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ON SINGULARITIES OF SMOOTH MAPS
TO A SPACE WITH A FIXED CONE

B. Z. SHAPIRO

Abstract.

We consider germs of smooth maps f: (R',0) = (R", c), ce ¥ where € is the standard nondegenerate
cone of some signature and classify their singularities under the actions of two natural groups of
diffeomorphisms preserving €. Occuring singularities are subdivided into 3 classes: regular,
semiregular and irregular. In the regular case the classification of singularities is reduced to the
classification of the usual singularities of germs of functions. We present the list of simple semiregular
singularities and also analyze some irregular singularities.

§0. Preliminaries and results.

The singularities of maps f:(R’,0) = (R",s), se & to a target space with some
fixed stratified variety ¥ were considered by several authors, see e.g. [AVG],
[A1], [L], [Si]. In the case when % is a hyperplane they are called boundary
singularities and were investigated in details in [A1]. In particular, it was shown
that the simple boundary singularities correspond to the 4-, B-, C-, D-, E-series
and F, in the classification of simple Lie algebras. A much more general class of
actions (including all actions on source and target with a stratified & used in this
note) was studied by J. Damon [Dal-2]. He proved the existence of the versal
unfoldings and finite determinacy of germs of maps in this situation. (Therefore,
the normal forms we present can be achieved in formal, analytic and smooth
categories.) In what follows we will always assume that the dimension of the
source is less than the dimension of the target.

Main notation.

Let se & be a point on a stratified variety & and let o</ denote the product of
the group of local diffeomorphisms (R',0) — (R',0) of the source by the group of local
diffeomorphisms (R", s) — (R", s) of the target preserving &.

By A" we denote the group of contact transformations, i.e. elements of A~ are
diffeomorphisms of (R’ x R",0) preserving a) projection on R' (inducing dif-
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20 B. Z. SHAPIRO

feomorphisms of R’) and b) the subspace (R' x 0). Thus two germs f; and
f2:(RL,0) - (R",0) are  -equivalent if there exists a diffcomorphism of the
source and a germ M: (R, 0) - GL(R") such that f;(x) = M(x)f,(g(x)). (Another
standard notation for X -equivalence introduced by J. Martinet and used in
[AVG] is V-equivalence.)

Let o5 denote the subgroup of 2" consisting of all diffeomorphisms H e )
such that H(R! x ¥) < R! x &.

Let (), denote the ring of germs of analytic functions on (R',0) and m; < (),
denote the minimal ideal of functions vanishing at the origin. The space of germs
of maps (R',0)— R" is denoted by O/ and the space of germs of maps
(R%,0) - (R",0) sending the origin of the source to the origin of the target is
denoted by M. Obviouslyy, O =0 x--x ¢ (n factors) and
M =m; x --- x my. i

Some standard notions of the singularity theory.

An arbitrary germ ¥(x,4) = (¥,(x),4): (R' x R",0 x 0) - (R" x R",s x 0)
such that ¥(x,0) = f(x) is called an unfolding of the map f: (R',0) = (R",s). The
additional space of parameters R" is called the base of the unfolding. If addition-
ally, for all 4 one has ¥(0, 1) = s x A then such a ¥ is called an origin-preserving
unfolding of f.

Let us consider the action of a group G (G equals /5 or £) on the space of
germs f: (R, 0) — (R",s). Two unfoldings of f with the same base ¥": (R x R’,
0x0)—>(R"xR", s x0)and P":(R' x R", 0 x 0) » (R" x R", s x 0) are called
G-equivalent if there exists a germ of smooth map g: (R",0) — (G, e) where e is the
identical diffefomorphism such that ¥'(x, ) = g(A)¥"(x, ). Consider a smooth
map ©@:(R™,0) — (R™,0). The deformation induced by © from ¥,: (R' x R",
0 x 0)— (R" x R"2, s x 0) is defined as @*¥, = ¥,.0:(R' x R";, 0 x 0) —
(R" x R™, s x 0). A G-versal unfolding of a map f: (R, 0) - (R", s) is an unfolding
@ such that any other unfolding is G-equivalent to some unfolding induced from
& by an appropriate map of bases, see [AVG], p. 142. If the dimension of the base
of @ is the minimal possible then @ is called a miniversal unfolding. (We will always
work with miniversal unfoldings and omit the prefix “mini”.) A bifurcation
diagramis a subset Bif A of the base A such that for any A € Bif the correspond-
ing map f; € ®is not in general position w.r.t. &, i.e. either f; is not an immersion
or the image f;(R') is nontransversal to . Two unfoldings of a germ
£+ (R4, 0) > (R", %) are called equivalent if each of them can be induced from the
other by an appropriate map of their bases. Bifurcation diagrams Bif; < A; and
Bif, = A, of two unfoldings with the bases A; and A, resp. are called coinciding if
there exists a diffeomorphism of the pairs (4, Bif,) and (A4,, Bif,). Exactly the
same definitions as above work if we restrict our considerations to the class of
origin-preserving unfoldings. Corresponding versal unfoldings will be called
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origin-preserving or restricted versal unfoldings. Recall that two germs of func-
tions on the same number of variables are called equivalent if there exists a local
diffeomorphism sending one to the other. Two functions on a different number of
variables are called stably equivalent if they become equivalent after addition of
nondegenerate quadratic forms of extra variables.

By the modality of a singularity of a germ f: (R}, 0) - (R", 5) (under the action of
a chosen group G) we call the minimal number m of parameters such that
a sufficiently small neighborhood of the orbit of f can be covered by a finite
number of m-parameter families of orbits.

A singularity of a germ f: (R',0) — (R", %) is called simple (under the action of
the chosen group) if its modality is zero.

A germ f: (R, 0) - (R", %) is called stable if for any germ f close to f there exists
a point (x,y) close to (0,0) such that f considered as f:(R!x)— (R",y) is
o g-equivalent to f.

THE MAIN DEFINITION. A germ f:(R',0) - (R" s), s€ ¥ is called regular if the
following 2 conditions are satisfied

a) fisanembedding; b) s belongs to one of the top-dimensional strata of &. (In
this case & can be replaced by a germ of a smooth submanifold.)

If only a) is satisfied the germ f is called semiregular and finally if a) is violated
such an f is called irregular.

0.1. Regular singularities.

REMARK. If f is (semi)regular then its .o/,- and X ,-versal unfoldings are
equivalent (see lemma 1.1) and in this case we just call either of them a versal
unfolding. Analogously, its restricted .«/,- and £ -versal unfoldings are equival-
ent and we call either of them a restricted versal unfolding.

Let & < R" be a germ of a smooth manifold of codimension k and se & be
some point. Let us fix k functions h,,..., h, defining & as a germ of complete
intersection &: {h; = 0; i = 1,...,k} in some neighborhood of s. For any germ
f(RL0)—>(R%s), se¥ we call by the induced germ f, the germ
ho f: (R, 0) - R",s), i.e. the pullback of the functions h;,...,h by f(R") in the
neighborhood of s.

PROPOSITION A. A versal unfolding and the bifurcation diagram of a regular
germ f:(R,0) - (R",.%) is equivalent to a A -versal unfolding and bifurcation
diagram of its induced germ f.

REMARK. As was pointed out by the referee Proposition A also holds for
A o-unfoldings without the requirement that f is an embedding, see [Da 3] but s
virtually always false if s is not a regular point of #.
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IfS: {Q = 0} is a germ of hypersurface in R" and f: (R', 0) - (R", s)is a map then
Q,: (R',0) > (R, 0) will denote the germ of the induced function Qo f = f*Q.

COROLLARY. If¥:{Q = 0} is agerm of a hypersurface then a versal deformation
of agermof aregular map f: (R',0) — (R", s) is equivalent to a X -versal deformation
of the induced function Q ;- (R',0) > (R, 0). Therefore, if & is a hypersurface then the
classification of singularities of reqular maps coincides with the A -classification of
germs of functions. In particular, they have the same list of simple singularities.

COROLLARY B. If € is a nondegenerate cone then for any fixed k the list of
bifurcation diagrams in versal unfoldings of reqular maps f: (R",0) — (R", %) occur-
ing in generic k-parameter families of maps stabilize as soon as n > k + 1. This
means that for any such regular map f, to the space of dimension ny > k + I there
exists a regular map f, to the space of dimension n, < k + | with the coinciding
bifurcation diagram.

0.2. Semiregular singularities.

PROPOSITION C. A versal unfolding of a semiregular germ f:(R',0) — (R",¢c),
c €% can be obtained by extending its reduced versal unfolding by a (n — l)-dimen-
sional space of parallel shifts of f in the directions transversal to the image f(R') at
the origin of the target.

PROPOSITION D. Taking the induced functions one defines a mapping from
origin-preserving unfoldings of f to unfoldings of Q; in m? with the following
properties. Let &(x, ) = (P,(x), A) be some origin-preserving unfolding then

a) If @, (x) and @, (x) lie in a single o/¢-orbit then Q% and Q(plz lie in a single
A -orbit.

b) any unfolding of Q; in m} can be induced from an origin-preserving unfolding
of f.

In particular, the deformation of 0 induced from any reduced versal unfold-
ing @,.4(x, 4) of a semiregular germ f: (R',0) — (R", %) is equivalent to reduced
A -versal unfolding of Q . (Recall that inits turn any reduced . -versal unfolding
of O isequivalentto Q, + Y Ae; where e; € mf are representatives of any basis of

the quotient module m?/m, (%S—f—,..., aagf , Q) )
1 l

COROLLARY E. The modality of a semiregular germ is not less than the A -mo-
dality of the induced function Q ;. Therefore, the necessary condition for a semiregu-
lar germf: (R',0) — (R", %) to be simple is that the induced Q  is stably equivalent to
one of the germs of the A -simple singularities, i.e. belongs to one of the A-, D- or
E-series.

REMARK F. A (n — I)-dimensional family of parallel shifts of a semiregular
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S which is included in its versal unfolding in addition to its reduced versal
unfolding (see Proposition C) induces the subdeformation of Q , which can be
normalized as

cr n—1
Or+ z Aix; + z il,g,
i=1 j=cr+1
where x;,i = 1,...,cr are coordinates in the kernel of the quadratic part of Q r
Therefore, bifurcation diagrams of a versal unfolding and of a reduced versal
unfolding are given as the zero sets of the stably equivalent functions.

THEOREM G. A germ of a semiregular map f: (R, 0) = (R",¢), c€ ¥, | < n such
that the quadratic part of Q; has corank 1 and Q; = ax* + ..., % 0 along the
kernel can be reduced by the sf4-action to the normal form fi: (x1,x%, x5,...,x,,
0,...,0), where Q = +(y1y, + Y i-3 = y?) and €: {Q = O}. Its reduced versal
unfolding depends on k — 1 parameters and can be chosen as

DrealX1,. s X1, Aty ey Ak—y):
r=x,y=x5+ 447 4+ 4+ Aixy,
V3= Xae0 Vet =X Y142 = 0,0,y = O}-

The bifurcation diagram of this unfolding has two irreducible components. The
first component consists of all sets A such that the induced function Q r;at the
origin has a more complicated singularity than Morse singularity. The second
component consists of all sets 4 such that Q,_has only singular points different
from the origin. Thus the considered bifurcation diagram coincides with the
bifurcation diagram of the singularity B,_,, i.e. consists of all (k — 1)-tuples
(A1s...»Ac—1) such that xX7! 4+ ;xk 4+ --- 4+ J,_, as a polynomial in x; has
a multiple or zero root. Recall that By is a boundary singularity described for the
first time in [41].

CorROLLARY H. Under the same assumptions as in Theorem G, a versal unfold-
ing of f, depends on k + n — | — 1 parameters and can be chosen in the form

D(X 1,y Xpy Agyevos gttt 1)
yi=xpy2=x5 + 4x{7 4+ 44,

Vi =Xo oo Viv1 = Xp V142 = Akttrens Yn = /lk+n—1—1}-

The bifurcation diagram of this unfolding consists of all (k + n — | — 1)-tuples
(Ats--»Ayan—1—y) such that the hypersurface xA*! + A;x% + - + 4ix;, &
X3+ +xF+ A2, -+ Ali,_i-, =0 is singular. If | = k — 1 then the
bifurcation diagram coincides with that of the singularity B, and if| = k — 2 with

that of D, , ;.
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By a trivial (r,s)-extension of a germ f:(RP,0) — (R%0) we mean the map
f:(R? x R" x R®%,0) - (R? x R" x R®,0) which is equal to ((f, id, 0).

THEOREM 1. The normal forms of simple f are the trivial (r, s)-extensions of the
Sollowing normal forms. (Below Q = +(y;y, + 2233 + y3) for the A-series and
Q=2+ ysya+yi-st yf) in the rest of the cases.)

1) O, = A f = (x4, x%), see its reduced versal unfolding in theorem G;

2) Q; = D{, ; (% forms are different only if k is odd)

the normal form: f = (x;, X1, x,, +x,x,), its reduced versal unfolding is

DXy, X2, Agyenr Ai)
={x, X5+ AxETT b+ L ax, Xg, XXy + Ay Xy + AXo )
3) Q; @ EE; f = (x4, x3, x5, £x3), its reduced versal unfolding is
Drealx1, X2, A15. -5 45)
= {x, X3 + Ayx1, X5, £X3 + A3X3 + AyxyXg + AgXy + AsXo);

4) Q5 = E5;
the normal form: f = (x,x3,x,, x,x3), its reduced versal unfolding is

Drea(X1,X2, 4150005 46)
= {x1,x3 + Ayxy, X2, %1X3 + AyxT + A3x% 4+ Aax X5 + Asxy + AeXa);
5) Q; = Eg; f = (x4, x1, X2, x3), its reduced versal unfolding is
Doa(X1, X2, 4150005 49)

{xl,x% + ilxl,xZ,x; + lzxg + /13)6% + )..4)(«'2 + Asxlx% + A6X1XZ + l7x1}.

It

The adjacency of simple gemiregular singularities coincides with the usual
adjacency of the A — D — E-series, see Fig. 1, compare [A3].

REMARK. In all the cases 1)-5) the number of parameters in a reduced versal
unfolding of f equals u — 1, where pis the Milnor number of Q , and the induced
deformation of Q, is equivalent to Q, + Y A;e;, where e; € m? are representatives

0
of any basis of the quotient module m#/m —6—&,...;& =mf/m
0x4 0x;
<3Qf 99

ox; 7 ox,
since Q; is quasihomogeneous. The bifurcation diagram is reducible and consists
of two components one of which is a cylinder over the usual cone in R? in the
cases 2-5 and is smooth in the case 1. This component corresponds to the case
when Q, has at the origin a more complicated singularity than just Morse
singularity.

0 f>, compare [A3]. The last identity holds in all these cases
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REMARK. When [ =n — 1 the only type of singularities which occurs is
0, = A,. Other simple singularities are realized only if n — lis at least 2 while in
the regular case (i.e. when f(0) is a smooth point of the cone) one can realize all
the simple boundary singularities. Yet another difference is that in the semiregu-
lar case not all the simple boundary singularities are realized due to the fact that
Q is a nondegenerate quadratic form in the ambient space.

A<—A<—-—A<— <——— 4—-—-A<—— ,—

1 2
Cﬂ——-—o DG
‘_E

Fig. 1. Adjacency of complex simple semiregular singularities.

ProrosiTION B'. Consider the space I} of all germs of maps sending the origin
to the vertex of the cone. For any fixed k the list of versal unfoldings and bifurcation
diagrams of a semiregular germs f: (R', 0) — (R", %) occuring in generic k-parameter
families of germs from I} stabilize as soon as n = k + I, compare B.

0.3. Irregular singularities.

The standard Whitney umbrella is a hypersurface in R? given by VY3 = X1X2,
y2 = X2,)y; = x; in the parametric form or by the equation y3 = y,y3. 4 Whitney
umbrella is a hypersurface difffomorphic to the standard one. A Whitney um-
brella defines a cross in the tangent plane at its vertex consisting of the tangent
line to its handle and the tangent space to a Whitney umbrella considered as the
image of a map. (On Fig. 2 these lines are y;- and y,-axis resp.)

The first nontrivial irregular germ f:(R?0) — (R?, %) occurs when f(R?) is
astandard Whitney umbrella and f(0) is a smooth point of the cone €. In this case
we can substitute ¥ by R2. Moreover instead of normalizing a Whitney umbrella
in a space with a hyperplane R? one can normalize an imbedding of a smooth
hypersurface in a space with the fixed Whitney umbrella, see lemma 3.1.

THEOREM J. The above nontrivial irregular case leads to the following singular-
ities.

a) If'€ is transversal to the tangent plane at the vertex of the Whitney umbrella
then the Whitney umbrella and a germ of € in the neighborhood of f(0) can be
normalized as {y3 = y1y3, y1 = V2 }-

b) There are 2 cases of codimension 1 when the tangent plane to € is given by
either y, = 0 or y, = 0, see Fig. 2. In both cases one gets families of singularities
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Fig. 2. The standard Whitney umbrella.

with the bifurcation diagrams coincides with that of the singularity B, for some
k=2

) in the most complicated case y; = 0 any map is equivalent to one of the
following ©,:(x,,x,x%) which has a versal deformation ®(x1,%x3,A0,...,4) =
{y1 = x2,y2 = X1,¥3 = Aoxy + X5 + 4x5~' + - + A} and its bifurcation dia-
gram consists of three irreducible components, namely, 1) Ay =0, ii)
p(x;) = xt 4+ Axt 1 4+ -+ + Ay has a multiple zero and iii) p(A3) = 0. These com-
ponents correspond to nontransversality of a smooth hypersurface to the vertex, the
handle and to the smooth part of the Whitney umbrella resp.

Recently D. Mond has informed the author that the same problem in the case
when the smooth germ and the germ of Whitney umbrella meet transversally was
studied by him in [Mo].

We consider the real case which is more complicated than the complex one. All
the results hold in the complex case as well if one drops the signs in theorem 1.
Some preliminary results in this direction were obtained by the author in 1989.
The original motivation to consider the special case of the cone came from the
hyperbolic systems with variable coefficients, compare [A2]. Sincere thanks are
due to V. L. Arnold for his constant support and encouragement and to V. V.
Goryunov for the assistance and explanation of the papers [Dal-2]. The con-
sidered problem is closely related to the more complicated results by V. V.
Goryunov on simple projections, see [G1-2] athough (to the best of the author’s
knowledge) the above results do not follow from [G1-2]. The author is very
obliged to the referee for the constructive criticism which enabled to improve
substantially the quality of the original version. The author is very greatful to
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THES for the hospitality in January 94 which allowed him not only to accomplish
the present article but also to enjoy the beauty of Paris.

§1. Regular case.

1.1. LEMMA (see [Da2]). Let f:(R',0) — (R", &%) be a germ of a map then:
a) a y-versal unfolding &(x, 1) of f is equivalent to f + Ae; where e;e O} are
representatives of any basis of the quotient module

(1 OO 10x1,...,0f [0x) + [*Oplvy o f,.. 0,0 )}

Here
v;, (i = 1,...,r) is a basis of the module of vector fields tangent &, i.e. preserving the
ideal of &;
v;o f is the restriction of the vector field v; to the image f(R').
The denominator in the t.h.s. presents the so-called extended tangent space

T, s(f) to the action of the group of s-unfoldings of f calculated at the 0 values of
parameters, see [ Da2].

b) analogously, a Hs-versal unfolding (x, 1) of fis equivalent to f + ;e; where
e;€ (O are representatives of any basis of the quotient module

(2) (0?/{(91(6f/0x19"'5af/axl’ Uy Of;"'avrof)}’

Analogously, the denominator in the r.h.s. presents the extended tangent space
T, As(f) to the action of the group of #s-unfoldings on f calculated at the 0 values of
parameters.

¢) areduced o/ g-versal unfolding @, .q(x, ) of the map f'is equivalent to f + Ae;
where e; € MR} are representatives of any basis of the quotient module

) W {u(0f /0x1,...., Of [0x1) + [*OuBy o s Bpo )]s

where §y,..., 7, is a basis of the module of vector fields tangent to & and preserving
the origin in the target;

The denominator in the r.h.s. presents the usual tangent space T</s(f) to the
&s-action on f.

d) analogously, areduced As-versal unfolding ®,.q(x, 1) is equivalent to f + Ae;
where e; € I are representatives of any basis of the quotient module

(4) mt{'/{m,{af/ﬁxl,...,ax,) + (91(61 Oﬁ,,_’ﬁpof)}_

The denominator in the r.h.s. presents the usual tangent space TA5(f) to the
A's-action on f.

The proof of this statement is standard and analogous to the proofs of the
corresponding statements about the #-, #.%- and 4 -equivalences, see [AVG],
p. 122. :
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1.2. PROOOF OF PROPOSITION A. We start with the following reformulation.
Let f:(R%,0) —» (R", R" %) be a germ of a regular map. (Recall that in the regular
case any stratified & can be substituted by R"~*.) Denote by @, a complement to
the extended tangent space T,oz--«(f); denote by &, a complement to the
extended tangent space T, #g--«(f) and, finally, denote by &, . s acomplement to
the extended tangent space T, 4 (n - f), where n is the projection of R" along R" ¥
on R* and the composition o f maps (R, 0) to (R¥, 0). These complements &, @ I
and &,. s are versal unfoldings of the germs f and mo f resp. relative to the
corresponding group of diffeomorphisms &/gn-x, #gn-« and A", see [Da2].

PROPOSITION A’. Versal unfoldings @, @ - and d,. 1 are equivalent, i.e. each of
them can be induced from any other, see [AVG], p. 147 and above.

PrOOF. The equivalence of ¢, and &, follows directly from the formulas
(1)+2) and the fact that f*@, is isomorphic to ¢, since f is an embedding. Let us
show the equivalence of &, and &, , i.e. that they can be induced from each
other. Note that any map from & 1 is defined by the inverse image of R" ¥ in the
space R! w.r.t. the group of all diffeomorphisms of R’ (under the assumption that
the inverse image of R" "*in R’ has positive codimension). Analogously, any map
from &, s is defined by the inverse image of the origin in R' w.r.t. the same group.
Thus we must show that for any map from & + there exists a map from é,. s with
the diffeomorphic inverse image of the origin and, conversely, for any map from
d,.  there exists a map from ¢  with the diffeomorphic inverse image of R" .
The last statement is obvious in one direction. And conversely, let us for any
hed,. s construct a map g the inverse image of R" ¥ of which coincides with the
inverse image of the origin for h. Let f,..., f,_x be coordinate functions of the
map f which are “forgotten” by the projection n. Then, obviously, one can take

themapg = {fi..., fu-i;h}.

REMARK. As was pointed out by the referee a more general “invariance of
Hy-equivalence under suspension” was proved in [Da3].

COROLLARY. Versal unfoldings &, and @  of aregular germ f: (R', 0) > (R", %)
are equivalent to a A -versal unfolding of the function Q ;, where Q is the quadratic
form defining the cone € and Q; is the pullback of Q in the space R'.

ProoF. Apply the previous proposition in the neighborhood of a smooth (by
the definition of regularity) point on the cone.

REMARK. If f is the germ of a smooth curve with the order k of tangency to
a germ of a smooth hypersurface then its ) ,-versal unfolding is equivalent to
a A -versal unfolding of the map x*: (R,0) — (R,0). (In this case . -versal and
R-versal unfoldings are equivalent.)
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1.3. ProOF OF COoROLLARY B. Corollary B follows directly from the above
corollary and the following count of parameters.

If f: (R,0) > (R", C) is a regular germ occuring in a generic k-parameter family
then the corank cr of the quadratic part of Q, satisfies the inequality
cricr — 1)/2 £ k and thus Q, is stably equivalent to a function on at most

5(k)=[1+‘/(1+8k)

2 ] variables. Indeed, the codimension of the stratum of all

. -1
quadratic forms on R’ of corank cr equals to EErZ—) and by weak transversal-

ity a generic (k — 1)-parameter family of quadratic parts of the zero levels of

cricr — 1)
2

Morse lemma provides that such a germ Q; is stably equivalent to a germ of

1+ /1 + 8k

2

functions can intersect such a stratum only if k > . The parametrized

function on cr variables. The assumption cr < &(k) = completes

the proof.

§2. Semiregular singularities.

2.1. Proor oF ProposiTION C. The tangent space T/ of a semiregular germ
f lies in the extended tangent space T,.o/c(f). Moreover, the latter is obtained
from the former by adding the I-dimensional vector space of parallel shifts of
coordinates in the source since all vector fields preserving € vanish at the vertex
of the cone and the linear part of f is nondegenerate, compare denominators in
the formulas (1)-(3). Thus the .&7,-versal unfolding of f differs from its reduced
o 4-versal unfolding only by some subspace of parallel shifts of the target. The
deformation induced by the I-dimensional space of those shifts of the target which
preserve the tangent space to f(R') at the origin is cancelled by the [-dimensional
space of the parallel shifts of the source. Therefore, the (n — [)-dimensional
quotient space belongs to the versal unfolding.

2.2. PRrROOF OF ProPOSITION D. We start with the following simple statement.

Consider the group O, , of all linear transformations preserving some non-
degenerate quadratic form Q in R" the index of which (i.e. the number of negative
squares) is equal to m . The group O, , acts in the obvious way on the Grass-
manian G, ,.

2.2.1. LEMMA. An orbit of O, ,-action on the Grassmanian G,,, consists of all
I-dimensional subspaces L with a given corank and index of the restriction of Q|;.
Moreover, for any such subspace L < R" of dimension | with the corank cr and the
index o there always exists a basis (yy,...,¥,) such that Q =30 yoi_1ya —
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M1Vl + Y k=m+cr+1 Vi Where the subspace L is spanned by the coordinates

YV15V35-+ 5 Y2er—15V2er+ 15 Y2er+25++ 43 Vacr+a and Ym+er+1- s VYm+i—a-

Proor. Use the reduction of the degenerate quadratic form Q, to its normal
form.

2.2.2. THEOREM. Let f:(R',0) = (R",0) (0 is the vertex of €) be a semiregular
map such that the corank of the quadratic part of Q; equals cr. Then the map f can be
reduced to the form (xi,¢y(X1,..., X)), X2, Pa(X1seees X)serer Xery Perl(X1,...5X)),
Xert1re+5 %15 0,...,0), where ¢,..., ¢..em? in an appropriate system of coordi-
nates (xy,...,x;) and (yy,..., y,) in which the cone € is givenby Q = y,y, + - +
Yacr—1Ya2er + z;'z 2ert1 T yf = 0. Moreover, a reduced versal unfolding of f can be
chosen as (X1, @(X1,...,X1, A), X2y Po(X1,e s Xty A)yerny Xery DPorlXy,..., X1, A),
Xert1s---3X1505...,0), where @4,..., &, em for all values of parameters 7.

Proof of theorem 2.2.2 is based on Mather’s homotopy method in its usual

%

form, i.e. if f,, te[0, 1] is a family of maps such that — o —eToA(f;)forallte[0,1]

then f, is o/4-equivalent to f;. In order to present the tangent spaces T.Z(f,)
more explicitly, using lemma 1.1 we need the following proposition.

PROPOSITION. A basis of the module of vector fields tangent to a homogeneous
surface H with an isolated singularity at the origin can be chosen in the following

0 0
way, see [L]. One of the generators is the standard linear field ( Vi Vo )

oy’ 0Yn
0 0
while the rest are all (2 x 2)-determinants of the (2 x n)-matrix | 0y, "~ 0y,
P,, ... P,
, . .. oP
where P is the polynomial defining the hypersurface and P, = _67

REMARK. Applying this statement to ¥ given by Q=yy, + -+
Vaer - 1V2er + Zz P  one gets the basis of vector fields tangent to % consisting
of the Euler vector field: Y 7., y;0/dy; and 3 groups of generators:

a) y;0/0y; — y:0/0y;i <j < 2cr wherei =i — lifiisevenandi =i+ 1ifiis
odd (the same rule applies to j and j);

b) +2y;0/0y; — y:0/dy;; i < 2cr,2cr <j < n;

©) +y;0/0y; F y:i0/dyj, 2cr <i<j=n.

ProOF. Applying lemma 2.2.1. to the image of the nondegenerate linear part
of f one reduces it by a linear transformation to. (xy,0,x,,0,...,X., 0,
Xer+ 15 Xer+ 25+ - s X1, 0, . .., 0) and, therefore, reduces f itself to (xy, ¢4, X2, P32, ..,
Xers Pers Xer+ 15 Xer 425+ + -5 Xts Per+ 15+ - -» Pn—1), Where all ;e m?. Let us get rid of
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Qer+15- - -» On—1 by @ €-preserving diffeomorphism. First we remove all terms in
et 15---,Pn—y divisible by any x; where j<cr. Namely, for any
cr+1=<k=<n-—1andj<cr there exists a vector field of the form (0,0,...,
+¢:,0,...,0,x;,0,...,0) with + ¢, standing at the position 2j and x; standing at
the position cr + k. According to [AVG] using the homotopy method with this
vector field we can remove all terms in ¢, divisible by x;. In such a way we reduce
fto the form (X1, @1, X2, P2y - or Xers Pers Xer 4 1> Xer 4 25+ -5 Xty Per s 1. - -» Pn—1) Where
all ¢, depend only on x,,...,x;. Here we use Mather’s homotopy method
again. Denote by f,,t€[0, 1] the family (x, ¢, X2, d2,..., Xers py Xor 4 15 X

- ~ ) - ~
X1 t¢cr+ 1""’t¢n*l)' Then 6_f = (0, .,0, ¢)cr+ 15 ..,d),,__l). Denote by Ml—cl’ the

O, .-submodule consisting of all maps of the form (0,...,0,{cr+1,...,Cs1),
{iemi . (Xer+15- .., X)) Let us show using the above basis that M, _, belongs to
Tol4(f;) for all t and thus f, is o/-equivalent to fi. By lemma 1.1 the tangent
space to T.o¢(f;) is the ¢-module m,(df,/0x,,...,f,/0x;)) + Oy(v; o fiseosUpo fi)}
where 7; belongs to the above basis. As above among the vector fields of the basis
there exist all vector fields of the form (0,0,...,¢,,0,...,0, x;,0,...,0),
cr+1<k<n—landcr + 1 £j < Iwhere ¢, stands at the position cr + j and
x;stands at the position cr + k. This means that M, _, is contained in the tangent
space to all f; and the homotopy method gives the necessary reduction.

Using lemma 2.2.2 one gets Proposition D directly. Indeed, the reduced versal
unfolding of a semiregular fconsists of the semiregular maps and, therefore, their
induced functions belong to mZ. Taking the induced functions one maps the
whole orbit .« f onto the whole orbit /#'Q,. Indeed, one can cover the whole
AQ -orbit by changing coordinates in the source and one can multiply the
induced function Q, by an arbitrary nonvanishing function by using the dif-
feomorphisms of the target which preserve the cone ¢. Thus the tangent space

d 0
T Q, to the orbit # 0, at @ is identified with m,{ agf a% ,Q}. We now
1 n

show that any unfolding Q; = Q, + &(xy,...,X;, 41,..., 4) in the class m} can be
covered by an appropriate origin-preserving unfolding ¥, = f(xy,...,x) +
WXy, s X5 s A4} By lemma 2.2.2 one has Q; can be reduced to Q; =
Y XX 1 s X Ay M) + Y mersy £ X],iemy for all values of par-
ameters A,,...,4. The difference @, — Q, = &(xy,..., %1, 4,..., 4) can be ex-
panded at Y, .;cici<iXiXi6i j(Xis-. X A1, 4). To obtain  e(xy,...,x,
Aty. .., A) we first deform the original map f = (X1, @15- -+, Xers Ders Xer+ 15+ - -5 X1
0,...,0) by adding ) ¢ ;x; to ¢; for all i <cr. It is left to compensate &
= r1sizjst XiXi€i (X150 Xy Agy ooy A) by deforming (Xeesq,...,%,0,...,0).
Since £ is a small deformation of a nondegenerate quadratic form )\ ,, + x7
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then the parametrized Morse lemma provides the existence of the necessary
deformation.

ProoF oF COROLLARY E. It follows immediately from the fact that taking
induced functions one maps the orbit &, f submersively onto #°Q , proposition
D and the fact that the ##"-modality of any function ¢ with a singularity at the
origin equals the # -modality of ¢ in the space m}. The last statement is proved
along the same lines as the corresponding statement for the #-equivalence, see
[Ga].

ProoF oF REMARK F. By the proposition C and lemma 2.2.1 the family of
parallel shifts can be written in the form (x;, ¢ + 41, X2, P2 + 42, .ty X
Der + Aers Xet 15+ o> X5 Aer» An—1), Where cr is the corank of Q. This directly gives
the necessary answer.

2.3. Proor oF THEOREM G. We start with the easiest case f:(R,0) — (R", C),
where f is the germ of a smooth curve passing through the origin tangent to some
ruling of the cone €: {Q = y,y, + y3+ -+ y} = 0};

By lemma 2.2.2 it suffices to consider the case of plane curves images of which
lie in the plane spanned by y, and y,. Let us denote by f,(x) the parameterized
curve (y; = x, y, = x¥, y; = 0,i = 3) and show that any other germ of a smooth
curve passing through the origin is difftomorphic to one of those. The extended
tangent space T,.7c(f) of f; is presented as

1 Fx 7 (x0) F 0 (07
kxk 1 x* —xk 0 0
0 0 0 0 0
T f) =0 | O | e e
. : . e —x
: : : 0 0
.0 L 0_ Lo A

forall3 i<

It is convenient to choose the reduced versal unfolding @,.4(x, A4,...,A%_}):
yr=xp,=x+ A x* '+ + 4_1x,y3=0,...,y, = 0} using (3)~(4). The
inverse image of the cone in the extended space of parameters (x, 44,..., 4, ) has
the form x**! + A,x* 4+ --- + J,_;x? = 0. The bifurcation diagram in the space
of parameters (4,,..., 4 ) is the hypersurface of the singularities of projection
or, in other words, the set of all (k — 1)-tuples (4,,...,4-,) for which
x*71 4 A;x* 4+ -+ + J,_, as a polynomial in the variable x has a multiple or zero
root. Since for any h consisting of terms of degree > k the tangent space
TAc(fi + h) contains all monomials of degree = k it follows that the .o7c-orbit of
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ficontains all f, + h (probably after multiplying Q by — 1) according to [Da2].
Therefore, these cases do not require separate consideration.

Let us now mention the necessary changes to adjust the above proof to the case
of a semiregular map f:(R',0) - (R",%) such that the quadratic part of the
restriction Q; of Q = y,y, + y3 £+ -+ £ y? defining ¥ has a one-dimensional
kernel. One can assume without loss of generality that the 1-jet of f is
(x1,0,x32,...,x;,0,...,0). The quadratic part of Q, has the form +x3 + -+ + x}
by lemma 2.2.1. After analogous consideration of the 1-jets of the vector fields
one gets that the only family of germs to be considered is
(x4, x5, X2,...,%,,0,...,0). Now the consideration of the corresponding vector
fields gives that its reduced versal unfolding can be choosen in the form
(i, XK + A 4+ o+ A 1xq,X5,...,%,0,...,0). The restriction of the cone
% has the form x,(xk + Axk" '+ + L _x)+x3+-+xF=0, ie. is
stably equivalent to the same restriction as in the previous case.

PrROOF OF COROLLARY H. The ./,-versal unfolding of the map
(1, X%, X2,...,%,,0,...,0) can be chosen as (x;, x5 + A xk™Y + - + 4, X550, x5,
Jk+1s---sAn+k—1—1) by proposition C. The rest follows immediately. On Fig.
3 one can see the monomials included in this versal unfolding of f;; the arrow
shows competing monomials, i.e. either of them but not both must be included in
the versal unfolding. When | = n — 1 then, rather obviously, the above versal
unfolding and its bifurcation diagram are equivalent to that of the singularity B,.
Let us show that when | = n — 2 the bifurcation diagram coincides with the
bifurcation diagram for the singularity D, . ;. This follows from the form of the
standard versal unfolding of D, ., see [AVG]. Namely, taking the standard
versal unfolding of Dy, ; as P(x1, X3, A1y ...y s 1) = X5 + xyx3 + Apxh ™+ -0 +
/% + Acs+ 1 x One gets that its bifurcation diagram is defined by the system

®=0

0P

2 =x2 4+ kx4 k= DA+ + Ao =0

0x4

0P
S 2xyxs + 2h4ey =0,

0x,

—1 .
Using the expression x; = —**1 from the last equation one gets that the first
X2

two equations are equivalent to the condition that the polynomial
XU Aox% 4+ -+ + Axy — A2, has a multiple zero. Unfortunately the direct
relation between the above semiregular singularity and D, ., is still unclear.
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y‘ 0 1 L 1 L L 1 1 1 J
k

Fig. 3. Circled monomials are included in the versal unloldimg ol f,.

2.4. Proor oF THEOEREM 1. Using corollary E one gets that the corank of the
induced function Q, of a simple semiregular f is at most 2 since all simple
singularities of functions have the corank < 2. The case of corank 1 is covered by
theorem G. In order to classify the simple singularities of corank 2 it suffices to
consider only the case f: (R?,0) — (R* %) where € is given by Q = y,y, + y1ys4
and the 1-jet of f equal to(x,, 0, x,,0) by lemmas 2.2.1 and 2.2.2. Any semiregular
map satisfying the above conditions will be called an adjusted 2 — 4-map. Con-
sideration of simple adjusted 2 — 4-maps splits into a series a lemmas. Since we
are only interested in the cone € we allow to multiply its defining form Q by —1
while finding the normal forms of f.

2.4.1. LEMMA. Any adjusted 2 — 4-map can be reduced to one of the following
two forms:

l) (XI,X,;,Xz,XZQ(Xl, x2))9 k g 2 and gem,;

i) (x4,0,x2,h(xy,Xx,)), hem3.

ProorF. Obviously, any adjusted 2 — 4-map f reduces to (x;, ¢(xy, X2), X2,
¢1(xq, x,)) where ¢, ¢, e m. The vector field V = (0, x,,0, — x,) is tangent to the
o 4-orbit of any such f, see 2.3. Therefore one can remove either all the terms of
¢, which are divisible by x, or all the terms of ¢, divisible by x;. Namely, we
apply the homotopy method in the form: if f; satisfies %}e TA(f;) for all
0<t=<1 then f, is /c-equivalent to f;. Since ve TH(f;) all fi=f+
0, hx,,0, —hx,) then f is equivalent to f + (x,, ¢ + hx,, x5, d, — hx,). Thus,
if either ¢, itself is divisible by x, or ¢, is divisible by x, one can remove the
corresponding function completely and obtain the case ii) up to renumbering of
components. Let axX' be the smallest power of x, in @(xy,x,) and Bx’! be the
smallest power of x, in ¢,(x;, x,). Let us show that using the homotopy method
and renumbering of components f can be reduced to (x;,x%, x5, d(x1, X3)),
where k = min(ky, [,). After some straightforward transformations of the basis of
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the tangent vector fields one gets only two fields which preserve the first and the
third components and affect powers of x; of the second component, namely,

0
0,¢4,0,¢,)and <0, ,0,x; (,;j:z > . Using them we can remove all powers of x;
2

of degree greater than min(k,, /;) and multiplying the first component by a con-
stant and dividing the second component by the same constant we get that the
only power of x, included in ¢, is x% (possibly after multiplication of Q by —1).
Finally, we remove all powers of x, in ¢, as described before. Now we arrive at
the form (xy, Xk, x5, §(x1, X,)), where @,(x,, x;) is not divisible by x,. Let us
assume that ax!, | > k is the smallest power of x; in ¢,(x,, x,). In this situation
considering the basis of tangent vector fields one gets the vector field

0 . .
(0, 0,0,(k + x* + x, 0152 ) We again apply the homotopy method using the

1
last vector field and remove all powers of x, in ¢, and get that the fourth
component is divisible by x,. The statement is proved.

2.4.2. PROPOSITION. In the case 1) of lemma 2.4.1 an adjusted 2 — 4-map is
simple if and only if one of the following possibilities holds.

If k = 4 then in order to be simple g must have a nondegenerate linear part
axy + Px,, a® + B # 0. If a % O then g reduces either to g(x,,x,) = +x, which
gives

1) Q= DE S, k23, f = (x4, x4, X2, £X,X,). If k is even then the + forms
coincide and one can drop signs of the last component.

If o = 0 then g reduces to g(x,x,) = + x, which after renumeration of compo-
nents coincides with the case k = 2 below.

If'k = 2 and g has a nonvanishing linear part then g reduces to g(x,x,) = +x,
which leads to

2) Qp = Dy, f = (x4, X3, X2, X1X3)-

Ifk = 2 and g is a simple singularity with vanishing linear part and nonvanishing
quadratic part ax3 + px;x, + yx2, «* + B2 + y* £ 0 then one of the following
options is possible.

If o % O then g reduces to + x2 which gives

3) Qr 2 ES, f = (x1,x}, X2, £X3).

Ifa =0, % 0 then g reduces to x,x, which gives

4) Q) = Ey, f = (x1,x% %3, %,X))

Ifa = B = O then using the homotopy method with the vector field V from lemma
2.4.1 one can get rid of the whole quadratic part of g and obtain either the case 5) of
this lemma or the case ii) of lemma 2.4.1.

Ifk = 2 and g e m3 then in order to be simple g must have a nontrivial cubic part
containing ax3, a % 0 and in this case it reduces to g = x3 which gives

5) Qs =Es f= (x4, X1, X2, X3).
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Proor. Case 1). If k=3 then the induced function is equal to Q, =
xk*1 + x3g, gem,. Since any simple germ of function has a nontrivial cubic
form, (see e.g. [A3]) then g has a nonvanishing linear part ax; + fx,,
a® + B* + 0. Let us present g = ax; + fx, + ¢,, where g, e m3. Working with
the basis one gets 4 vector fields with the first three components vanishing
and the following nontrivial quadratic parts of the last component,
(0,0,0, kax ;x5 + (k + 1)Bx2 +..);(0,0,0,0x3 +...); (0,0,0, 2ax, x5 + 36x3 + ...
and (0,0,0, Zaxf + 3Bx.x, + ...),where... denotes all terms of order at least 3. If
a % 0 then using the second field we can remove of fx3 in the fourth component
of f,i.e. of fx, ing. Finally, by multiplying the third and the fourth components of
f by an appropriate constant and its inverse we force a = + 1. If k is even then
changing the sign of x, one can force the last component to be x,x,. Ifo = 0 then
we can normalize the coefficient f by making f = +1. In this case one gets
f = (%1,x%,x,, +x2 4+ ...) which coincides with the case 2) below up to renum-
bering of components.

Case 2) is similar to the case 1).

Case 3). If k = 2 one gets Q; = x] + x3g. According to the classification of
simple germs of functions we conclude that g has at least a nontrivial 3-jet. Let us
first assume that its 2-jet is nonvanishing, i.e. g = ax? + fx;x, + yx? + g3,
a? + B% + 2 + 0. Working with the basis of vector fields one gets the following
4 fields affecting only the fourth component of f (0,0,0,yx7x, + Bx;x3 +
ax3 +...);  (0,0,0,3x3 + 2yx,x3 + Bx3 +...);  (0,0,0,2yxZx, + 3Bx,x3 +
4ax3 +...) and (0,0,0,2yx3 + 3Bx3x, + dax,x% +...). We denote them by
vy,..., U4 Tesp. Since v, has the term 3x2 one can always get rid of the term yxZ in g.
Assuming that y = 0 one gets v, — fv, = dax;x3 + ..., where ... denotes all
terms of order at least 4. If « + 0 one can get rid of the term fx,x, in g and
moreover normalize it to g = +x2 + g5.

Case 4). Ifa = 0and § # 0 then g reduces to g = fix,x, + ¢g3. Multiplying x,
by an appropriate constant one gets g = x;X, + gs.

Case 5). Let us assume that f = (x, X%, x,, x,(P5 + g4)), where P; denotes the
cubic part. One concludes that if Q is a simple germ of function with the 3-jet
equal to x? then its 5-jet must contain x; + ax3 + ..., « + 0 and therefore
Py = ax3 + ...,see [A3], p. 13. Let us check that in this case P; reduces to x3. At
first we force « = 1 by the usual trick. Let P; = x3 + fx x3 + yxix, + dx3. The
appropriate basis of vector fields is (0,0,0,3x5 + 2B8x,x3 + yxix3 +...);
(0,0,0,3x% + Bx3 + 2yxyx3 + 36x3x2 +...); (0, 0, 0, 5x,x3 + 4Bxix}
3yx3x, + 206xt + ...

Using v, one removes yx;x3 and dx} in g. Taking y =0 =0 one gets
vy — $x%v, = 5x;x3 + ... and removes the term fx;x3in g. Thus, g = x3 + g,.

In order to finish the proof of simplicity it suffices to check that all the jets of
f presented in the formulation of lemma 2.4.2 are sufficient and describe their
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adjacency. Sufficiency will be discussed in the separate statement 2.4.5 and
adjacency is postponed until 2.4.6.

2.4.3. LEMMA. In the case ii) of lemma 2.4.1 an adjusted 2 — 4-map is simple if
and only if the function h has a nontrivial quadratic part h = ax? + Bx,x, +
7x3 + hy, 0* + B* + y* % 0 and one of the following possibilities holds.

If o % O then h reduces either to x3 + x% which gives

a) @, =D, f = (x1,0,x5,x} + x3)

or h reduces to x? which gives

b) Q; = D&y, f =(x1,0,x5,x3 + x%), k = 3. Here the +-forms are different
only if k is even.

If a = O then h reduces to x,x, which gives

©) O, = D3, k23, f=(x1,0,x5,%1%; + x¥).

If o = B = 0 then h reduces to x,* which gives

d) Q; = Eq, f = (x1,0,x2,X3 + X3).

Proor. Considering the basis of the module of tangent vector fields one gets
the following 4-tuple of vector fields affecting only the fourth component (0, 0,0,
Bxixy 4+ 2yx3 4+ .. (0,0,0,20x% + Bxyx, +...); (0,0,0,20x,x, + fx2 4+ ...)
and (0,0,0,ax? + Bx;x, + yx2 + ...). After some obvious linear transformations
one gets (0,0,0,...); (0, 0,0, 2ax? + Bx;x5 + ...);(0,0,0,20x,x, + Bx% + ...)and

(0, 0,0, <2y — —f;) X3+ .. .)denoted byv,,...,vsresp. Casea). If « & 0then one

normalizes it by making o = 1 (possibly after multiplying Q by — 1). Then using
vs one cancels fx;x, in h. Wearriveat h = x2 + yx2 + h3. Ify % 0 then using the
last field we can normalize it by making y = +1. Thus, h = x} + x2 + h;. In
2.4.5 we will discuss the sufficiency of the presented 2-jet. Case b). If y = 0 then
h = x? + hy. Using the fields v, and v5 one can remove all terms in h; divisible by
X1X,. Therefore h = x} + 6x%~! + ... Analogous arguments show that we can
remove all the terms denoted by ... and obtain h = x + x4~ !. Casec). Ifa = 0
and 8 + 0 then using v; one removes px3 in hand normalizes § = 1. Now using v,
and v; one removes all the terms in h; divisible by x,;x, and by x3.
Thus, h = x,x, + axX.... The same arguments show that h normalizes to
h = xyx, + x%. Case d). If « = B = 0 then h = yx3 + h;. The constant y normal-
izes to 1 and the arguments analogous to the case 4 of lemma 2.4.2 shows that if
f is simple then h3 contains yx3 and reduces to hy = x3 + h,.

2.4.4. Different normal forms.

Lemmata 2.4.1-2.4.3 give us the unique normal forms for the singularities 4,,
E¢ and Eg and provide the following list of normal forms for D, | and E,.

Q; = D{, ; (4 forms are different only if k is odd)

a) the normal form: f = (x,xk !, x5, +x,x,), its reduced versal unfolding is
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(pred(xlaxz”ll"'-”lk)
= {xl,x’{_l + llx'{_z + 0+ ik_le,xz, ixlx2 + lk~1x1 + j,ka};

b) the second normal form: f = (x,,0,x,,x? + x¥ 1), its reduced versal un-
folding is

¢red(x1’x2’ila"',’lk)
= {xy, X1, X2, x5 £ X571+ Ayxy + Azxy + o+ Axb T2

c)if k=3 then there exists the third normal form: Dj:f =
(1,0, %5, x,x, + x%), its reduced versal unfolding is

5red(xhx2all’---a'12k—l) =(xpAxy + Apx 4+ + Aoy X x,,
X1X2 + x’; + Aka + lka, + /lk+2xf + 4+ lzkAlx’i‘l).

O, E;
a) the normal form: f = (x,, x2, x,, x,x2), its reduced versal unfolding is

Drealx1,%2,415...,46)
= {x1,X} + A1X1, X2, X1 X5 + X3 + A3X3 + Aaxy X5 + Asxy + AeX2 )
b) the second normal form: f = (x,,0, x,,x; + x3), its reduced versal unfold-
ing is
Brea(X1, X2, A1y .oy de)
= {x1, Aix; + A2x3, %2, X3 + X7 + Asxy 4+ AgXT + Asxy + AeX1X2);
PROPOSITION. In each of the above subcases all the normal forms present 1 orbit.

ProofF. In order to show that the first and the second normal forms belong to
the same orbit in all the subcases one should notice the following. Any change of
coordinates of the form j, = y,, J, = y, + y3h, ¥3 = y3, Ja = ya — y1h, where
h is an arbitrary smooth function preserves the cone €: {Q = y,y, + y3y4 = 0}.
For an adjusted 2 —» 4-map f that means that if one adds x,h to the second
coordinate and simultaneously subtracts x,h from the fourth coordinate then
one obtains another map belonging to the orbit of f. This explains why the first
and the second normal forms belong to the same orbit. It is left to show that the
third normal form belongs to the same orbit as the second normal form of D3, i.e.
(1, 0,x5,x3 — x3*72) = (x4,0, x5, x; X, + x%). The second normal form is equiv-
alent to (x,,x% 4+ x,x%71,x,,0) or after renumbering of coordinates to
(x1,0,x5,x% + x,x%71). Making the coordinate change X, = x, — xX~! one
transforms the last map into (x; + x57%,0, x5, x; + 2x;x5~ ). Multiplying x, by
a constant one gets (x; + ax%71,0,x,,x; + x;x57!). Finally, any change of
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coordinates of the form j, = y, + hys, J, = y,, J3 = y3, Jo — hy, preserves the
cone. This transformation applied to (x; + ax%t™1,0,x,,x,x57 1) with
h = —oax%™? gives (x;,0, x5, x; + x;x57 ).

2.4.5. Criterion of sufficiency of a given jet.

Recall that the k-jet of f is called sufficient under the action of a chosen group if
any perturbation of f by any terms of degree greater than k belongs to the orbit of
/- Let us denote by .#/(j) the ¢)-module of all germs (R’,0) — (R", 0) all compo-
nents of which have degree = j. By general results of [Da2] one can apply
Mazer’s homotopy method to check stability of a given jet. Thus sufficiency of the
k-jet of a germ f (under the action of /) is equivalent to the fact that the
o ¢-tangent space to any f + ¢, ¢ € #](j) contains the whole module .#](j). The
last condition for semiregular germs f is equivalent to the following statement.

CRITERION OF SUFFICIENCY. The k-jet of a semiregular germ f: (R', 0) — (R",0),
(0 is the vertex of the cone %) is /-sufficient if and only if the ¢-module
{mf(@f/ 0xy,...,0f0x)) + M@y f,...,0,0 )} contains the submodule
M'(k + 1), see notation in lemma 1.1.

PrOOF. Let us sketch the proof of sufficiency of the above condition (the
necessity is almost obvious). Indeed, let us assume that {m?(df/0x,, ..., of /0x,) +
my(dy o f,..., 0,0 f)} contains the submodule .#](k + 1). Then since the vector
fields vy,...,v, are linear the same is true for all f + ¢, ¢ € #'(k + 1). Therefore
for all ¢ the tangent space T4 (f + ¢) contains #]'(k + 1). Thus, for the family

fi = f + td,t€[0, 1] the velocity vector%ft’—belongs to T/4(f;)and therefore f'is
A 4-equivalent to f + ¢.

Using this criterion one can check that all the normal forms in Theorem I and
section 2.4.4 are sufficient. Let us illustrate this in the most complicated case
Q= D3 (x1,0,x5, XX, + x%), k = 3, see 2.4.4. We must show that the k-jet is
sufficient. The corresponding vector fields are (1,0,0,x, + kx%~1); (0,0, 1, x,);
(%150, %2, X, %3 + ¥4); (x1,0,0,0) (xyxz + x4§,0,0,0) (x5,0,0,0) (0,x5, kx™,
—x1,0%;(0,x,,0, —x;)and (0,0, — x,, x;x, + x%). After some simplifications one
gets (1,0,0,x, + kxk™1); (0,0,1,x,); (0,0,0,x%); (0,0,0,x,x,); (0,x%,0,2x?);
(0,x,,0, —x,;) and (0,0,0,x3). We must represent any (k + 1)-jet, k = 3 by
m2{(1,0,0,x, + kx*~1);(0,0,1,x,)} + m,{(0,0,0,x%);(0,0,0, x,x,);(0, x%, 0, 2x3);
(0,x5,0, —x,); (0,0,0, x3)}. Any perturbation of degree k + 1 of the first and the
third components is cancelled by m3{(1,0,0,x, + kx¥~'); (0,0, 1,x,)}. Any per-
turbation of degree k + 1 of the second coordinate is removed by m,{(0, 0,0, x¥);
(0,0,0,x,x,)}. Finally any perturbation of degree k + 1 of the fourth coordinate
is contained in m2{(0, x%, 0, 2x3); (0, x,,0, —x,); (0,0,0, x3)}.
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2.4.6. Adjacency of simple semiregular germs.

PROPOSITION. The adjacency of the simple semiregular germs coincides with the
adjacency of the corresponding induced singularities (and, therefore, is presented on
Fig. 1).

Proor. The statement follows from the analysis of the reduced versal unfold-
ings given in Therem I together with lemmas 2.4.2-2.4.3. For Q, = A4, the
statement is obvious. For Q, = D, | we will analyze the reduced versal unfold-
ing of the first normal form. Nonvanishing 4, or 4, give nontrivial quadratic
partof Q, and thuslead to 4, < k. Nonvanishing 4,,...,4,_,lead to Dj*,1 < k.
In the case 3) Q; = EF nonvanishing 4,, A, or 45 lead to 4,. Nonvanishing 4, or
A3 give D4 or D5 according to lemma 2.4.2. Analogous arguments for E; and Eg
finish the proof. Recall that reduced versal unfoldings of the simple semiregular
singularities are equivalent as versal unfoldings to Q, + )  Ae;, where ¢;e m? are

0Q, 09,
1

,...,——— ] and thus reduced versal
0x4 Ox

unfoldings are different from the usual versal unfoldings of the induced function
Q. In particular, the bifurcation diagram of the former contains two irreducible
components while the bifurcation diagram of the latter is irreducible.

representatives of a basis of mf/m,(

2.5. PROPOSITION B'.

2.5.1. LEMMA. Fixing a nondegenerate quadratic form Q in R" with the number
of negative squares equal to m let us consider the stratification of Grassmanian G, ,
into strata S, where S, consists of all l-planes such that the corank of the
restriction of Q to any of these planes equals cr < min(l,n,m — n). Then codim
S, = cr(cr — 1)/2.

This lemma is proved by the same argument as the analogous statement for the
quadratic forms.

Proor oF B’. Any semiregular f:(R’0)— (R",C) occuring in a family of
semiregular maps with k parameters has the corank cr of the quadratic partof O,

e 1+./1+8k
satisfying cr < &(k) = [:—3+—
f can be reduced to (x;, ¢y, %2, P2, .. Xewys Pekys Xey+15---5%1,0,...,0) and its
reduced e-unfolding deforms only ¢,,...,¢eu. Thus all such semiregular
singularities are equivalent to semiregular singularities on at most &(k) variables.
If the number of variables is bounded then the stabilization is obvious.

:| by lemma 2.5.1. Therefore, any such
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§3. Irregular singularities.
Let us start proof of theorem J with the following statement, see [Da3].

3.1. LEMMA. Letf: R' — R" be a germ of embedding and ¢: R* — R" be a germs
of a stable map (see the definition of the stability of germs in [AVG], page 115). Let
Pini)(@) and D) (f) be an ot p-versal unfolding of ¢ and an oy 4)-versal
unfolding of f resp. Then @,y s\(¢p) is equivalent to @iy, (f) as versal unfoldings.

REMARK. Apparently the same statement holds if both f and g are stable
germs.

3.2. Proor oF THEOREM J. Now let f: (R%,0) — (R3, C) be a germ of Whitney
umbrella tangent to the cone ¥ at some point different from the origin. In this
case one can obviously substitute % by a germ of a smooth hypersurface. Thus we
can normalize a germ of smooth hypersurface in the presence of the standard
Whitney umbrella {y3 = y,y3} using the lemma 3.1. The natural basis of vector
fields tangent to the standard Whitney umbrella is v, = (0,y,,y3),
v, = (2y1,0,93),03 = (2y3,0, y3), v, = (0, y3, y1V,). At first we enumerate all cases
of nontransversality of the tangent plane to a smooth germ w.r.t. the standard
Whitney umbrella, i.e. all orbits of positive codimension of the action of 1-jets of
vector fields preserving the Whitney umbrella on the 1-jets of germs of smooth
hypersurfaces.

One has to consider the following 3 types of 1-jets of f> a)(ax; + Bx,, X2, Xx;),b)
(x3, x4, x) and c) (x5, x4,0).

Case a). The 1-jets of vector fields have the form (o, 0, 1); (B, 1,0); (0, x5, x1);
(2axy + 28x,,0,x4); (x4,0,0); (0,x,0), or after reduction («,0,1); (8,1,0);
(oxy + Bx2,0,0); (Bx2,0,0); (x4, 0,0); (B1,0,0).

It splits into 2 subcases:

a') Thetypical case of codimension O when § = 0; in this case the tangent plane
can be reduced to the form y; = y, = x5, y3 = x;.

a") The special case of codimension 1 when = 0; in this case the tangent
hyperplane is y; = 0 and the 1-jet of f is reduced to the form y; =0, y, = x,,
Y3 =Xy

Caseb). For the 1-jet (x,, ax,, x,) one gets (after some obvious simplifications)
the following 1-jets of vector fields (0, o, 1); (1,0,0); (0,0, x,); (0, x4, 0).

Therefore the initial jet of the map f can be always reduced to the form
(x5,0,x4).

Let us now consider the subcases of positive codimension. The subspace
a’) is generic. In the subcase a”) the 1-jet of f'is (0, x,, x;) and the 1-jets of vector
fields have the form (0, 1,0); (0,0, 1); (x4, 0, 0).
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This means that one can restrict consideration to the germs of maps of the form
(g(x,), x2, x;) according to results of [AVG] p. 180.

Let us consider the series of maps Fy: (x%, x,, x,). The corresponding basis of
vector fields has the form (0,0, 1); (kx%~*, 1,0); (0, x5, x,); (2x%,0,x,); (2x,,0,0);
(0, x4, 0). The versal unfolding of F, is

Di(x1, %2, A, A i = x5 + AX5 4+ ALy = x93 = x4 )

The inverse image of the Whitney umbrella is given by the formula x? — x2(x% +
Axsl 4 4+ 1) = x2 — x3p(x,) = 0.

For a generic set of A the inverse image of Whitney umbrella has a point of
transversal selfintersection at the origin and is smooth at other points. Violation
of genericity occurs when p(x,) has the zero or multiple root. Thus one gets the
bifurcation diagram of the singularity B,.

Case b). The 1-jet of the map f is (x,,0x;). The corresponding 1-jets of the
vector fields are (1,0,0); (0,0, 1); (0,0, x,); (2x4,0, x5); (2x,,0,0); (0, x5, 0) or after
reduction (1, 0,0); (0,0, 1); (0, x,,0).

According to the general technique it suffices to consider the family of germs
¥, (x5, %%, x;). The corresponding 1-jets of the vector fields are (1,kx%~!,0);
0,0,1); (0,x%,x,); (2x1,0,%,); (2x5,0,x2%); (0,x,,xk*"1) or after reduction
(1, kx5, 0); (0,0, 1); (0, x%, 0); (0, x5, 0).

The versal unfolding is ®y(x1, X2, A1,...,A4): (V1 = X1, ¥y, = xk + 4571 +
“*+ + A4, y3 = x5 }. The inverse image of the Whitney umbrella is the curve given
by x3 — x1(o% + A4xkt 4+ + Ay)F = x3 — xp*(xy) = 0.

This curve has transversal selfintersections lying on the x,-axis which corre-
spond to the simple zeros of the polynomial p and is tangent to the x,-axis at the
origin. Its degeneracies are caused either by a multiple root of p or if p vanishes at
the origin. Thus the bifurcation diagram is the same as for the singularity B,.

Case c). One has to consider the series of maps @,: (x5, x;, x%) and the corre-
sponding initial jets of the vector fields are (0,1,0); (1,0,kx%™1); (0, x,x%);
(2x,,0,x%); (2x%,0,x%); (0,x%,x,x,) or after reduction (0,1,0); (1,0,kx%" 1)
(0,0, x4); (0,0,x3); (0,0, x;x2).

The same argument as above shows that in the case c) considerations can be
restricted only to the cases ©,.

The versal unfolding of @, is given by the formula @,(x;,x,,20,...,A):
{y1 =x2,92 =X y3 = Aox; + x5 + A4x%5 ! + -+ + 4;}. Thus inverse image of
the Whitney umbrella is given by (dox; + p(x;))> — x3x, = 0, where
plxz) = x5 + A4xt~1 4+ -+ + 4,. Let us describe the cases of nongeneric position.
The natural stratification of Whitney umbrella consists of its vertex, its handle
and its smooth open 2-dimensional part, see Fig. 1. If R denotes Aox; + p(x;)
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then the nontransversality to the vertex implies R = x; = x, = 0. Therefore, it
gives A, = 0. The nontransversality to the handle implies R = x; = 0 and there-
fore it gives that p has a multiple root. Finally, it is easy to check that the
nontransversality to the smooth part is equivalent to p(12) = 0.

§4. Final remarks.

The following questions are quite natural from the point of view of the singularity
theory.

1) Extend the theory of vanishing cycles and the technique of Dynkin dia-
grams to the considered case.

2) Compare modalities of the versal unfolding of f and its induced function

Q-

3) Develop some method to calculate the dimension of the reduced versal
unfolding of a semiregular f (at least in the quasihomogeneous case) and
compare it with the Milnor number of Q.

4) Study the semiregular singularities in the case when % is a generic
(quasi)homogeneous polynomial of some (multi)degree.
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