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SELECTION FROM UPPER SEMI-CONTINUOUS
COMPACT-VALUED MAPPINGS

MOGENS FOSGERAU!

Abstract.

The aim of this paper is to show that if axiom M (or the continuum hypothesis) is assumed, then every
upper semi-continuous compact-valued map from the space of irrationals to a compact (not
necessarily metric) space has a selection, which is measurable in the sense that pre-images of Baire
measurable sets are universally measurable. The methods used will yield generalizations and easier
proofs of well-known theorems, namely of a selection theorem by Sion [1], and a representation
theorem by loffe [3].

0. Introduction.

It was conjectured by Jorgen Hoffmann-Jorgensen that all upper semi-continu-
ous compact-valued maps of the irrationals into a compact Hausdorff space, K,
have a selection, which is measurable in the sense that pre-images of Baire sets are
universally measurable. A result of this kind would have implications in asym-
ptotic likelihood theory and in the theory for continuity of stochastic processes.
This note shows that such selections indeed do exist, if a special axiom called
axiom M is assumed. Axiom M says that, on the unit interval with the Lebesgue
measure, the union of strictly less than continuum many Lebesgue null-sets is
a Lebesgue null-set. Axiom M is clearly implied by the continuum hypothesis and
also by Martin’s axiom, see [5]. First, a general characterisation of minimal
usco-maps is given, showing that images of hereditarily separable spaces by such
maps are separable. Next, a number of selection results are proved, using
amethod which is a modfication of that used by Sion in [ 1], leading to the answer
to the original question. Among these results is a generalisation of Sion’s
selection result for set-valued maps with a simpler proof. Finally, a new proof of
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a representation theorem for set-valued maps by loffe in [3] is given. Again, the
new proof is simpler than Ioffe’s and allows a more general conclusion.

1. Definitions.

All spaces used here will be assumed to be Hausdorff. A usco-map ¢ of X into Y is
a set-valued correspondance which is upper semi-continuous and com-
pact-valued. For a set-valued correspondance we define the kernel:
ker ¢ = {x: ¢(x) % 0}; if ¢ is a usco-map then ker ¢ is closed. The space of all
usco-maps of X into Y is given a partial order as follows: i < ¢ if (x)is a subset
of ¢(x) for all xe X and ker y = ker ¢p. A usco-map is said to be minimal if it is
minimal in this partial ordering. A selection from a set-valued correspondance,
¢: X - Y, is a function, f: ker ¢ — Y such that f(x) e ¢(x) for all xeker ¢. For
set-valued correspondances we employ the notation ¢ ~5(4) = {x: ¢(x) = 4} and
¢ = {x: ()N A + 8.

A function f: X — Y is .«/ — % measurable if f ~'(B)e </ for all Be Z. If f is
only partially defined f: D — Y, where D < X, then f is &/ — % measurable if
D~ f~Y(B)e of p, where o7, is the trace of .7 on D. On any space, X, the families
of sets #(X), 4(X), Bo(X), Ba(X) and A u(X) are the families of closed, open,
Borel, Baire and universally measurable subsets of X, respectively. A subset of
X is universally measurable if it is measurable with respect to any o-finite Radon
measure on X.

The space of irrationals will be identified with NN equipped with the product
topology. A space is said to be K-analytic if it is the image of NN by a usco-map.
A Souslin scheme is a map, 4, of N ‘the set of all finite sequences of integers, into
2% the set of subsets of X. Performing the Souslin-operation on A yields the set

SA4)= U ) A|n).
oeNN neN
The paving S(# (X)) consists of all subsets of X on the form S(4) where 4 is
a closed-valued Souslin scheme. We denote by Zi(X) the o-algebra
S(F (X)) n CS(# (X)) of biSouslin-sets. The paving &,(X) is the least g-algebra
containing S(Z (X)).

A pair consisting of a space, X, and a g-algebra, «, on X is said to be Blackwell

if

ker A = {a: (\A(e|n) + @}ES(Q(NN))

for all .«/-valued Souslin-schemes, 4. The pair (X, /) is Blackwell with the
selection property if it is Blackwell and, for all .«7-valued Souslin schemes, there
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exists a .#u(NV)— .o/ measurable selection from the correspondance
o — ) Ala|n).

The weight of a space is the least cardinal, 7, such that the space has a base of
cardinality 7. A space, X, is said to be injective if there exists a universally
measurable injection of X into the real line. If A is a subset of a space X, then A is
the complement of 4 in X.

2. Minimal usco-maps.

The main result of this section is Proposition 2, which gives a necessary and
sufficient condition for a usco-map to be minimal. We start with a little lemma.

LeEMMA 1. For ausco-map ¢: X — Y and anopen set G < Y define for each xe X

P(\G, if xeint(p™"(G) L ker ¢°),
P(x), if xecl(¢pY(G) N ker §).

Then ¢(G) is usco and P(G) £ ¢.

P(G)(x) = {

PRrROOF. Let F be a closed subset of Y, then
P(G)""(F) = [¢"(F n G) nint (¢~ "(G) L ker ¢)]
Vo " (F)nc (@ (G) nker ¢)] = ¢ (F N G)u [¢"(F) ncl(¢™(G) nker §)],
since
¢ M(F G < [ ™(F nG)nint(¢p  "(G) U ker ¢)]
u ¢ "(F) ncl(¢(G) nker ¢)]
We conclude that ¢(G) is usco and the rest of the lemma is immediate.
PROPOSITION 2. A usco-map, ¢: X — Y, is minimal, if and only if,
(%) ¢ "(G) = cl(¢(G) N ker ¢)
for each open set G < Y.

PrOOF. Assume (*) holds for all open subsets of Y and lety: X — Y be a usco-map
such that ¥ < ¢ and Y(y) + @(y). Since Y(y) is compact we can find an open set
U such that y(y) < U and ¢(y) n [cl(U)]* % @. Then

yed M([cl(U)]) ny (V)
c cl(¢([cl(U)]) nker p) "y (U), by (%),
< ey ~*([cl(U)]9) ~ ker )~y ~5(U), since ¢ < .
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Hence ¢ ~([cl(U)]°) n ker ¢y Ny “(U) is nonempty which is a contradiction, and
we conclude that ¢ is minimal.

Now assume that (*) does not hold for the open subset G of Y. That is, there exists
yeint(¢p ~"(G°) U ker ¢°) such that ¢(y)\G is a proper non-empty subset of ¢(y).
Using Lemma 1 we conclude that ¢ is not minimal.

We shall now use this characterization to give some properties of minimal
usco-maps. Recall that a function is said to have the Baire property if the pre-image
of every open set is an open set modulo a set of the first category. Also recall that
a family of sets is said to be T;-separating if there, for any pair of distinct points, exists
a set from the family that contains one of the points but not the other. We do not
require that the separating set can be chosen such that it contains, say, the first of the
points of the pair.

COROLLARY 3. Let ¢: X — Y be a minimal usco-map.

(i) If ker ¢ is separable, then ¢(X) is separable.

(i) Any selection from ¢ has the Baire-property.

(iii) If there exists a countable Ty-separating family of open sets in Y, then the set
{x: # ¢(x) > 1} is of the first category in X.

PrOOF. (i) Let cl{x,} = ker ¢ and choose points y, € ¢(x,). If G HX) + @ for
anopenset G < Y, then® + ¢ *(G) < cl(¢ ~%G) n ker ¢) by Proposition 2. Hence
the open set ¢ ~%(G) has nonempty intersection with ker ¢ and we find x,, such that
W€ P(x,) € G.

i) Let f be a selection from ¢. Then

¢ (G)nkerp = f1G) = ¢ ™G) < cl(¢p (G) Nker ¢

by Proposition 2, and hence f ~!(G) has the Baire-property for any open subset G of
Y.
(iii) Let {G,} be a countable T;-separating family of open subsets of Y. Then

{x: #¢x) > 1} = U@ G\ *(Gn) = U (€@ *(G)\¢ (Go)),

The latter set, as a countable union of sets of the first category, is of the first category.

Let a usco-map, ¢: X — Y, be given. Given a well-ordering of a base for the open
subsets of Y we explicitly construct a minimal usco-map ¥: X — Y such thaty < ¢.

Let {G,:y < Q} be a wellordering of a base for the open subsets of Y and use
Lemma 1 to define ¢, = ¢(G,) and, still using the lemma, define inductively for
y<Q¢, =<ﬂ d),,)(GV). Lety = () ¢,

B<y y<Q
By Lemma 1 each ¢, is usco, contained in ¢ and has the same kernel so this is also

true for . By Proposition 2 the map ¢ is minimal, for
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Ve = U ¥ G U 0,%G)

{r:Gy =G} {y:Gy= G}

< U cl((ﬂ c/),,)—s(Gy)mkerl[/)

{r:Gy<= G} B<y

c cl( U ¥ %G, nker 1//) < c(y "(G) nkery)

{y:Gy =G}

by the construction and the fact that y = ¢, = (] ¢;.

B<y
3. Selection.

We shall now consider another way of cutting compact-valued (not necessarily usco)
correspondances down. The approach used here will be very much like that of Sion
in [1], but the results we shall obtain will be more general. The proofs in the rest of
this note will depend on the properties of the following construction.

For a compact-valued correspondance ¢: X — Y and an open set G = Y we
define for each x in X

NG, if GG + 6,

¢(x), otherwise.

P6lx) = {

Let {G,:y < Q} be a T,-separating family of open subsets of Y, and define
¢, = ¢, and, for each y < Q, define inductively: ¢, = ( N q&,,) Lety = () ¢,

B<vy y<N
then we have the following consequences.

(i) ker ¢ = kery.

() #Y(x)< 1VxeX.

(iii) ¥ "%G,) = ( N d),,) G,)=U ¢5°(G,) forally < Q.
B<y

(iv) For any open set G < Y we have

¢, %G)

() @((08) tever|(ne) @])

= | ¢;%(G)v ( () ¢55(GUG)n () [y S(Gy)]‘>-
B<vy B<v B<y

Define f: ker ¢ — Y by { f(x)} = y(x)for all x in ker ¢. From the construction we
immediately get the following generalisation of Sion’s result. By w, we denote the
first uncountable ordinal.
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PROPOSITION 4. Let ¢p: X — Y be a compact-valued correspondance, {G,:y < w,}
be a Ty-separating family of open subset of Y such that every open subset of Y is
a countable union of sets from this family, and such that the family is stable under finite
unions. Let A be a c-algebra on X such that ¢ ~(G,)e A forally < w,. Then ¢ has
a # — PBo measurable selection.

ProOOF. Let ¥ be a selection from ¢ given by the construction above and let
{f(x)} = ¥(x) for all xeker ¢. It is sufficient to prove that /'~ (G,)e # for every
Y < ;. By (iii) we have

F74Gy) = U ¢5°(G,) nker(¢)).
B<y
The result follows by (iv) and transfinite induction since {G,: y < w,} is stable under
finite unions.

In [1] Sion requires that Y be regular. Following [6], Proposition 1-6-2 we find
that on a measurable space (X, ), where X is countably generated, the universally
2-measurable sets are stable under the union of strictly less than continuum sets
when axiom M is assumed. The proof of the next proposition is similar to the proof of
Proposition 4.

PROPOSITION 5. Let X be of countable weight and assume that the weight of Y is
strictly less than continuum. Let ¢. X — Y be a compact-valued correspondance such
that ¢ ~%(G) is universally measurable for all open subsets G of Y. Assume axiom M.
Then ¢ has a Mw(X) — Bo(Y) measurable selection.

Using Propositions 4 and 5 we obtain the next two propositions.

PROPOSITION 6. Let Y be K-analytic, hereditarily Lindeldf and of weigth less than or
equal to Ry. Then (Y, %i(Y)) is Blackwell with the selection property.

ReMARK. If the K-analytic space Y is regular and hereditarily Lindelof, then all
open subsets of Y are Souslin-# sets. This again implies that Zo(Y) = #i(Y)and Yis
hereditarily Lindelof.

PrOOF. Write Y = ¢(NV) where @ is usco and let F be an #(Y)-Souslin scheme. It
suffices to consider # (Y)-Souslin schemes since %i(Y) is contained in S(%(Y)). The
map Y:NV x NV Y, defined by (o,7)= ¢(6)n()F(z|n), is usco and

ker F = m,(ker ), where =, is the projection of NN x NN onto the second coordi-
nate. Let f be a Borel measurable selection from y and let g: NN — NN be %, — %,
measurable such that (¢g(z), t) e kery for all T in ker F (see Theorem 2.2.11 p. 348 in
[2]). (Recall that &, is the smallest o-algebra containing S(#(NM)).) Then f(g(t), 7) is
an % - #0o(Y) measurable selection from F.
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The proof of the next proposition is similar to the proof of Proposition 6.

PROPOSITION 7. Let Y be K-analytic weight strictly less than continuum and assume
axiom M. Then (Y, Bi(Y)) is Blackwell with the selection property.

If we are willing to accept weaker measurability properties of selections, this allows
us to weaken the conditions of Propositions 4 and 5.

PROPOSITION 8. Let X be Lindeldf and let Y be of weight less than or equal to the first
uncountable ordinal. Then every usco-map of X into Y has a Bo(X)—
o(F(Y) N %4 Y)) measurable selection.

REMARK. Note that Aa(Y) is generated by a family of closed %;-sets.

PrOOF. Let ¢: X —» Y be usco and let {G.:y < w,} be a base for Y. By our
construction we have a selection f from ¢ such that ~'(G,)e Zo(X) for all y. Let
F= ﬂ G, beaclosed Gsin Y. Then F n ¢(X) is Lindelof, and we can, for each n, find

basic open scts such that Fn¢(X) S | ) G ¢(X) = G, H(X), implying
Fo¢(X) =) G $(X). Now f~1(F) = () [~ (Gpm) € BoAX).

PROPOSITION 9. Let X be of countable weight and let 'Y be of weight less than or
equal to continuum. Assume axiom M. Then every usco-map of X into Y has
a . Hu(X) - o(F(Y)n Gs(Y)) measurable selection.

Proor. Substitute.#u(X)for Zo(X)and 2*°for w, in the proof for Proposition 8.

Theorem 10. Let X be separable and Lindelof and let Y be regular. Then every
usco-map of X into Y with nonempty values has a selection, f, with the following
measurability properties.

(i) (CH) f is Bo(X) — ABa(Y) measurable.

(i) (CH) If Y also is hereditarily Lindelof, then f is Bo(X) — %o(Y) measurable.
Let, in addition, X be of countable weight.

(i) (M) fis . #w(X) — Ba(Y) measurable.

(iv) (M) If Y also is hereditarily Lindeldf, then f is .#u(X) — %Bo(Y) measurable.

PROOF. Let ¢: X — Y be a minimal usco-map with nonempty values. Then
cl(¢(X)) is separable and regular, hence, by [4], Theorem 1.5.6., the weight of
cl(¢(X)) is less than or equal to continuum, and so (i) and (iii) follow from Proposi-
tions 8 and 9. If Y is hereditarily Lindelof, then (ii) and (iv) follow from Propositions
4 and 5.

Theorem 10 (iii) implies that, under axiom M, all compact Hausdorff spaces with
the Baire g-algebra are Blackwell with the selection property. But in the case where
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the range space is compact we can obtain conclusions (i) and (iii) of Theorem 10 with
weaker conditions on the domain space.

THEOREM 11. Let Y be compact of weight © and let ¢: X — Y be usco. Then ¢ has
a selection, f with the following measurability properties.

@A) If 1 <Ny, then f is Bo(X) —» Ba(Y) measurable.

(i) If T < 2%° and axiom M is assumed, then f is Mu(X) — Ba(Y) measurable.

ReMARK. If X is separable then the weight of cl(¢(X)) is less than or equal to
continuum.

Proor. Let C(Y) be the space of continuous functions from Y to R equipped with
the topology of uniform convergence. Then there is a dense subset, €, of C(Y) of
cardinality 7. (Use the Stone-Weierstral Theorem, to be found e.g. in [7].) The
family of sets %, = {{f < a}: ae Q, f € €} generates the Baire g-algebra on Y and is
of cardinality 7, and #a(Y) is contained in the o-algebra generated by %.

If T £ ¥, then by property (iii) of the construction of the selection we have
£ Y @) < Bo(X) and (i) follows. If 7 <2%° then by axiom M we have
Y ) = #u(X) and (ii) follows.

4. Representation.

Finally, we shall prove a representation theorem analoguous to that of [3]. In
comparison to Theorem 2 and Corollary 2.1 in [3], Theorem 13 below gives only
a bit more information about the measurability properties we can require selections
to have. The main reason for including Theorem 13 in the present paper is that it
shows how the method of selection that we have employed here can be applied to
obtain representations. Furthermore, we can avoid using U-homomorphisms. We
shall first prove a set-theoretical lemma.

LEMMA 12. Let Y beregular of weight t,let U, be a base for Y of cardinality © and let
U =AU o {[AU)]Ue} ={U@):y<t}}

Let X < 1° be the set of bijections from T to .
For any ye Y there exists o € X such that

yeU(o(y)) = 3B <y: ye Ula(B)y = Ulo(y)).

PROOF. Let y < 7 and assume {¢*: B < y} < X have been defined so that:
() yeU(@m), n < B = 3¢ < ye U@ Q)f < U(e(n)) and
(i) Vp <t <y o*(m=0cn) Vap<é
and )=o)  VESP<y.
According to (ii) we can define y € X by ¥(y) = lim 6¥(n).

B<vy
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If yeU(y) and for no f <y we have ye UW(B)S < U(y), find & such that
yecl(U) € U(y), where U e %, and U(&) = [cl(U)]". In this case we let

&ifn =y,
a’m) =y »ifn=2<
Y(n), otherwise.

Otherwise let g7 = .

Finally put ¢ = limo".

y<t

THEOREM 13. Let ¢: X — Y be usco with nonempty values, let Y be regular and let
1 be the smallest ordinal corresponding to the weight of cl(¢(X)). Let 4, be a base for
(X)) and let U = U, o {[W(U)): Ue} = {U(y):y < t}. Let the space T have
the topology induced by the base consisting of sets of the form {a’:d’|y = o |y}, 5€ T,
y < 1. Let X < 17 be the set of bijections from 1 to 1.

There exists a function h: X x X — Y such that

(i) A(x,2) = ¢(x) for all xe X.

(i) o — h(x,0) is continuous from X to Y for all xe X.

(ii)) If © < w, and # is a g-algebra on X such that ¢ (U)e # for all U e U and
such that every open set in Y is a countable union of sets from U, then x — h(x, o) is
a K — Bo measurable selection of ¢ for all ¢ > .

(iv) If X is of countable weight, 1 is strictly less than continuum, ® ~%(G) is universally
measurable for all open subsets G of Y and if axiom M is assumed, then x — h(x, 6) is
a Mu — Ro selection of ¢ for all 6 < 1.

(v) If X is Lindeldf and if t is less than or equal to w,, then x — h(x,0) is
a Bo - o(F N G;) measurable selection of ¢ for all 6 < 7.

(Vi) If X of countable weight, if T is less than or equal to continuum and if axiom M is
assumed, then x — h(x,0) is a .#Hu— 6o(F N9Ys) measurable selection of ¢ for all
g<T.

(vii) If X is separable and Lindeldf, then, for all 6 < 1, x — h(x, 6) is a selection of
¢ with the following measurability properties.

(CH) The selection is B0 — %Ba measurable.

(CH) If Y is also hereditarily Lindelof, then the selection is B0 — %0 measurable.

(M) If X is of countable weight, then the selection is .#u — Ba measurable.

(M) If X is of countable weight and Y us hereditarily Lindeldf, then the selection is

Mu — Bo measurable.

(viil) If Yis compact and © < w,, then the selection is Bo — JBa measurable. If Y is
compact, axiom M is assumed and t £ 2°°, then the selection is .#u — %Ba measurable.

ProoF. Define ¢ = ¢y ), ¢ = ( N ¢;) and {h(x,0)} = () ¢3(x). This is
B<y U(a(y) y<t
the construction used in Propositions 4, 5, 8 and 9 and Theorems 10 and 11 and
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hence (iii) to (viii) follows. To prove (i) note that h(x,X) < ¢(x) for all xe X by
construction. Let ye¢(x), then by Lemma 12 there exists €2 such that
yeUla(y)) = 3B < y: yeU@6(P)f < U(a(y)) and hence h(x,0)=y. If h(x,o)e
Ul(o(y)), then h(x,6')e U(a(y)) for all '€ {¢": 0" |y = o |y} and this proves (ii).
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