 1, we can
define v by v = u; and find an open set V satisfying (ii).
It remains to prove that |u —u,l, ,—»0 as A—0+. We use the norm
I llap = 1f 1, + ID(N, for 0 < o < 2, v. [8], where

f u(x + y) — u(x) dy

Da(f(x)) = llm ‘y|n+a

e—0
Iyl2e

We observe that there exists a constant 7 = t(n) such that at most 7 of the cubes P;
intersect P;, say jy,...,j,. Then for xe P;

us(x) = () [ lx — a;)/20).
i=1

Let | J P,;=P,. Then Un P; = U n {x:d(x,0U) < 2\/1;/1} and m{Un P} -0
i=1
as A - 0+. Now

1D, (u(x) — uz (x5 =

|

p

d
lim f [(u(x + ) — wy(x +y»~(u(x)—ul(x»]|~yl,—y+;— dx =

e~0

Rn Ivlze
d 14
= J lim J (u(x + y) — u(x)) ny+a dx +
om0 Iyl
UnP; lvlze
. dy |*
+ lim (uxx +y) — “A(x))W?Z dx +
UnP; wolylée
_ _ _ P
S Iyl
R™\(UnPy) Ivlze
= Jl + J2 + J3'

As u, u, € [2(R"), the integrals J; and J, tend to zero when A —» 0+. We observe
that u(x) — u,(x) = 0 whenever xe R"™\(U n P;). Then putting x + y = x’ we
have
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n o ’r_ _ n o ’ 1/
J;/p§< f lim j ) — ulx’ = ) = () = wilx = y)dy | dY) ’
-0 IY|
UnP; Ivlze
’ N r p 1/p
§< J lim J U+ ) —ux) 4 dx’) +
-0 ‘yl
UnP,; ylze
’ n o ’ )4 1/p
+<f M1J ““ﬁﬁia““h@ a).
=0

UnP, y'lze

In the last two integrals we have put )’ = —y. Asm(U\P;) - O when 1 — 0+,
the integrals tend to zero.

Here we have used the fact that u(x) = u(x)- [] C(x ;;h) belongs to £ (R")
i=1

as ueLZ(R") and Y(x) = n 4 (x ;/{%)e CZ(R™ where Y € C3 and is zero out-
i=1

side a bounded open set containing U.
For a > 1 we can work as usual with the derivatives. This completes the proof
of the lemma, as for § < o the norms are smaller.

LEMMA 3. Let k be a nonnegative real number such that kp < n. Let U be
a bounded non-empty open subset of R" and F a subset of U with the property that
for each xe F, there is a t €(0, 1) for which
m(U N B(x, 1)) >

m(B(x,t)) ~
where o €(0, 1). Then there exists a constant C = C(n, p, k) such that
By ,(UU F) £ Co™ 7By ,(U).

For the method of proof, v. Lemma 3.11.4 in [ 13] with Riesz capacity replaced
by Bessel capacity. The proof of Lemma 3.11.6 in [13] can also be modified to
give the following.

LEMMA 4. Let 1 < p < oo and let k and o be real numbers such that kp < n and
0 < k £ a. There exists a constant C = C(n,p,k,®) such that for each bounded
non-empty open subset U of R", each u € L%,(R"™) which vanishes outside U and every
& > 0 there exists a C* function v on R" with the properties
(@) lu—olg,<e0<pf=a
(ii) By, ,(suppv) = CBy, (V)
(iii) suppv < V = R"n {x: d(x, U) < ¢}.

Now we are ready to prove the main result.



A LUSIN TYPE APPROXIMATION OF BESSEL POTENTIALS AND ... 69

PROOF OF THEOREM 1. We can assume that the set
A=R"n{xux)+0}+ 0
and.that A isbounded, v. [9]. Choose ¢ > Oarbitrarily. We show that there exists
a C’ function v on R" such that if F = {x: u(x) + v(x)} then
B, ;(F)<e and |lu—v|;,<e

Let ¢ be the constant of Lemma 4. Let u be defined by its values at Lebesgue
points except for a set E with B, ,(E) = 0. By Theorem C there exists an open set
U < R" and a C’ function h on R", such that U o E,

&
1+¢

(1) Ba*j,p(U) <
and
h(x) = u(x)

for all xe R"\U. We substitute « — j for k and u — h for u in Lemma 4 and get
a Cg function ¢ on R" such that

) lu—h)—ell;,<e
and

Ba—j, p(Supp (P) é CBa—j, p(U)
Put v = h + @. Then the second part of the theorem follows from (2). Also

F < [{x: h(x) % u(x)} Usupp ¢] = [U Usupp ¢]

so that

Ba*j.p(F) § (1 + C)Ba—j, p(U)
and the first part of the theorem follows from (1). This completes the proof of the
theorem.
4. Approximation results for Besov functions.

The approximation results shown in section 2 are valid also for Besov functions
f € BP9(Q). In the Sobolev case it is meaningful to consider functions defined on
open subsets of R", v. [7]. This is also true for Besov functions. In order to define
the functions except on a set of Besov capacity zero the set € has to be an open
n-set.

THEOREM 2. Let 1 <p< o0, 1 <q £ 00, 0 <j = a, where j integer and let
(¢ — j)p < n. Let Q be an open n-set. Then for ue BY'%(Q) and each ¢ > 0, there
exists a function ve C¥(R) such that if
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F = Qn {x:u(x) £ v(x)}
then
AgjpadF)<e and |lu—vl;,,<e

REMARK. The results formulated in Theorem 1 and 2 are also true for
Triebel-Lizorkin spaces FP'9(R"), v. [10] for definitions and the corresponding
Triebel-Lizorkin capacity.

The proof of Theorem 2 is much the same as the proof of Theorem 1 when
2 = R". For Q c R"an n-set we have to make some modifications. For such a set
Q, both the function D’f, |j| £ [«], in BZ'%(2) and an arbitrary extension D/(gf ) to
a function in BZ'%(R"), can be strictly defined except on appropriate exceptional
sets. For a detailed proof, v. [11].
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