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MULTIPLIERS OF IMPRIMITIVITY BIMODULES AND
MORITA EQUIVALENCE OF CROSSED PRODUCTS

SIEGFRIED ECHTERHOFF and IAIN RAEBURN

The multiplier algebra M(A) of a C*-algebra A4 is now recognised as an object of
fundamental importance in operator algebras (see, e.g., [4],[9, §3.12]). Here we
shall show that every 4-B imprimitivity bimodule X has a multiplier bimodule
M(X) with analogous properties. Thus, by definition, M(X) will consist of
compatible pairs of maps m,: A - X, mg: B — X, representing left and right
multiplication by the multiplier m = (m 4, mg); we shall characterise M(X) as the
universal A4-B bimodule M containing X as a submodule satisfying 4 M < X
and M- B c X, just as M(A) is the universal C*-algebra containing 4 as an
essential ideal; and we shall show that appropriately nondegenerate homomor-
phisms of X into another multiplier bimodule M(Y)extend to strictly continuous
homomorphisms of M(X) into M(Y). We shall also prove that we can simulta-
neously represent A4 on a Hilbert space #, B on a Hilbert space ', and X as
bounded operators from ¢ to ' if these representations are faithful, then M(X)
is faithfully represented as

{TeB(A, #):aTeX, The X for all ac A,be B}

(cf, for example, [9, 3.12.3]).

We were led to these ideas by our interest in recent work of Baaj-Skandalis [1]
and Bui [3] on Morita equivalence of crossed products by coactions. A coaction
of a locally compact group G on a C*-algebra A is a nondegenerate homomor-
phism 5, of A4 into the multiplier algebra M(4 ® C*(G)), satisfying several
axioms (e.g. [7,§2.1]); a coaction of G on an imprimitivity bimodule should
therefore be, inter alia, a map dy of X into M(X ® C*(G)). Baaj and Skandalis
worked in the context of (one-sided) Hilbert modules, and used the space
Ppecte(B® CHG), X ® CXG)) of adjointable B ® C}(G)-linear operators
rather than M(X ® C*(G)). When Bui defined Morita equivalence of systems
(A,9,4) and (B, 6p), he also used Lpecrq)(B ® CHG), X ® CF(G)). However, in
this situation, one might equally well view X as a left Hilbert 4-module and use
L4180t 6)(A ® CF(G), X ® C¥(G)), and it is not immediately clear that this gives
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the same theory. Our Proposition 1.3 resolves this problem: for any 4-B im-
primitivity bimodule X, (B, X) =~ M(X) = Z (A4, X).

Both Baaj-Skandalis and Bui proved that Morita equivalent systems (A4, d ,),
(B, 65) have Morita equivalent crossed products, by showing that, if X is an A-B
imprimitivity bimodule with a compatible coaction y of G, then X ® (B x;, G)
is an A x;, G-B x; G imprimitivity bimodule. This formulation has several
disadvantages. First, the symmetry of the situation implies that (4 x;,G) ® 4 X
is also an A x;, G-B x ;G imprimitivity bimodule, but it is not obviously
isomorphic to X ®(B x,,G), and, second, it is not clear how to describe the
actionof 4 x;, Gon X ®p(B X;, G). We shall obtain a symmetric version of this
theorem, by representing 4 on #, B on X", and X ® C*(G) and its multiplier
bimodule as operators in B(¥" ® I*(G), # ® I*(G)), our A x;,G-B x5, G im-
primitivity bimodule is then given by the space

SP{0x(x)(1 ® My):x€ X, feCo(G)} = B(H ® LX(G), # ® L(G)),

with module actions and inner products defined using the corresponding actions
of A x;, Gand B x;_G on # ® I?(G)and 2" ® I*(G). (Of course, this turns out
to be isomorphic to both X ®5(B x,,G)and (4 x,, G) ® 4 X.) We feel that our
proof is more transparent because we have available the basic properties of
multiplier bimodules, which help justify the complicated manipulations which
are always necessary when dealing with coactions. As evidence that our formula-
tion is also convenient, we use it to give a relatively short proof of Bui’s main
theorem, which is the corresponding Morita equivalence for the twisted systems
of [10].

When dealing with Morita equivalence, one always has the choice of using the

e e L A X .
imprimitivity bimodule ,Xj or the linking algebra L = ( e B>’ and in an

appendix we give a brief review of our theory in the context of linking algebras.
We show that the multiplier bimodule M(X) can be naturally identified with the
top righthand corner in M (L), and discuss how some of our results might be
obtained from the analogous properties of M(L). We have preferred to stick with
bimodules in the body of the paper, largely because it is bimodules rather than
linking algebras which arise in applications (see, for example, [5, 8, 14]), but also
because we feel it gives a clearer picture of what is going on.
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sity of Paderborn and the Australian Research Council.
§1. The multiplier bimodule of an imprimitivity bimodule.

In the following, let A and B be C*-algebras, and suppose that X is a complete
A-B imprimitivity bimodule. In other words, X is an 4-B bimodule, a full left
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Hilbert A-module, a full right Hilbert B-module, such that 4 and B act as
bounded operators on X, and the A- and B-valued inner products ,{-,-> and
(-, >p satisfy the compatibility condition

4<%,y z=x{y,zyg forall x,y,ze X.

We shall sometimes just say that ,Xj is an imprimitivity bimodule. We shall
frequently use the canonical identifications of 4 with the algebra J(X) of
compact operators on the Hilbert B-module X, and that of M(A) with Z5(X).

DEFINITION 1.1. Suppose that X is an A-B imprimitivity bimodule. A multi-
plier of X is a pair m = (m,, mg), where m,: A - X is A-linear, mg:B— X is
B-linear, and

(1.1 my(a)-b = a-mg(b) forallacA,beB.
We write M(X) for the set of all multipliers of X.

As with double centralizers of a C*-algebra, we should think of m 4 as the map
a+— a-m, mg as the map b — m-b, and (1.1) as the commuting of the module
actions. To make this precise, note that every x € X can be viewed as a multiplier
of X via the actions of 4 and B on X in other words, x — (x4, xg), where x 4(a) =
a-x, xg(b) = x-b, is a map of X into M(X), and this is an injection because
a-x = 0 for all a implies

0 = laa{% x> 2, XD 1 = [La<x, x)* 43, XD = [Ix]|*.

We use this injection to identify X with a subspace of M(X). In particular, this
allows us to define actions of 4 and B on M(X) by a-m = my(a), m-b = mg(b),
and then M(X) is an A-B bimodule. We therefore refer to M(X) as the multiplier
bimodule of X. It can be characterised alternatively as follows:

PROPOSITION 1.2. Let X be an A-B imprimitivity bimodule. Then M(X)is an A-B
bimodule which satisfies the following two conditions:
1) A-MX)c Xand M(X)-B< X.
(2) If M is any other A-B bimodule which contains X and satisfies (1), then there
exists a unique bimodule homomorphism M — M(X)which is the identity on X
Moreover, any A-B bimodule which contains X and which satisfies Conditions (1)
and (2) is isomorphic (as an A-B bimodule) to M(X).

PRrROOF. Property (1) follows immediately from the definition of the module
actions on M(X). If M is any other 4-B bimodule which contains X and satisfies
(1), then we define @ : M — M(X) by &(m) = (P(m) 4, P(m)p) with @(m) 4(a) = a-m
and @(m)g(b) = m- b, and @ is a bimodule homomorphism which is the identity
on X. Suppose now that ¥: M — M(X) is another bimodule homomorphism
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which fixes X. Then (®(m), — Y(m),)(a) =a-m — ¥Y(a-m), = 0, and similarly
¥Y(m)g = &(m)g. Thus ¥ = @.

Suppose now that M is an A-B bimodule which contains X and which satisfies
Conditions (1) and (2). Then there exist unique X-fixing bimodule homomor-
phisms @: M - M(X)and ¥ : M(X) - M. The uniqueness condition implies that
¥ o @ is the identity on M and @ o ¥ is the identity on M(X).

We denote by #5(B, X) the set of all B-linear operators T: B — X which are
adjointable, i.e., for which there is a B-linear map T*: X — B such that

{T(b),x>s = b*T*(x) for all be B,xe X.

It is shown in [6, p. 4] that every T € Lg(B, X) is automatically bounded. There
are canonical left and right actions of 4 and B on Zg(B, X) given by

(a-T)c)=a-(T(c)) and (T b)(c) = T(bc).

Moreover, the left action of B gives a canonical embedding x +— T, of X into
ZLs(B, X), i.e., T,(b) = x - b for be B; the adjoint is given by T*(y) = {x,y)g. Of
course, the actions of A and B on the subspace X of #(B, X) agree with the usual
ones, so we can view X as an 4-B submodule of Zg(B, X).

Similarly, if ¥ 4(A4, X) denotes the set of all A-linear adjointable maps from A to
X, then we have actions of A and B on .#4(4, X) and X embeds as a submodule of
Z4(A, X).

PROPOSITION 1.3. Let X be an A-B imprimitivity bimodule. Then ¥g(B, X) and
L (A, X) satisfy the conditions of Proposition 1.2. Indeed, the maps m — my:
M(X)— Lg(B,X) and m — m : M(X) - L 4(A, X), are bimodule isomorphisms
which are the identities on the embedded copies of X.

For the proof of Proposition 1.3 we need:

LEMMA 1.4. Let me M(X). Then mge Lg(B, X), with m}(x) given by the unique
element of B satisfying

(1.2) my(4<z,x)) = z-(m¥(x))* for all ze X.
Similarly, m e % 4(A, X), with m%(x) characterized by

(1.3) (m%(x))* -z = mp({x,z)p) forall ze X.
Moreover, m}(a- x) = {my(a*), x>y and m¥%(x-b) = 4(x,mp(b*)).

PrOOF. By symmetry, it is enough to prove the statements for m¥. We first
observe that for each ye X the map z — m4(4,<z,y)) is a compact A-linear
operator on X; to see this, factor y = a-x for ae 4 and x € X, and observe that
my(4<z,a-x)) = my(4,<z,x>a*) = 4{z,x> my(a*). Since B = A 4(X), it follows
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that there exists a unique element ¢ € B such that z- ¢ = m,(,<z, y>)for all ze X,
and we can indeed define amap m}: X — Bby (1.2). For be Band z€ X, we have

z-(mg(y)*b) = my(4<z,y7) b = 4<z,y) mp(b) = z- {y,mp(b)p,
which implies that m} is an adjoint of mg. Finally,
z-(m(a- x)* = my(4<z,a" xp) = 4{z,x) my(a*) = z- {x,m4(a*))p,
and hence mj(a- x) = {m4(a*),x)g.

PROOF OF PROPOSITION 1.3. We show that .Zg(B, X) satisfies Conditions (1)
and (2) of Proposition 1.2. For the first, suppose that T e #g(B, X). Then we
immediately have T-b = T(b)e X. To prove that a- Te X for ae A4, note that
because the module action of 4 on ¥y(B, X) is continuous, it is enough to
consider a of the form ,<{x, y>. But then the equation

(4<%, ¥> - T)b) = 4<{x,y> - T(b) = x-{y, T(b)yp = x(T*(y))*b

implies that a* T = x-(T*(y))* is in X.

To verify (2), suppose that M is an A-B bimodule containing X such that
A-M < X and M- B < X. We have to show that there is a unique bimodule
homomorphism @ : M — (B, X) such that &(x) = T, for x e X. The uniqueness
is easy: if @ and ¥ agree on X, then for meM we have ®(m)b) =
®(m) b = &(m-b) = W(m-b) = ¥(m)(b) for all b, which implies &(m) = ¥(m). To
construct @, note that left and right multiplication by me M define a multiplier
(m,, mg) of X. Then Lemma 1.4 shows that mgze (B, X), and we can define
d(m) = mg, i.e. P(m)(b) = m-b.

Notice that if we started with M = M(X), ®(m) is by definition just mg, and
since M(X) has the same universal properties, @ is an isomorphism. (See the last
paragraph in the proof of Proposition 1.2.) Similarly, m, is an isomorphism of
M(X) onto Z4(A4, X).

DEFINITION 1.5. Let 4 X be an imprimitivity bimodule. The strict topology on
the multiplier bimodule M(X) is the topology generated by the seminorms
m = |m-b|| = [mg(b)| and m — |la-m| = [m(a)|.

REMARK. Let (u;);; be an approximate identity of B satisfying u; = u} and
llu;| = 1. Because m, and my are bounded linear maps, [6, Lemma 1.1.4] implies
that m - u; converges strictly to me M(X). Thus X is strictly dense in M(X).

Furthermore, M(X) is complete with respect to the strict topology. To see this,
assume that (m;),; is a strictly Cauchy net in M(X), so that for allae A and be B,
(@ m;);c; and (m; - b),; are Cauchy nets in X with respect to the norm topology. If
we define a-m = lim;; a-m; and m-b = lim;; m;* b, then me M(X) and (m;);;
converges strictly to m.
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PROPOSITION 1.6. Let 4Xgbe animprimitivity bimodule. The module actions and
inner products on X extend to separately strictly continuous pairings

M(A4) x M(X) > M(X), M(X) x M(B) > M(X) and
M)t M(X) x M(X) > M(A4), <, Dme: M(X) x M(X) > M(B).

Then M(X) is a left M(A)-Hilbert module, right M(B)-Hilbert module satisfying
I {m, n) ppy = ma<l,m) - n. However, M(X) is not always an M(A) — M(B) im-
primitivity bimodule.

For the proof we need two lemmas.

LemMMA 1.7. The isomorphisms m +— m, and m — mg of M(X) onto £ 4(A, X)
and ¥(B, X), respectively, are continuous with respect to the strict topology on
M(X) and the *-strong topologies on % (A, X) and L(B, X), respectively.

PROOF. Suppose that m' converges strictly to min M(X). Then it follows from
the definition of the strict topology that mi(b) converges to mg(b) in norm for all
beB. To see that (mj)*(y) converges to mk(y) for all y, write y = a-x. Then
using Lemma 1.4 we have (my)*(a-x) = {m',(a*),x)p, and this converges to
{my(a*),x>p = m}(a- x) by the continuity of (-, >p.

LeMMA 1.8. Let 4Xp be an imprimitivity bimodule and let m,n € M(X). Using the
canonical identifications of £ 5(B), £ .(X) with M(B) and & 4(A), £ (X) with M(A),
we have :

m}ong = nyom¥ in M(B) and mgonk = n{om,in M(A).

PrOOF. By symmetry, it is enough to prove the identity m¥ c ng = n,om¥. Let
x € X and b e B. Then from several applications of Lemma 1.4 and the equation
(ngom¥)* = m4on¥ we obtain

x-(mgong(b))* = x- (mi(np(B))* = m4(4<{x,np(b)))
= my(n4(xb*)) = x-b*(m,4 °n¥)
=X b*(ngomi* = x-((ngomib)*,
which implies m} o ng = n, o m¥.
PROOF OF PROPOSITION 1.6. Define the pairing (k,m) — k-m of M(A) x M(X)
into M(X) by
(k-m)4(a) = m4(ak) and (k-m)p(b) = k-mpy(b).
Then (k-m)4(a)-b = m4(ak)-b = ak-mg(b) = a- (k- m)g(b) for all a and b, which

implies k- me M(X). A quick calculation shows that this pairing extends the left
action of 4 on X to a left action of M(A4) on M(X). Assume that k; converges
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strictly to k in M(A). By factoring x = a-y, we can see that k;- x converges in
norm to k- x for all x € X, and this in turn implies that k; - m converges strictly to
k-min M(X). Similarly, if m; converges strictly to m, then k - m; converges strictly
to k-m. The same arguments show that the pairing M(X) x M(B) - M(X)
defined by

(m-D)4(a) = my(a) 1 and (m-D)g(b) = my(lb), e M(B),

is separately strictly continuous and extends the action of B on X.
We define the inner products y 4 <+, > and -, s on M(X) by

Mm@ <m,n) = mgong € Lp(X) = M(A4), and
{m,n} g = mj o nge L(B) = M(B).

If x,ye X € M(X), then xgo y}(z) = x5({y,2)p) = x {3,205 = 4<{x,y) -z for all
ze X, which implies p4)<{x,y) = 4{x,y). Similarly, x} o yg(b) = {x,y-bDp =
{x,yygbimplies {x, y) p) = (X, y)p. Thus p4,<",*> and {-," D ps do extend the
A- and B-valued inner products on X. If m' converges strictly to m, then
<m', n)ppb = (M) *(np(b)) converges in norm to mj(ng(h)) = <m,ndypb by
Lemma 1.7. On the other hand,

(b<{m', n)pg)* = ((mp)* © ng)*b* = (nf o mp)b* = nf(mp(b)),

which converges to nj(mg(b)) = (b{m, n)y)* by the norm continuity of n}.
Thus {m', n) ys) — {M, n)pp, strictly, and since

<'",">fm;) = (mgong)* = ngomg = {n,m) ),

this implies that (-, >, is separately strictly continuous. The separate strict
continuity of 4 <, ) now follows from Lemma 1.8 by applying similar ar-
guments to the expressions n, o m¥ and n¥ om,.

Since m} - mg and mg o m} are zero if and only if mg = 0, the inner products are
positive definite. By writing the positive element m}omy as d* for some
de M(B)*, and computing the norm of |d?| as supyy<i [(db)*db|, it is
easily checked that [m§ompg| = "msu_%zsw,xy Thus ”m"?mx) = |Im§ o mpg| =
Imgll%pm.x) = lImgemill = apallm| . Because £p(B, X) is complete in the oper-
ator norm, the first two equations imply that M(X)is complete in the norm given
by the inner products. That M(X)is a left M(4)- and a right M(B)-Hilbert module
now follows from the separate strict continuity of the operations and the strict
density of X, 4 and B in M(X), M(A4) and M(B). Similarly, we have I- {m,n) g, =
mllym)-nfor I, m, ne M(X). For the last assertion, see the remark below.

REMARK. For any A-B imprimitivity bimodule X, denote by R(A4) and R(B) the
closed linear spans of {y4<{m,n) :m,ne M(X)} and {<m,n)y:mne M(X)}in
M(A) and M(B), respectively. Proposition 1.6 says that M(X) is an R(A4)-R(B)
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imprimitivity bimodule having X as an A-B imprimitivity submodule. If 4 or Bis
unital, then Proposition 1.3 implies that M(X) = X, R(4A) = A and R(B) = B.
For example, if we regard a Hilbert space # as a K(#)-C imprimitivity bi-
module, then M(#) = #. Thus M(X) is in general not an M(A)-M(B) im-
primitivity bimodule. On the other hand, it can be: if we view a C*-algebra A4 as
an A-A imprimitivity bimodule, then the multiplier bimodule of 4 coincides with
the multiplier algebra M(A4) and we have R(A) = M(A) on either side. In Example
2.5 below we describe an A-B imprimitivity bimodule X such that A4 +
R(4) £ M(A).

Recall that for any pair of C*-algebras B and D, a homomorphism ¢:B —
M(D) is called nondegenerate if ®(B)D is dense in D. If ¢ is nondegenerate, then
& extends uniquely to a strictly continuous homomorphism &: M(B) - M(D)
(e.g. [7, Lemma 1.1]). We now show that a similar result holds for multiplier
bimodules.

DEFINITION 1.8. An imprimitivity-bimodule homomorphism @: , Xz — M(:Yp)
is a triple @ = (P, Py, Pp), in which &,:4 - M(C) and ®5: B —» M(D) are
homomorphisms, and @y : X — M(Y) is a linear map satisfying the following
compatibility conditions:

(1) D4(4<x%,¥7) = M) < Px(x), Px(y)>, Pp({x,y>p) = {Px(x), Px(¥)) M)
for all x,ye X, and

(2) Dx(a-x-b) = & (a) DPy(x) Pg(b) for allae A, xe X and be B.

We say that @ is nondegenerate if &, and @y are nondegenerate.

PROPOSITION 1.9. Let @ = (@, Dy, Pp): X — M(Y) be a nondegenerate im-
primitivity-bimodule homomorphism. Then there exists a unique strictly continuous
extension & = (&4, Py, Pg): M(X) - M(Y), and the compatibility conditions of
Definition 1.8 are still satisfied.

PrOOF. Let @, and &5 denote the unique strictly continuous extensions of @ ,
and &g to M(A) and M(B), respectively. By Cohen’s factorisation theorem we
have D = @gx(B)D and C = CP4(A). Let me M(X), c® (a)e C and Pg(b)deD.
Then we aim to define

By (m)c(cP 4(a)) = ¢ Px(a-m) and Py(m)p(Py(b)d) = Px(m-b)-d.

To see, for example, that @y (m), is a well defined map of D into Y, observe that the
right-hand side is bilinear in (b, d) and B-balanced, hence determines a linear map
of B®gD into Y. Since b ® d — ®y(b)d is an isomorphism of B ® gD onto D, it
follows that ®y(m)p, is well defined.

Routine calculations show that @, is strictly continuous, which implies that @
satisfies the various compatibility conditions. The uniqueness of the strictly
continuous extension follows from the strict density of X in M(X).
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ExaMPLE 1.10. Suppose that ,Xp is an imprimitivity bimodule, and that @g:
B — M(D) is a nondegenerate homomorphism for some C*-algebra D. Let C be
the algebra # (X ®p D) of compact operators on the Hilbert D-module X ® g D.
The left action of A on X defines a nondegenerate homomorphism & ,: 4 —
M(C) = p(X ®pD). We define &x:X > M(X ®pD) = Zp(D,X ®5D) by
®y(x)p(d) = x ® d. (This is adjointable because Pyx(x)5(y ® e) = Pg({x,y)>p)e
defines an adjoint.) Some quick calculations show that (@ ,, @y, Pg): X —
M(X ®p D) is an imprimitivity-bimodule homomorphism.

Assume now also that Y}, is an imprimitivity bimodule, and that there are
a nondegenerate homomorphism ®5: B - M(D) and a linear map ®@y: X —
M(Y) such that @p({x,y>p) = {Px(x), Px(¥))mw)> Px(x"b) = Px(x)Py(b), and
dx(X)Disdensein Y. Then the map x ® d — ®x(x)d extends to an isomorphism
X ®p D = Y of Hilbert D-modules, and it follows that there is a nondegenerate
homomorphism @ ,:4 — M(C) such that (®,, Py, Pp): X - M(Y) is an im-
primitivity-bimodule homomorphism.

§2. Representations of imprimitivity bimodules.

The main purpose of this section is to show that every imprimitivity bimodule
4Xp may be represented faithfully as operators on Hilbert space.

DEFINITION 2.1. A representation of an A-B imprimitivity bimodule X on the
pair of Hilbert spaces (#,.¢") is a triple (m, Ty, mp) consisting of nondegenerate
representations m,: A4 — B(#), ng:B— B(#'), and a linear map ny:X —
B(X", ) satisfying

(1) mx(x)*x(y) = mp(<x, y>p) and mx(x)mx()* = m4(4<x, 7)) for x,ye X.
(2) nyla-x-b) = n (a)ny(x)ng(b) forac A, xe X, beB.

REMARKS. (1) The representations of 4, X on the Hilbert spaces (# , ") are the
nondegenerate imprimitivity-bimodule homomorphisms of X into M(K(4", 5¢)),
where K(', #) is viewed as a K(#°) — K(¢") imprimitivity bimodule.

(2) Equation (1) together with the equation || T||*> = | T*T|| for Te B(A", #)
implies that ny is isometriciff either 4 or g is isometric, and hence iff either mt 4 or
7ty 1s faithful. If so, we say that 7 is faithful.

(3) The map my is automatically nondegenerate: sp{ny(x)k:x€ X, ke A"} is
dense in #" and sp {nx(x)*h:xe X, he #} is dense in £". For if he # satisfies
(nx(x)k|h) = O for all x, k, then

(ma(4<x, ¥))glh) = (mx(x)(mx(y)*g)lh) = O

for all x,ye X and ge s#, which implies h = 0 by nondegeneracy of n,. Thus
Sp {nx(x)k:x€ X, ke A"} = A, the other part follows similarly from the non-
degeneracy of mp.
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(4) We say two representations (T 4, Ty, ), (0.4, Px, PB) ON (7, A7), (OF,, )
are equivalent if there are unitary transformations U : 5, - J,, V: A, — A, such
that px(x) = Unx(x)V*. It follows from equation (2) that we then have
pa=AdUcn, pg=AdVeomng

(5) If (n4, mx, tp) is a representation of , Xz on (J, ), and we set ng(%):=
Tix(x)*, then (g, Mg, T 4)is a representation of 3 X ,. Thus if 7 is faithful, and we use
T4, Tg to view A, B as acting spatially on #, ", and nty to view X as a subspace of
B(X, ), then we can identify X with the subspace X* of B(#, %), with the
module actions given by composition of operators, and (e.g.) g{x*, y*> = {x, yDs.

(6) If 4X5 is represented on (J, X') via T = (T4, Tk, Tg), g Yc is represented on
(A, %) via p = (pg,py,Pc), and mg = pp, then (X ®pY)c is represented
on (', L) viac = (N, Oxg,y, Pc) Where oxg y(x ® y) = nx(x)py(y) € B(Z, H#). If
7 or p is faithful, then Remark (2) implies that o is also faithful.

LEMMA 2.2. The map (n,, y, Tg) > Ty is a bijection between the equivalence
classes of representations of the A-B imprimitivity bimodule X and the equivalence
classes of nondegenerate representations of B, with inverse given by T >
(Ind =, p, ), where Ind 7t denotes the induced representation of A on X ®g X" via
the action of Aon X, and p(x)k = x@ ke X @p A .

Proor. We first claim that (Ind =, p, 7) is a representation of X. For ke ", we
have

pla-x-bk=axb®k=(ax)®nbk
= Ind n(a)(x ® n(b)k) = Ind n(a)p(x)n(b)k,

which gives (1), and the definition of the inner product on X ® 3¢ implies
immediately that p(x)*p(y) = n({x,y>p). A quick calculation shows that

p(Y)*(z ® k) = n(y,z)p)k, so
pX)p()*(z ® k) = x @ n({y,z)p)k = (x{y,2)p) ® k
= (4<%, ¥ 2) ® k = Ind n(,{x, y))(z ® k),

completing the proof of (2). It is easy to check that n — (Indm, p, ) respects
unitary equivalence, and (4, Ty, Tg) — Tg certainly does, so it remains to check
that (w4, my,ng) ~ (Ind g, p,ng). The formula U(x ® k):= mx(x)k defines an
isometry U of X ®5 ¢ into S, which is surjective by Remark (3) above, and
hence unitary. Straightforward calculations show that U Indng = n,U and
Up = ny,so (U, 1) implements the required equivalence between (4, Ty, T5) and
(Ind =g, p, 7).

COROLLARY 2.3. Every imprimitivity bimodule has a faithful representation.

ProoF. If ngis a faithful representation of B, then each of ©, and my is faithful
by Remark (2) above. So the result follows from the lemma.
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PROPOSITION 2.4. Let m = (n,,ny, Tg) be a representation of an imprimitivity
bimodule 4Xgon(H#, ). Then there is a unique strict-to-*-strong continuous map
fix: M(X) — B(X", #) which extends Ty, and is compatible with the canonical
extensions of n4, g to M(A) and M(B), respectively. If n is faithful, then Ty is an
isometry of M(X) onto

M(X) = {Te B, #): Trg(B)U n (A) T < mx(X)}.

Proor. We define ity(m) by @tx(m)(n 4(b)k) = my(m- b)k; the argument used in
Proposition 1.9 shows that 7ty(m) is a well defined linear map. Easy calculations
show that ty(m)*(n,(a)h) = ny(a-m)*h defines an adjoint for 7iy(m). It is clear
that 7y is strictly continuous with range in M, (X).

If mg is faithful, then 7ig is isometric, and

Ix(m)l|? = [|fx(m)*Tx(m)l| = |7p(<m, m)pp)ll = [1<m, md ppy -

Conversely, because 1ty is bijective, any T in M, (X) defines a pair of maps (n4, np)
via

nx(nq(a)) = na(a)T, nx(ng(b)) = Trg(b),
and n = (n4, np) is easily seen to be a multiplier n of X satisfying ty(n) = T.

Note that the extension 7 in the proposition is identical to the unique strictly
continuous extension of © regarded as an imprimitivity bimodule homomor-
phism from ,Xp to M (k) K(H', # )k x)) (see Proposition 1.9).

ExaMpPLE 2.5. If #, 4 are two Hilbert spaces then X = K(X ', #) is
a K(#)-K(X") imprimitivity bimodule. Of course, the identity id is a faithful
representation of X on (¢, ¢'), so Proposition 2.4 gives an isomorphism of M(X)
onto M,4(X), which in this caseis all of B(.X", ). Hence M(X) = B(", #). If one
of #, .4 is finite dimensional, then we have M(X) = X, which then implies that
the ranges R(A) and R(B) of the inner products on M(X)(see the remark following
Proposition 1.6) are equal to 4 = K(s#) and B = K(X'), respectively. If o, ¥
have the same infinite dimension, then M(X) = B(X, #), R(4) = B(s) and
R(B) = B(X"). Thus M(X)is a B(#)-B(") imprimitivity bimodule. But if ¢, %
have different infinite dimensions — say J# is countable — then R(A) is the ideal of
B(#) = M(K(s¢))consisting of all operators T such that range T is separable. So
in this case we have 4 + R(A) + M(A), but R(B) = M(B).

The following lemma will be needed in the next section. All our tensor products
of C*-algebras are completed with respect to the minimal (or spatial) norm.

LEMMA 2.6. Let t = (n 4, Ty, Tg) be a faithful representation of 4Xp on Hilbert
spaces (#,A'), and let p be a faithful representation of a C*-algebra C on the
Hilbert space . Then there is a faithful representationn @ p = (n, ® p, tx @ p,
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g ® ) 0of 4gc(X @ Clggeon(# @ L, A @ £),suchthat n, ® p and ng ® 6 are
the usual tensor product representations, and ny ® p(x ® ¢) = ny(x) ® p(c).

ProoF. For any xe X, ceC, there is a bounded operator my(x)® p(c):
A RYL > H R®YL, and hence a linear map nx® p: X © C - B(A ® &,
H ® £). A calculation using the equality ntg(<{x, y>p) = nx(x)*nyx(y) shows that
Imx ® p(E 1 % ® ¢)l|? = IZ% x: ® Ci”g®Ca and hence ny ® p extends to an
isometric linear map of X ® C into B(#" ® &, # ® ¥). Calculations on ele-
mentary tensors show that nty ® p is compatible with t, ® p and 1z ® p.

§3. Morita equivalent coactions.

We now give our versions of the theorems of Baaj-Skandalis and Bui. Through-
out we shall use the conventions of [ 7, 10] as regards coactions: thus we use the
minimal tensor product and the reduced group C*-algebra. The comultiplication
d¢ on C*(G) is the integrated form of the unitary representation s — A¢ ® A of
G, where A% denotes the left regular representation of G on I?(G). In the following
1 always denotes the identity homomorphism between algebras, and M the
representation of Co(G) as multiplication operators on I?(G). We shall find it
convenient to distinguish between the function wg:s — A% in M(G, C*(G))) and
the unitary operator W5 = M ® 1(wg) on I*(G x G).

DEerFINITION 3.1 (cf. [1,2.2], [3,2.15]). Suppose that §,: 4 > M(A ® CXG))
and dg: B — M(B ® C¥(G)) are coactions of a locally compact group G on
C*-algebras A and B. A Morita equivalence between (A4,0,) and (B, dg) is an
imprimitivity bimodule ,Xp together with a linear map dx: X - M(X ® C*(G))
satisfying

(1) (1pra) ® 2)-0x(x) and Ox(x)  (1pyp ® 2) lie in X ® CX(G) for all xeX,
ze CHG);

(2) ox(a - x-b) = 04(a) 6x(x) dp(b) for all ae 4, xe X, be B;

(3) 04(4<x, ¥D) = muecien<Ox(x), 6x(y)), and
0p(<x, yyp) = {0x(x), 0x(y)>mpecic)y for all x, ye X;

(4) (0x ®1)°dx = (1 ® dg)° Ox-

(In (1) and (2), we implicitly extended the module actions on the A ® C¥(G) —
B ® C*(G) imprimitivity bimodule X ® C¥(G) to actions of the multiplier alge-
bras on the multiplier bimodule; in (3), we extended the inner products to
M(X ® C*(G));, and in (4), we used the strictly continuous extensions of dx ® 1
and 1 ® d; to make sense of the compositions.)

REMARKS. We claim that this version of Morita equivalence is indeed an
equivalence relation. Obviously, (4,8 ,) is equivalent to itself: take (X, dy) =
(4,6,). If (X, §x)is an equivalence between (4, § ,) and (B, d), we can use a faithful
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representation of 4, Xy and part (5) of the remark preceding Lemma 2.2 above to
identify X, with X*. Then, if we represent X ® C*(G) faithfully on
B(#" ® I2(G), # ® I*(G)) using Lemma 2.6,

X ® CHG) = X*® CHG) = (X ® CHG)*,

and we can define d5: X » M(X ® C*(G)) by dz(x*) = dx(x)*. It is routine to
check that (X, 5z) is an equivalence between (B, dz) and (4, J,,). To see transitiv-
ity, suppose that (,Xp,dyx) and (3 Y¢, dy) are Morita equivalences. We represent
gYc in B(Z, 1), and then use Lemma 2.2 to represent ,Xg in B(4", #) for the
same space 4. Now X ®p Y is represented in B(¥, #), and (X ®5 Y) ® C¥(G)
in B(¥ ® I2(G), # ® I2(G)). We define

Oxgyy(x ® y):= 0x(x)°dy(y).

Routine calculations, using the realisations on Hilbert space, show that dyg v
satisfies (1) and (2). For (3), we have

M(A@C:tG)b<(sX(x)5Y(y)s 0x(2)0y(w)) = dx(x)dy(y)dy(W)*dx(2)*

= 0x(x)0p(<y, WHp)ox(2)* = x(x)(dx(2)dp(g<{W, yD))*

= 0x(x)dx(z* g<{W, YD)* = 3 4(4<x, 2" p<W, YD)

= 04(4{x® Yy, 2@ wW)).
Finally, we check (4). Since the faithful representation of X ®j Y in B(Z, #)
takes x ® y to x oy, we have

(5X®BY ® 1)(0x(x)dy(y)) = (6x @ 1)(Sx(x)) ° (dy @ N(Oy(})

= (1 ® 06)(0x(x)) (1 ® 06)(0y(¥) = (1 ® ¢ )(9x(x)Iy(¥))

= (1 ® 66)(0x g,y (X ® Y)).

From now on, we shall represent the imprimitivity bimodule ,Xp faithfully on
(A, A and 4ot (X ® CH(G)pgcie on(H @ I*(G), #” ® I?(G)) using Lemma
2.6. Thus we may identify the multiplier algebras M(4 ® C¥(G)), M(B ® CHG))
and the multiplier bimodule M(X ® C*(G)) with their images in B(# ® [*(G)),
B(#" ® I2(G)) and B(X” ® I2(G), # ® I2(G)), respectively. If 6, and dp are coac-
tions of G on A and B, respectively, then the crossed products 4 x,, G and
B x ;. G can be realized in B(# ® I*(G)) and B(#” ® I?(G)) as the closed linear

spans of {8,4(a)(1 @ M;); ae A, f e Co(G)} and {d5(b)(1 ® M;); be B, f € Co(G)},
respectively [7].

THEOREM 3.2 (Baaj-Skandalis, see [1,6.9], [3,2.16]). Suppose (4Xp,dx) is
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a Morita equivalence between (A, 8 4) and (B, 0g) such that ,Xj is faithfully repre-
sented on (3, A"). Then the subspace

3.1) X x5,G:=5p{6x(x)(1 ® M;):x€X, f € Co(G)}

of B(X @ I2(G), # ® IZ(G)) is an A x5, G-B x5, G imprimitivity bimodule.
Indeed,

(3.2 X x5, G =5p{(l ® Mj)dx(x):x€ X, feCo(G)},

the algebras A x;, G act through their faithful representations on # ® I*(G),
A ® I2(G), respectively, and the inner products are given in terms of the usual
adjoint * : B(X ® I2(G), # ® [}(G)) » B(# ® I2(G), # ® I*(G)) by

3.3 M, OB xonc =M axg M0 =nl*.

Further, the maps ¢:x ® c +— 0x(x) ¢, y:d ® x > d- x(x) extend to B x;_ G-
resp. A x;, G-linear Hilbert module isomorphisms of X ®g(B x;,G) onto
X x5, Gand (A x;,G)®4 x X onto X x,, G, respectively.

ProOF. We begin by proving that (1 ® M,)dx(x) belongs to X x,; G. The
argument is basically that used to prove that (1 ® M,)d,(a) belongs to
5p {04(a)(1 ® M)} in [7, p. 759], and this fact will also be used later in the proof.
By continuity, we may as well suppose that f e A4(G), the Fourier algebra of G,
and indeed that the functional feL(G), is given by T+ (zTh|k) for some
ze C*(G) and h, ke I?(G) (in other words, if g€ A(G) is given as a functional by
(T,g)» = (Th|k), then f = g-z). Since f = S;(Ws), M, is characterised spatially
by

(My&ln) = (1 ® 2)We(¢ ® h)[n ® k) for &, ne L(G).

Notice that the equation dg(z) = Ws(z ® 1) W tensors up, first to X ® CX(G),
and then by strict continuity to M(X ® C¥(G)), to give (1 ® dg)o dx(x) =
(1 ® Wg)(0x(x) ® 1)(1 ® Wg)*. Thus, for (e X ® I2(G) and ne# ® I(G), we
have

(1 ® Mp)ox(x)¢ln) = (1 @ 1® 2)(1 @ We)(0x(x) ® 1)E® hin ® k)
=(1®1®2)(1® dg)°ox(x)(1 ® W) ® hin ® k)
= (1 ®1®2)(0x ®1)°dx(x)(1 ® W) ® hin ® k)
= (0x ® (1 ® 2))dx(x))(1 @ W5)¢ ® hin @ k).

Since (1 ® 2)dx(x)e X ® C¥(G), we can approximate it in norm by a sum of the
form X; x; ® z; in X © C¥(G). But then we have
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((1 ® Mf)éx(x)€|n> ~ <Z((5X(xi) RNI®T®z)1 QW) ®@hln® k)

= <Z. Sx(x)(1 ® Mg.,,)éln),

and the approximation is uniform in &, of norm < 1. Thus
(3.4) 1® Mf Ox(x) ~ Z‘Sx(xx)(l M )G X x5, G,

as claimed.
By symmetry, this claim establishes (3.2) The claim also gives

o4@(1 ® Mf)é)((x) ~ 5A(a)z(3x(xi)(1 ® Mg~zl) = Z(sx(a x)(1 ® Mg-z,);

because the elements of the form d4(a)(1 ® M,) span a dense subspace of
A x;, G, this implies that the subspace X x;, G of B(¥" ® I}(G), # ® [*(G)) is
closed under left multiplication by elements of A x5, G = B(# ® I*(G)). Simi-
larly, the calculationin [LPRS, p. 759] implies that X x; G isclosed under right
multiplication by elements of B x ;. G. Thus X x oy GisanA4 x;, G — B x,;,G
bimodule.

We next note that

(3.5 (Ox(x)(1 ® M) *(0x(¥)(1 ® M) = (1 ® M7)(dx(x)*ox(y)(1 ® M,)
= (1 ® Mj)d5({x, y>p)(1 @ M,),

son*({in(3.3)doesliein B x5, G. Since the pairing is defined in terms of the usual
adjoint operation on Hilbert space, there is no difficulty in verifying the algebraic
properties of {-,*)p;.6, and since the elements of the form (3.5) span a dense
subspace of B x;, G, it follows that X x,_ G is a full Hilbert B x,;, G module.
Similarly, using instead the characterisation (3.2) of X x;, G, one can verify that
it is a full Hilbert A x,, G module. The compatibility condition

AX5AG<6"7>‘C =¢- <7”C>BX,§BG

amounts to the associativity of composition of operators, and hence X x; G is
an imprimitivity bimodule, as asserted.

For the last part, we observe that the map ¢ is clearly a B x,;, G module
homomorphism with dense range, and hence it is enough to check that ¢ is
isometric for the B x;, G norm on X © (B x;,G) and the operator norm on
B ® IZ(G), # ® LX(G)). But for Z;x; ® c;e X O (B x;,G) we have
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Jo(z01)

2

Z cFox(x;)*ox(x;j)c;

ij

= ZC.* <6X(xi)v(SX(Xj)>M(B®C:(G))CJ
iJj

= Z cfop({x;, x;B)C;

= Z X ®ceip,x; ® ('j>3x,55(;

ij

2

- |zxe
ij

X®p(B x55G)

Exactly the same argument, but using (3.2) instead of (3.1), shows that s is an
isomorphism.

Now suppose N is a closed normal amenable subgroup of G, and let g denote
the quotient map of C*(G) onto C*(G/N), so that (i) = AS/" for se G. For
groups H,K, let oy x: C¥(H) ® C¥(K) —» C¥(K) ® C¥(H) denote the flip w®
z >z @ w. Asin [10], a twisted coaction of (G, N) on A consists of a pair (6 ,,W,,),
where 64 is a coaction of G on A and W, is a unitary in M(4 ® C¥}(G/N))
satisfying

1N WeN® UG/N,G/&(WA RDN=0® 5G/N)(WA);

2) (®qg)od(a) = Wya® 1)WF for all ae A; and

(3 04®1(Wy) =1Q0agne(Ws® lC:(G))'

A covariant representation of (4, G, d 4) is a pair (m, u) of nondegenerate represen-
tations m: 4 —» B(H#), pu: Cy(G) — B() such that

T ® 1(04(a)) = u @ 1(wg)(m(a) ® 1)p & 1(W§),
and (m, u) preserves the twist W, if
(3.6) L ® 1(wgy) = T Q& 1(Wy).

The twisted crossed product A x5, w , G is then the quotient of 4 x;, G by the
ideal

Iy ,:= n{kerm x p:(m, p)is covariant and preserves W,}.

Following Bui [3], two twisted coactions (d 4, W,) and (65, Wp) of (G, N) are
Morita equivalent if there exists a Morita equivalence (X,dy) for (4,0,) and
(B, dp) such that
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1®q(0x(x)) = Wy (x® 1) Wy for all xe X.

Using faithful representations of X ® C*(G) and X ® C*(G/N) on (# ® I2(G),
A ® IX(G))and (# ® I2(G/N), #” ® I?(G/N)), one can check that Morita equiv-
alence of twisted actions is an equivalence relation (cf. the remarks following
[3, Definition 3.2] and Definition 3.1).

COROLLARY 3.3 (Bui, cf. [3, 3.3]). Suppose that (X, dy) is a Morita equivalence
between the twisted systems (A, d 4, W,) and (B, 6g, Wg). Then there is a submodule
E of X x;, G such that (X x5, G)/Eis an A X5, w , G-B X, w, G imprimitivity
bimodule.

Proor. We show that a covariant representation (m, u) of (B, dp) preserves the
twist Wj if and only if the corresponding induced representation (z, v) of (4,9 4)
preserves W, —indeed, by symmetry, it is enough to show that if (n, u) preserves
Wj, then (1, v) preserves W,. This implies that the ideals I, and Iy, are in Rieffel
correspondence, so that we can take E = Iy (X x,,G) = (X X,;,G) Iy, (cf.
[Rief2, §3]). We write X x; G = 5p {0x(x)(1 ® M/)}, and understand that the
closure is in some Hilbert space realisation like that in Theorem 3.2.

Suppose that (r, ) : (B, 5) = B() preserves Wy and write Y:= X x; G. The
induced representation (z, v) acts in Y ® g, ¢ # via

(@) (dx(x)(1 ® Mf) ® &) = doxla-x)(1 ® Mf) ®¢
v(@)(0x(x)(1 ® Mf) ®H=(1® Mg)ax(x)(l ® Mf) ®¢,
and the key identity is

(3.7 Y 6p)1 @ M) ® & =y @ m(b)u(f)<¢
for ye Y. To calculate, we use the isomorphism

(Y®px,,6#) ® (G/N) = (Y ® CHG/N)) ® 5 x,,0r0ciam) (# & L'(G/N)).
Then for y:= (Sx(x)(1 ® M) ® &) ® zk in (Y ® #) ® I*(G/N), we have
T @ (W )(0x(x)(1 @ M) ® &) @ zk

=T Q@ (W,)(0x(x)(1 ® My) ® 2) ® (¢ ® k)

=6x@IW x@NIOM;®2) Q@R K

=0x ® 11 ® 9)°dx(x) Wp)(1 @ M; ® 2) ® (C® k)

= 1@ 1®q((0x ® 1)° 0x(x)) 5 ® 1(Wp)(1 @ M; ® 2) ® (£ ® k)

=1®1Qq((1 ® 5g)° x(x)dp ® (WE)N(1 @ M; @ 2) ® (L ® k)

=1®1®q((1 ® We)(x(x) ® 1)(1 @ We))dp @ uUWp)(1 @M, ®2) @ (E® k)

= (1 ®@ Wo)(6x(x) @ 1)(1 @ Wiy)os ® 1(Wp)(1 ® M; ® 2) ® (£ ® k).
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At this stage, we observe that if { is any element of Y ® C*(G/N), then equations
(3.6) and (3.7) give

(A @ WeN)0p® 1(Wp))(1 ® My ® 2) ® (£ ® k)
={® u® 1wgm) T ® t(Wp)(u(f) ® 2)(E ® k)
={®uN®)E®FK)
={(1®OM;®2)Q (k).

While this calculation does not immediately apply to our formula for
T ® 1(Wy)(y), because n = (1 @ Wg/n)(0x(x) ® 1) lies in M(Y ® C}¥(G/N)) rather
than Y ® C*(G/N), one can see by considering (t ® 1(W,)(y)|a) for a in (Y ®
C*(G/N)) ® (# ® I*(G/N)) that the same manipulation works. (Since Co(G) acts
nondegenerately on Y, we can take o of the form (1 ® M, ® w)- , move
1 ® M, ® wacross the inner product, and note that {:= (1 ® M, ® w)*n does lie
in Y ® C¥(G/N).) We deduce that

T® Wy)() = (1 ® Wen)0x(x) @ N1 ® M, ® 2) ® (¢ ® k)
=V ® 1(weW)(Bx(X)(1 ® M) ® &) ® zk), ‘

and hence that (z, v) preserves the twist W,.

Appendix: Linking algebras.

In this appendix we shall relate the results of the first two sections to the linking
algebra of an imprimitivity bimodule ,Xp. To start with, recall that the adjoint
imprimitivity bimodule X is the set X with left B-action and right A-action
definedbyb- % = (x-b*) andX-a = (a*-x) ,where we write X if we view x € X as
an element of X. Equipped with the old A- and B-valued inner products, X is
a B-A imprimitivity bimodule. Note that M(X) is naturally isomorphic to

x>:aeA, x,yeX,bc-B},

M(X) . The linking algebra L for 4Xpis L = {(; b

with multiplication and involution given by
(al x1>(a2 xz) _ <axaz +a<{X1,y2>  ay x; +x;°by >
Vi biJ\J2 b, Jiraz+ b9, yi,x208+ biby

(AD) a x\* a* y
G o) =(5 )

Each element of L acts as an adjointable operator on X @ B via

<a x><z>_<a~z+x'c>
7 b/\c) \, 2>+ bc)
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Indeed, it is shown in [2,§1] that this action defines an isomorphism between
L and AR(X @ B), and hence L is a C*-algebra. We shall often write

(A X
“\X B/

A X
PrOPOSITION A.1. Let L = <)? B) be the linking algebra for the imprimitivity

M(4) MX
bimodule 4Xg. Then M(L) can be naturally identified with <M§X’; M((B))>’ where
we now use Proposition 1.6 to make sense of the formulas ( Al ) for the multiplication

and involution.

M(4) M(X)
M(X) M(B)
Bfor all x € X and me M(X) (to see this, factor x = a- y,and then {a- y,m)y, =
M(4A) M(X)
M(X) M(B)

PROOF. L isanidealin ( >, because py(4){x,myeA and {x,m)yp €

{y,a*-m)yp € B). Thus every element in ( ) defines a multiplier of

1, O 0 0
L. Conversely, let p = p, :( 4 > and g =g =< > Then p+qg =1
0 0 0 1g

and we have canonical isomorphisms A ~ pLp, B~ qLq, X =~ pLq and X =~
qLp. If we M(L), then pwp, pwgq, qwp, and qwq define elements k, m, i and [ in

M(A4), M(X), M(X), and M(B) such that w = (: '7)

REMARKS. (1) Proposition A.1 suggests that one could alternatively define the
multiplier bimodule M(X) to be the corner pM(L)q. However, that M(X) then
has the universal property of Proposition 1.2 is not immediately obvious, and
a proof would involve much the same circle of ideas as Propositions 1.2 and 1.3.

(2) From the linking algebra point of view, the nondegenerate imprimitivity-
bimodule homomorphisms are in one-to-one correspondence with certain non-

A X
degenerate homomorphisms on L = < e B>’ as follows. Suppose (? 4, Dy, Pp):
4Xg = M(cYp), let K be the linking algebra of Y, and define @, : L - M(K) by
& <a X) _ <¢A(a) d’x(x))
b)) @b/
It is easy to check that @, is then a nondegenerate homomorphism. Conversely,
given such a homomorphism @, satisfying @,(p4) = pc, ?(qs) = qp, the triple

-0 0 - 00
<PC¢L<0 O>PC,PC¢L<O 0)‘10, QD¢L(O _>QD>
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is a nondegenerate imprimitivity-bimodule homomorphism. Thus we could
alternatively prove Proposition 1.8 by extending @, to a strictly continuous
homomorphism &, : M(L) - M(K), and applying Proposition A.1 to recover &y
as the compression of @, to the top right-hand corner M(X) in M(L).

(3) There is a similar one-to-one correspondence between the representations
T = (n,, Ty, ng) of ,Xpon (), 4) and the representations n, of L on # ® A,

given by
. <a x> B ( n4(a) nx(x)>
g y b B nx(y)* mgb)/)

Thus one could obtain Corollary 2.3 by applying the usual Gelfand-Naimark
Theorem to L.

(4) Two systems (4, d ), (B, 6g) are Morita equivalent if and only if there is an
A-B imprimitivity bimodule X and a coaction ¢, of G on the linking algebra
L which compresses to the given coactions d 4, 5 on the corners. (To verify this
statement, one has to unravel a few hidden identifications, which are legitimate
by Proposition A.1.) One can then identify A x;, G, B x;,G and X x;, G with
the corresponding corners in the crossed product L x5, G: to do this, represent
4Xgon(H#,A),L ® C*G)on(# @ A)® I*(G),and use the characterisation of
the crossed product assp {d.())(1 ® M,)}. This approach would be closer in spirit
to that of Baaj-Skandalis; we have preferred to work with X rather than L, partly
because it is X rather than L which arises in applications, and partly because it
minimises the number of identifications one has to make.
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