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ON EXCEPTIONAL SETS FOR SUPERHARMONIC
FUNCTIONS IN A HALFSPACE: AN INVERSE PROBLEM

VLADIMIR EIDERMAN* and MATTS ESSEN

1. Introduction.

The problem of the present paper can be stated in the following way: assume that
the set where a potential is large is known to be “small”. Can we say anything
about the Riesz mass?

This is of course far too general. Let us consider D = {xeRP:x, > 0} where
X = (xy,...,Xp)and p = 2. We shall discuss superharmonic functions of the form
u = Pv + Gpu, where Pv is the Poisson integral of a measure v on the (euclidean)
boundary 0D of D and Gu is the Green potential of a measure y on D: we assume
that these integrals are convergent. It is known that

(Pv(x) + Gu(x))/xy =0, x = o0 in D, xe D\E,
(Pv(x) + Gu(x))/|x] = 0, x = o0 in D, x € D\F,

where the exceptional set E is minimally thin at infinity in D (cf. [13]) and the
exceptional set F is rarefied at infinity in D (cf. [7]).

If B0, 1] is given, we define S; to be the class of positive superharmonic
functions u = Pv + Gu in D which are such that

j(l + )PP dv(y) + j(l + )Py du(y) < oo,

ép D

(cf. [7, Definition 4.1]).
It follows from the convergence of the integrals in the representation

u = Pv + Gu of u that ue S,. We quote the following result from [7, Theorem
4.7]:

THEOREM A. Let fe[0,1] be given and assume that D = R?. If ue Sy, there
exists a set E = D which is rarefied or minimally thin at infinity in D such that
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lim u(x)/|x|® = 0, x - o0, xe D\E,
lim u(x)/(x;]|x|? ") = 0, x » o0, xe D\E,

respectively.

Conversely, this result is best possible in the sense that if E is rarefied or minimally
thin at infinity in D, then there exists ue Sy such that E is contained in the
exceptional set for u.

We wish to discuss the following problem: let u be given and assume that the set
{xeD:u(x) > |x|’} or the set {xeD:u(x) > x, |x|® ~'} is rarefied or minimally
thin at infinity in D. Does it follow that ue S;?

The answer is known to be affirmative for rarefied sets in one special case: if
p =2, =0and u = Gu where u is a sum of point masses (cf. J. S. Hwang [11,
Lemma 1]).

In his proof, J. S. Hwang uses the following fact:

There exists a sequence {R,} such that lim,_, R,/2" = 1 and such that the
rarefied set does not intersect the circle {|x| = R,} for any n.

ReMARK 1.1. This statement is not true for minimally thin sets, neither for
rarefied sets in the case p = 3. However, we shall prove a weaker statement (cf.
Lemmas 4.2 and 4.3) which we can use in the proof in the general case.

2. The main results.

THEOREM 2.1. Let f€[0,1) be g‘iven and let ue S, be of the formu = Pv + Gu. We
assume that there exists a set Eq = D which is minimally thin at infinity in D and
which is such that y(D\Eo) = 0. Then the set {x € D : u(x) > x, |x|* '} is minimally
thin at infinity in D if and only if u€ S;.

The analogous result in the rarefied case is different. To explain the difference,
we mention that if @ < RP is an open set such that 6D < O, then O N D is not
rarefied at infinity. At the same time, the set {xe D:0 < x; < 1} is minimally thin
at infinity in D.

THEOREM 2.2. Let Be[0, 1) and let u = Pv + GueS,. Suppose that there exist
sets Ey = D and F, = 0D which are such that W(D\E,) = 0, 0D\ F,) = 0, E,, is
rarefied at infinity in D, and furthermore that

f(l + |y Pdy < co.
Fo

Then the set {x € D:u(x) > |x|*} is rarefied at infinity in D if and only if ue S;.

For examples showing that our conditions on the sets of concentration of the
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measures are best possible, we refer to Section 7. In the case of general distribu-
tions of mass, the conclusions of Theorems 2.1 and 2.2 need no longer be true. As
an example, let us take the superharmonic functions h(x) = x,|x/*~* and
u = 3(h + v) where ve S;. The set {u > h} = {v > h} is minimally thin at infinity
in D (cf. Theorem A), but the set {u > $h} = D is not minimally thin at infinity in
D and u¢S,.

For a discussion of the general case where there are no restrictions on the
supports of the measures, we refer to Section 8.

In the proofs of Theorems 2.1 and 2.2, we consider first two special cases which
we state as

THEOREM 2.3. Let u and f be as in Theorems 2.1 or 2.2 and assume furthermore
that the measures v and p are sums of point masses. We can then conclude that

i) the set {xeD:u(x) > x,|x|f ™'} is minimally thin at infinity if and only if
ueSg;

ii) the set {x €D :u(x) > |x|’} is rarefied at infinity if and only if ue S.

COROLLARY 2.1. Let u and f8 be as in Theorem 2.3. Then

i) ueS; if and only if the set {xeD:u(x)> cx,|x|’ "'} is minimally thin at
infinity for some ¢ > 0.

il) ueS;if and only if the set {x € D:u(x) > c|x|*} is rarefied at infinity in D for
some ¢ > 0.

REMARK 2.1. In the corollary, we can replace “some” by “every”. It follows
that if the set {x € D:u(x) > c|x|*} is rarefied at infinity for some ¢ > 0, then such
sets will be rarefied at infinity for all ¢ > 0.

There is a similar remark for minimally thin sets.

REMARK 2.2. It is possible to generalize our results to functions superhar-
monic in cones in R?, p 2 2. The machinery which we need here can be found in
Ronkin [14]. The class analogous to our class S, is defined by formulas (49) and
(50) in [14, p. 68].

The crucial property of potentials of point masses is that for all ¢ > 0, there is
no Riesz mass in the complements of the sets {xeD:u(x) > cx;|x|* "'} and
{xe D:u(x) > c|x|*} with respect to D.

As corollaries, we obtain certain results on the logarithms of moduli of
H>-functions in the unit disc U. When p = 2, we map D conformally onto U. As
a normalization we assume that the point at infinity in D is mapped onto the
point z = 1. This means that we work with the mapping z = (w — 1)/(w + 1),
where w denotes the variable in the D-plane.

Since minimal thinness is defined in terms of minimal harmonic functions (cf.
[3, p. 397] or [6, Section 0]), this concept is conformally invariant. There is no
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such analogue for rarefiedness. Therefore, we shall define a set S = U to be
rarefiedly thin (or rarefied) at 1 € U if the image w(S) is rarefied at infinity in D.
We say that a function f has the rarefied fine limit g at 1 if there is a set S < U
which is rarefied at 1 such that f(z) —» a whenever z — 1 and ze U\S.

It is well known that if fe H*(U) with || f|, < 1, we have the representation
formula

2.1) log|f(z)l = —(Gomo(2) + Povo(2)),

where Gopu, is a Green potential of a measure o on U and Pyv, is the Poisson
integral of a measure v, on dU. Furthermore, y, is the sum of unit masses at
points {z,} in D which are such that ) (1 — |z,|) < oo (cf. [5, Ch. 2]).

Mapping U onto the right half-plane with z = 1 going to w = oo, we see that

2.2) —log|f((w — D/(w + 1))l = Pv(w) + Gu(w) + aw,

where dvy(e'®) = |1 — %2 dw(iv)/2, 0 % 0 (the boundary correspondence is given
by v = cot(6/2) and we have dugy(z) = du(w)). Thus the superharmonic function
defined by (2.2) will be in S5, 0 < f < 1, if and only if « = 0 and

2.3) j(sin(()/Z))’“'l dvo(€®) + Y. (1 — |z,))|1 — z,)f 7! < 0.

We obtain the following two corollaries.

COROLLARY 2.2. Let Be€[0,1) and let f e H*(U) satisfy (2.1). We assume that
there exists a set Fy < U such that vo(0U\F,) = 0 and that [, d0/|0] < co. Then

the function |1 — z|#log|f(z)| has the rarefied fine limit O at 1 if and only if (2.3)
holds.

REMARK 2.3. The case f = Oisdueto J. S. Hwang (cf. [11, Theorem 2]) for the
case when f is a Blaschke product. In this situation, condition (2.3) is reduced to
Z(l - Iznl)ll - anml < 00,
which is a classical condition considered by Frostman (cf. [4, Theorem 2.137; cf.

also [6, Section 6]).

We say that a function g has the minimal fine limit a at 1 if there exists
a minimally thin set S = U such that g(z) - a whenever z —» 1 in U and ze U\S.

COROLLARY 2.3. Let B€[0,1)and let f e H*(U) satisfy (2.1). Then the function
(1 —|z))"*[1 — zI** Y log | f(2)| has the minimal fine limit O at 1 if and only if (2.3)
holds.

These corollaries are immediate consequences of Theorems 2.2 and 2.1.
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3. Basic properties of rarefied and minimally thin sets.

Given E < D, suppose there exists a measure 4 = Az whose Green potential is
Gig = Iifl, where ﬁfl is the regularized reduced function of x; on E with respect
to the cone of positive superharmonic functions on D. We call A the fundamental
distribution on E. We define y(E) = jGiE(x) dAg(x) = [ x, dAg(x) and call y(E) the
Green energy of E (cf. [13, p. 129], [7, p. 237]).

Suppose that there exist measures v, and u; on dD and D, respectively, which
are such that

Ri(x) = JP(x, ydvi(y) + JG(x,y) dpy(y)-
oD D

The Green mass of E is defined as A'(E) = v,(0D) + [y, duy(y) (cf. [7, p. 239]).
These two set functions are first defined for compact sets and then extended to
capacities defined for general sets in a standard way (cf. [ 7, p. 243]). They are both
monotone and countably subadditive. Furthermore, we have A(E) = A'(E) for
any set E = D (cf. [7, Lemma 2.5]).
Let E™ be the intersection of E and the half-annulus {xe D U dD:4" < |x| <
4"* 1} Then the set E is minimally thin at infinity in D if and only if (cf. [13])

3.1 Y P(E™47" < oo
1
A set E is rarefied at infinity if and only if (cf. [7])
(3.2) Y A(E™)r =P =% (EM)4" P < oo,
1 1

REMARK 3.1. i) In (3.1) and (3.2) we work with powers of 4 to define our
annuli. We could just as well considered annuli {a" < |x| < a"*'} for anya > 1:
the definitions are independent of what a we would like to use.

ii) The basic definitions and results on rarefied and minimally thin sets do not
depend on the general assumption in [7] that the dimension p is at least 3:
everything is correct also in the case p = 2.

4. Three lemmas.

LEMMA 4.1. Let u be harmonic and positive in a half-ball {x € R?:|x| < 4} N D and
vanishing on 0D. If there exists y € D such that |y| £ 3 and u(y) < y,, then there
exists a constant C), such that

4.1 ux) < C,x;, xeD, |x]£2.
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The proof is an elementary consequence of Poisson’s formula for a half-ball
and is omitted.

After having decomposed u = Pv + Gu into two superharmonic functions, we
shall use the following two lemmas to construct spheres with large radii which do
not intersect the exceptional sets for these two functions.

In the sequel we denote by c, constants, which depend only on the dimension
p and which may be different from line to line.

Let X, = {xeRP:4" < |x| <4"*'}, n=1,2,.... If X = | T X,,, we consider
Vi = V|x, 4y = ptlx and u; = Pv; + Gu,.

LEMMA 4.2. Assume that Be[0, 1) and that the set {xeD:u(x) > x, |x|/ "'} is
minimally thin at infinity. Then there exists a constant c, > 1 such that

{xeD:uy(x) > c,x; IxIP '} {|x| =2-4*"*1} =0
Sor all sufficiently large values of n.

ProOOF. The set E = {xe€D:u,(x) > x, |x|* "'} is minimally thin at infinity in
D. Thus we can cover E by balls {B,} such that ) (r,/R,)? < o0, where ry is the
radius of B, and R, is the distance from the centre of B, to the origin (cf. [8,
Corollary 3, p. 397]).

If ¢ > 0 is given, there exists N such that we have

(4.2) Y (/R <,

where we sum over all indices k such that B, N (| ),>~X,) + 0.

We wish to cover the half-sphere H, = D n {|x| = 2-4?"*!} by a finite number
of balls of radius at least 42"~ 2, The balls must be chosen in such a way that u, is
harmonic in the intersection of the doubled balls and D.

Let us first cover that part of H, which is near D by finitely many balls { B, } of
radius 42" and with centres on 0D N H,. Let Be {B;},let x5 € 3D be the centre of B.
Furthermore, if ¢ > 0 and n > N, it follows from (4.2) that B is not covered by
(UB.. Thus, there exists ye B such that u;(y) £ y, [y 7! £ y, 42" DF~D, Ac-
cording to Lemma 4.1, we have

uy(x) £ C,px 42" V6D < ¢ xyIx)P 71, xeB.
It follows that
4.3) uy(x) < ¢pxy [xI*~1, xeuUB,.

The next step is to cover the rest of H, by finitely many balls of radius 42"~ !
with centres on H,. The same argument as above shows that for all large n, there
exists in each one of these balls a point y with u,(y) < y, |y|# ~*. Since the doubles
of all these balls are contained in X,,,, where u, is harmonic, it follows from
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Harnack’s inequality that we have u,(x) < c,x, |x|’ ~! in the union of all these
balls and thus on H,. This concludes the proof of Lemma 4.2.

LEMMA 4.3. Assume that Be [0, 1) and that the set {x € D : u(x) > |x|*} is rarefied
at infinity in D. Then there exists a constant c, such that we have

{(xeD:u,(x) 2 ¢, IxP} n{Ix| =2-4"*1} =9
Sor all sufficiently large values of n.

PrROOF. The set E = {xeD:u,(x) 2 |x|’} is rarefied at infinity in D (cf. [7,
Theorem 4.6]). Thus there exists a covering of E by balls {B,} such that
Y. (ri/RyP ™' < oo (cf. [1] and [8, p. 397]; we use the notations as in the proof of
Lemma 4.2.). Consequently, we have also ) (r,/R,)’ < oo, and we can use the
same method as in the proof of Lemma 4.2.

Let Be{B;}, and consider the ball B* = {|x — (xz + 4*"71(2,0,...,0)| <
4"~ 1} < B, where xp is the centre of B. It is clear that for sufficiently large n the
ball B* is not covered by UBk. Hence, there exists ye B* such that
u;(y) < IyP < ¢y Iyl? 7. The rest of the proof is the same as in the proof of
Lemma 4.2.

REMARK 4.1. When p = 2, the argument can be simplified. In this case a set
Erarefied at infinity in D can be covered by discs { B, } such that » r,/R, < co.Itis
now easy to see that there exists sequence {R,} increasing to infinity such that
lim R,/4" = 1 and such that E does not intersect the circle {|x| = R,} for any n.

5. Proof of Theorem 2.3.

With {X,} and X as in Section 4, we also define X' = ()& X2,+,. We write
u = u, + u,, where u, is the function associated with the measures v; = v|x and
Ui = u|x and u, = u — uy: here the corresponding measures are v, = v|x- and
t2 = plx

Let us first prove Theorem 2.3 ii). The two sets {u,(x) > |x|*} and {u,(x) > |x|*}
are rarefied at infinity in D. From now on, we discuss u; = Pv; + Gu,: the details
in the proof are similar in the discussion of uj,.

Let ¢, > 1 be the constant in Lemma 4.3. We consider the two rarefied and
relatively open sets E = {xeD:Pv,(x) > ¢,|x|’} and F = {xeD:Gpu,(x)>
¢, |x|*}. According to Lemma 4.3, they can for large n be divided into disjoint
subsets

E,=En{2:47 ' <|x £2-47*1),
F,=Fn{2:4" 1 <|x] £2-471,

which are such that Pv,(x) = ¢, |x|’ on 8E, n D and Gu,(x) = ¢, |x|* on 0F, n D.
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Let us first discuss {F,}. Since u, is discrete, Gu, is infinite on the set of
concentration of u; and thus g, is concentrated on the open set F. From Lemma
4.3, we see that F, is also open. If 4, is the fundamental distribution on F,, we have
Gl,(x) = x, on F, and 4, is concentrated on 0F, n D. It follows that

fxx dpy(x) = f GAn(x) dpy(x) = f Guy(x) dAn(x)

Fn D OFnnD

= j ¢, |xIP dA,(x) < c4*"},(OF, N D) = c4*"},(D).
OFnnD

Let F = | > yF,, where N is so large that Lemma 4.3 holds for n 2 N. Our
estimate above implies that

(5.1) Jxl(l + XD PP duy(x) S ¢ ¥ AD)A P < oo,
n=N
Fo

The last sum is finite since Fj is rarefied at infinity in D (cf. (3.2)). Since Gu, is
harmonic outside F, we have proved that Gu, €5j.

It remains to study {E, }. Let A? be the fundamental distribution on E,. Since E,,
is relatively open in D, we know that (supp A%) n D = 0E, n D and that A? has no
mass on dD.

Let f = Pv,. We claim that Ri = f. To see this, let v be a nonnegative
superharmonic function in D which dominates f on E. Our claim will follow if we
can prove that v dominates f on D. Using that v, is a sum of point masses, we
define f; to be the Poisson integral of the first j masses. Since » dominates f on E,
vdominates the smaller function fj on the smaller set 4; = {xeD: fj(x) 2 ¢, |x|*}.
Furthermore, f; vanishes on 0D\0A;. Hence v — f; is a nonnegative superhar-
monic function on D (cf. [10, p. 232]). Letting j — oo, we conclude that v — f'is
also nonnegative on D which finishes this part of the proof.

Let B be the set of points on D where E is not minimally thin. Since Rf = fiit
follows that v,(0D\Bg) = 0 (cf. [2, p. 129]). Furthermore, it follows from [7,
Lemma 2.3] that

P*(x):= ¢, jyl Ix —y7PdA(y) =1, xeBgnE,.

D

Let v, be the restriction of v, to E,. Using the two facts above and that (supp
v,) € 8D n E, we deduce that v,(0D) = v,(Bg n E,) and

va(0D) = JP*l,?(y)dh(y) = J Pvy(x)d27(x) < ¢,4*"2)(D).

oD D
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Let Eq = ()22 vE, N Bg, where N is so large that Lemma 4.3 holds for n = N.
Using the estimate of v,(0D) and our assumption that E is rarefied at infinity in D,
we deduce

X

A+ )P Pdvi(y) £ cp Z lg(D)42"(l—p) < 0.
n=N
Eo

Hence Pv, €S, and we have proved Theorem 2.3 ii).

The proof of Theorem 2.3 i) is similar. After having separated the Riesz masses
in the even and the odd annuli, we define the sets E = {xeD:Pv,(x) >
¢pxy |x[?71} and F = {xeD:Gpu,(x) > c,x, |x|*~'}. We divide the sets into dis-
joint subsets {E,} and {F,}, each one of these associated with an annulus
containing|x| = 42". Then the sets {F,} can be handled in exactly the same way as
before.

Let 4, be the fundamental distribution on E,. Arguing in the same way asin the
proof of Theorem 2.3 ii), we deduce that

va(@D) < J P*7,(y)dvy(y) = ijx(x) dA,(x) £ c,4*"F~Dy(E,).
oD D

Since E is minimally thin at infinity in D, we know that (3.1) holds. It is now easy
to prove that v, € S,.

6. Proof of Theorems 2.1 and 2.2.
In the proof of Theorems 2.1 and 2.2, it is convenient to introduce the kernel

G(y, x)/y1, on D xD
cpX1lx —y|”P, on 0D x D,

K(y,x) = {

where ¢, = 2(p — 2), p > 2; ¢, = 2. We note that if xe D, then K(-, x) is continu-
ous D\{x}. We write our superharmonic function in the form

u(x) = Pv(x) + Gu(x) = j K(y, x)dn(y) = Kn(x),

D

where

dn(y) = y1du(y), yeD,
dn(y) = dv(y),  yedD

(cf. [7, Section 2]).
We shall say that two positive real valued functions f and g are comparable
and write f ~ g if there exist positive constants A < B such that Ag < f < Bg.
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Let us first prove Theorem 2.1. We assume that the sets E = {xe D:u(x) >
x; |x|#~'} and E, are minimally thin at infinity in D. From the subadditivity of
the Green energy [7, Lemma 2.1] and the definition of minimal thinness [7,
Definition 3.1], it follows that the set £:= EU Equ {xeD:0 < x; < 1} is also
minimally thin at infinity in D. Then there exists an open set ¢ = D such that
0 > & and O is minimally thin at infinity in D [7, Lemma 2.1]. For every
ye0 udD, we select a ball B, with centre y and radius r(y) < 1 such that
B,nD c 0. 1t is clear that O U dD < UB,. According to Besicovitch-Ahlfors-
Landkof’s lemma (see [9, p. 2-6; 12, p. 197]), there exists a countable subfamily of
balls {B, } such that O U dD < u;B,, and every ye ¢ U dD belongs to at most
N(p) balls B,, where N(p) depends only on the dimension p. We need the
inequality

(61) K(y’ X) g CIK(yi, X), XED\Byi, yE B-y‘ N D-9 €y = Cl(p)'

The proof will be given at the end of this section.

Atevery point y;, we place the point mass n(B,,) which is nonnegative (we might
have 5(B,)=0). Let n, be the sum of all these point masses and let
uy(x) = Kn,(x). If x e D\0, then

u(x) = f K(y,x)dn(y) 2 N(p)~ ' X JK(y, x)dn(y)

D By;
2 N(p) "1 ¥ KO x0n(B,,) = 2t (x),

where ¢, = ¢,(p) = ¢;/N(p). It follows that
us(x) S u(x)/c, < c;'x IxIP7, xeD\O.
Hence
{xeD:uy(x) > c; 'xy IxP 1} < 0.

Since ¢ is minimally thin at infinity in D, we can apply Corollary 2.1 to deduce
that u; € Sy and thus that ue S;. Here we use that by assumption, u(D\ ) = 0.
Therefore, no mass is lost when we go from # to 7,.

In the opposite direction, Theorem 2.1 follows from Theorem A.

To prove Theorem 2.2, we assume that the sets E = {xe D:u(x) > |x|’} and E,
are rarefied at infinity in D. Since the set £, = E U E, is rarefied at infinity in D,
there exists an open set (¢O; < D such that &, = ¢, and 0, is also rarefied at
infinity in D [7, Lemma 2.4]. Let 0, be a relatively open subset of 0D such that
Fy < 0, and
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J‘(l + |y Pdy < .

02

For every ye 0, u 0,, we select a ball B, with centre y and radius r(y) < 1 such
that B, < 0y, ye ¢y, and B,n 0D < 0O,, ye ¢,. Again, we apply the lemma of
Besicovitch, Ahlfors and Landkof and obtain a family of balls {B, } such that
0,0 0, = u;B, and every ye O, U O, belongs to at most N(p) balls B, . We see
that

> )yl ~ j(l + 1) Pdy < oo,

y:€02
(43

and that the set 03 = {({JB,) N D:y;e0,} is rarefied at infinity in D (cf. [7,
Theorem 1.1]). Let @ = O, U O5. Then O is rarefied at infinity in D. By assump-
tion, w(D\0O) = v(0D\ ) = 0. The rest of the argument is the same one as in the
proof of Theorem 2.1.

It remains to prove (6.1). Assuming that xe D\B, and ye B, n D, we see that
ly = x| £y — yil + lyi — x| £ 2|y; — x|. Let x" be the reflection of x in the plane
{x,; = 0}. Wenotethat|x' — y| £ 2|x' — y;|. If p > 2and x = (x4, x,,...,X,), then

Ky, x) & x X' =y 72 x = y1> 7P 2 e3(@)xy X' — yil 2 |x — pil* 77 = K(i, %).
If p =2 and y; is the first coordinate of y, then
1 4x1y4 ) 1 X1Y1
———10g<1 + ——2—log|l1+ —)],y1 >0,
K(y,x) = { 2y, =)= 2 -yl )"
2xq |x — ,VIVZ,)H =0.
Let yi= (y“,. ..,ypi). IfO < 1 < Zr(yl) = 2r1, then

X1J1 < 2(xy = yul + yu)r <2 x =yl + (s + 1) §2<1 +i>= 8.
lyi — x| lyi — x|r lyi — x| r

Hence, for y; > 0,
K(p,x) Z caxylys — xI7% > s K(yi, %),

where ¢5 is an absolute constant.
If y, > 2r, then y, ~ y,; and

X
~—y|2—> ~ K(yi, ).

1
K(y,x) = —log| 1 +
0.%) 2y, g( [x — yi
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Since K(-,x) is continuous on D, (6.1) holds also in the remaining cases when
yir=0o0ry;=0.

7. Examples.

To show that our results are best possible, we construct examples using the
theory in [7, Section 4]. If s > 1 is fixed, we define I, = {xeD:s" < |x| < s"*'}.

PROPOSITION 7.1. Let [0, 1) be given and assume that the set E is not rarefied
(or minimally thin) at infinity in D. Then there exists a measure n in D such that
suppn < E,u = KneS, and

Ix| "Pu(x) >0 (or x; ' |x|' Pu(x) > 0) asx— o inD,
but u¢S;.

PROOF. Let hy be the Poisson integral in D with boundary values |x|’ and let
r = |x|. It is easy to see that hy(x) = |x|® in D. Thus there exists a positive constant

such that RE < Const. hy for any set E < D. In particular we must have R e S,
(cf. [7, Remark 4.2]). Let the measure y, be defined by

RE = f K(y, ) duo(y).

D

Since E is not rarefied at infinity in D, we have
Y polL)sT"PTETY = o0
n

(cf. [7, Theorem 4.4]). We find a sequence of positive numbers {¢,} in (0, 1)
tending to zero such that

S eutolF)s "0 = o,

If u, is the restriction of y, to I,, we definen = Y &,u, and u(x) = Kn(x). Since we
n=1

know that Rf,,eS 1, it is clear that we have also ue S;.
Furthermore, we have

N
u(x) £ Y e, JK(y, x) dpn(y) + € Const. hy(x)
1
D

assuming that ¢, < ¢ for n > N. Consequently,
lim sup |x| "Pu(x) < Const. ¢,

and we conclude that |x| ~#u(x) —» 0 as x — co. It is also clear that u¢ S;.
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In the minimally thin case, the same argument works, if we replace [ 7, Theorem
4.4] by [7, Theorem 4.5] and hg by x; |x|* ! which is a positive superharmonic
function in D.

PROPOSITION 7.2. Let Fy < 0D be a closed set such that [ (1 + |y))* ""dy = 0.
Then there exists a measure v on dD with suppv < F, such that u = PveS;,
IX| " Pu(x) = 0 as |x| > o0 but ué S,.

PrROOF. Let T, = {x€dD:2" ' < |x| < 2"} and let M, be the (p — 1)-dimen-
sional measure of T, N Fy. Our condition on F, can equivalently be written
Y aM,2"1 7P = oo, Again, we find a sequence {¢,} in (0, 1) tending to zero such
that

(7.1) Y £,M, 2" P = oo,

We define a measure v on 0D as dv = fdo, where g is (p — 1)-dimensional
measure on dD and

f = Z gnzﬂ")(n,n T,

(xr,~, is the characteristic function of the set Fon T,). It is clear that
suppv < F,.

If u = Pv, we note that u < Const. hg. Hence we have ue S, (cf. [7, Remark
4.21]). Arguing as in the proof of Proposition 7.1, we see that if ¢, < eforn > N,
then

N
u(x) £ Y &.2""Pyr, ~r,(x) + & Const. hy(x).
1

It follows that |x| Pu(x) - 0 as x — oo. It is clear from (7.1) that u ¢ S;.
From Propositions 7.1 and 7.2, we conclude that the conditions on the
measures x4 and v in Theorems 2.1 and 2.2 are best possible.

8. Measures with arbitrary sets of concentration.

Let fe[0,1) be given and let ue S, be of the form u = Pv + Gu = Ky. We
consider sets of the form E, = {xe D:u(x) > cx, |x| "'} (E. is a set of the same
type as the set E used in Section 5; we forget here the notation E, used in Section
5).

PROPOSITION 8.1. Assume that the set E, is minimally thin at infinity in D. Then
ueS;,, foreach e > 0.

PrOOF. We consider the superharmonic function w(x) = min {u(x), x, |x|* ~'}.
Wehave w = uin D\E,. Itis easy to see that w < hyin D. Since hye Sy, for each
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¢ > 0, we have also we Sy, foreach ¢ > 0 (cf. [7, pp. 250-251]). This means that
we can control the size of the mass 1 in D\E,.

It remains to estimate the size of the remaining part of n. Let u, be the
restriction of u to E;. If ug = Pv + Guy = Kn,, it is clear that

E':={xeD:ug(x) > x{|x|f '} c E,.

Since E, is minimally thin at infinity in D, u, satisfies the assumptions of Theorem
2.1: we know that uo(D\E,) = 0. Applying Theorem 2.1, we see that uy e S;.
Hence, we can control the size of the mass 5 also in D U E,, and Proposition 8.1
is proved.

In our next result, we consider sets of the type F, = {xe D:u(x) > c|x|/}.

PROPOSITION 8.2. Assume that the set Fy is rarefied at infinity in D. Then
ueSg., for eache > 0.

PrOOF. We consider the superharmonic functions v = RE' and w=
min(u,v + hg). In D\F, we have u < |x|® < v + hy. It follows that w = uin D\F,.
Again,w < Const. hgin D with hge Sy, foreache > 0and we musthave we S,
for each ¢ > 0.

Since F, is rarefied at infinity in D, we know according to a result of V. Azarin
(cf. [8, p. 397]) that F, can be covered by a union of balls {B; = B(x"), r;)} such
that

(8.1 Z(ri/Ri)p‘l < 00,

where R; = |x?].

Let ¢ be the orthogonal projection of | B; onto dD. Let u, be the restriction of
uto Fy and let v, be the restriction of vto 0. If u; = u — po and vy = v — vy, we
define uy = Pvy + Guo and uy, = Pvy + Gpu,. Since u = ug + u; < ug + w, it
remains to study u,. It is clear that

{xeD:uo(x) > xlf} < F,
where F; is rarefied at infinity in D. Since p, is concentrated on F; and v, is

concentrated on ¢ which according to (8.1) satisfies the condition

j(l + |x)! "Pdx < oo,
o

we can apply Theorem 2.2 and conclude that u, e S;. We have proved Proposi-
tion 8.2.

What can we say about the mass # if we assume that the set
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E. = {xeD:u(x) > cx,|x|’ '} is minimally thin at infinity in D for all ¢ > 0? Let
m(-) be Lebesgue measure in RP and let n(r) = n(B(r)), where B(r)=
{xeRP:|x| < r}.

PROPOSITION 8.3. Let ueS; and assume that E_ is minimally thin at infinity in
D for all ¢ > 0. Then

(8.2) nr)(1 +r'?%50, r—oo.
We note that if E_ is minimally thin at infinity in D, then

lim m(E.~ B(r))r ? =0
(cf. [8, Corollary 3]). Thus Proposition 8.3 is a direct consequence of
LEMMA 8.1. Let ueS, and assume that
(8.3) limsupn(r)(1 +r) ?7%>0.
Then there exists a constant ¢ > 0 and a set E < D such that
i) u(x) >cx, |x* 71, xeE,
i) limsup m(E n B(r))r "7 > 0.

r—oo

PROOF. Let n; = n(2'*1) — n(2Y). It is easy to see that (8.3) holds if and only if

limsupn(l +29)777% > 0.

Hence there exists a subsequence {i;} and a positive number d such that
m(l+29'7PF>d>0, j=12,...

IfxeX; = {xeD:29*? < |x| < 24*3}, then

u(x) = Kn(x) ~ JIX’ — Y172 — y1* " Pxy dn(y) > C'x127pij’7ij 2 exy Ix)P7,

D

where the positive constants ¢’ and ¢ depend only on p and d. Now define E by
E = u;X; . We have proved Lemma 8.1 and also Proposition 8.3.

Our next example shows that even if the set {xeD:u(x) > cx, x| "'} is
bounded for every ¢ > 0, we can not prove anything stronger then (8.2).

PRrROPOSITION 8.4. Let B [0, 1) be given and let ny(r) be a nondecreasing function
such that no(r)(1 + r)! "?=# > 0 asr — oo. Then there exists a measure p in D such
that Gue S, and
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) [ yiduy) = ne(r),

B(r)
i) x; x| PGu(x) —» 0 as |x| — oo.

PrROOF. Let V= {xeD:2x; > |x|, 2'"! < |x| < 2'}. Let u be the measure
supported by {xeD:2x, = |x|} which has constant density d; = (no(2") —
no(2 " 1))274?* D on V. It is not difficult to verify that all conditions of Proposi-
tion 8.4 are satisfied.

There are similar results for rarefied sets. We omit the details.
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