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SOME PROPERTIES OF FREE SHIFTS
ON INFINITE FREE PRODUCT FACTORS

SIMEN GAURE

1. Introduction.

In this work we study a special class of shift automorphisms on an infinite free
product of von Neumann algebras. This is a generalisation of some results in
[12]. The automorphisms are shown to be extremely ergodic, i.e. all non-trivial
globally invariant von Neumann sub-algebras are full factors. As a special case
we derive a result of Popa [12]. In this case the automorphisms are known to
have Connes-Stormer entropy 0 by [14].

The reduced free product of 11;-factors was first introduced by Ching [2].
Ching shows that for G, H discrete groups L(G) * L(H) = L(G * H), i.e. for group
von Neumann algebras, the free product corresponds to the free product of
groups.

The concept was generalised to general C*-algebras independently by Avit-
zour [1] and Voiculescu [16].

All our von Neumann algebras are assumed to act in separable Hilbert spaces.

2. Preliminaries & Notation.

DEFINITION 2.1. Given a set S, any bijection : § — S with the property that the
orbit of every element under f is infinite, is said to be free.

We have the following result on free bijections.

LEMMA 2.2. Let F be a set and let f: F — F be a free bijection. Let f act on
subsets S < F in the usual way: f(S) = {B(s): se S}.
Assume S, T < F are finite.

(1) For eachneZ,n % 0, f" is a free bijection.

(2) There exists N € N such that for |n| = N we have

BS)NT = 0.
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(3) There exists an N € N such that for |p| = N and n, me Z we have
BP(S) N P™(T) = 0.

A factor M is called full if Int M is closed in Aut M.

We will use the algebra of central sequences as introduced by McDuff in [9]
and later generalised to infinite von Neumann algebras by Connes in [5,2.0] and
[4, 1.1.2] by the use of centralising sequences. In the notation of [5] we let
o denote a free ultrafilter on N and for a von Neumann algebra M we let M,
denote the corresponding algebra of centralising sequences.

We note that all centralising sequences are central by [5, 2.8].

The property I was introduced by Murray and von Neumann in [10]. A von
Neumann algebra M is said to possess property I'if givene > Oand x4,...,x,e M
there exists a unitary we M with t(w) = O such that ||[w, x, ]| < efork =1,...,n.

We have the following result by Connes (and McDuff), connecting the asym-
ptotic centraliser with the fulness property and property I'.

LEMMA 2.3. Let M be a factor with separable predual.

(1) M isfulliff M, = C.

(2) M is full if all central sequences are trivial.

(3) IfMisall,-factor then M is full iff M does not have the property I' of Murray
& von Neumann

Proor. This is essentially [5, 3.6, 3.7 and 3.8].

The following lemma, a consequence of the Rohlin lemma of Connes’, turns
out to be useful. We recall from [3] that an automorphism « is said to be
aperiodic if every power o”, ne Z\{0} is properly outer.

LEMMA 2.4. Let M be a factor with separable predual, ® a free ultrafilter on N,
o an automorphism of M and o, the automorphism on M, induced by a.
If o is ergodic for all n % 0, then M, = C.

Proor. If M, = C there is nothing to prove. The proof is by contradiction.
Assume M, + Cand a’, is ergodicfor all n & 0. Then a,, is aperiodic. By [4,2.1.2]
o is not centrally trivial for any n e Z\{0}. By [4, 2.1.4], for any n > 1 we can find
a partition of unity {F,...,F,} = M, such that a,(F,) = F,, for k=1,...,n
(with F,,, = Fy). That is, o} (F,) = F,. But then a} is not ergodic. This is
a contradiction.

We will use the concept of a neighbourhood of infinity. For Z this is an interval
[n, o) (") Z; for an ultrafilter w it is a set F e w.
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3. Abstract definition of the free product.

We will use an abstract definition of the reduced free product taken from [17,
1.5].

DEFINITION 3.1. Let M be a von Neumann algebra with a faithful normal state
7. Let My, keZ be von Neumann subalgebras of M each containing the unit
Ie M. {M,}, is called a free family of von Neumann algebras (relative to 1) if
whenever x;eM,, k;+k.y for i=1,..,n with 1(x)=0 we have
T(x1X5 X, = 0.

If in addition M = (U, M,)", we say that M is the reduced free product of the
M, (with respect to 7). We denote by 7, the restriction of 7 to M,. We shall
occasionally write * (M), 1,) or M = *M, and t = *1,

For von Neumann algebras M; with faithful normal states, the construction in
[16,] of the free product guarantees the existence of a von Neumann algebra
M and faithful normal representations of M;such that we have the situation in the
definition.

We will henceforth assume that M is a von Neuman algebra as described in the
definition above. We will see that the free shift which we define on M will
asymptotically move any element onto its orthogonal complement and from this
deduce properties of the central sequences in M.

4. Canonical form.

We want to write elements in the free product as a sum of elements from the
orthogonal sub-algebras which generate the free product. Indeed, finding a gen-
eral canonical form may probably be done, but we restrict the canonical form to
a dense *-algebra.

DEFINITION 4.1. Let M° be the *-algebra generated by the M,’s. An element
x € M?is called a monomial if x = x,x,...x, where x;€ M,,x; + Oand n; & n;,,
for 1 £i £ n.Ifinaddition 1(x;) = Ofor each i, x is called an irreducible monomial.

We do not exclude the case where x;e M, N M
shortly that this can only happen for x; scalars.

It is clear that any element in M is a finite sum of monomials and that any
monomial may be written as a finite sum of irreducible monomials and a scalar.

We note the following result.

However we shall see

Riv1®

LEMMA 4.2. If x = x;*** X, is an irreducible monomial, then

(1) fxlle = lxgller - ixall.
(2) If [xy,x,] = O then either x, or x, is 0.
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PrOOF. For ye M let ' denote the non-scalar part of y. Thatis, y' = y — ©(y).
Proof of (1). We have

“‘C“f = T(xy XEXTX X0 Xy)
= TxFx )t x3x e xp) 00 XX ) X2 xy).

The last summand is zero by freeness. Thus the lemma follows by induction on
the length » of the monomial.
Proof of (2). Assume [x,x,] = 0, we have

llx1x5 ||r2 = ((x1 X2)¥(x1X2)) = t(x3IxTx1x3) = t(xFxFx;x1) =0

by freeness. Thus, 0 = ||x;x, ||, = ||x(|l.llx2]l. by (1). That is, either x; or x, is
zero.

Note that M, n M,, = C for m % n. To see this, let xe M,, n M,,, we may write
x = x' + t(x)I, then x'e M,, n M, is an irreducible monomial, even x'x’ is an
irreducible monomial, thus by (2), x’ = 0.

LeEMMA 4.3. If 1y, keZ are tracial states on My, so is 1 = *1 on *M,.

PrOOF. By continuity and linearity it is sufficient to show that for any irreduc-
ible monomials x, y we have 1(xy) = 1(yx). For any ze M, denote by z’ = z — 1(z).
By linearity, we may assume 7(x) = 7(y) = 0.

Assume x = x;--*x, and y =y, -y, irreducible monomials. We have
©xy) =Xy Xpy1 V) AN TYX) = TPy YmXy o Xy)-

Assume m = n. For these expressions to be non-zero, we must have x; , ; in the
same algebra M, as y,,_, for each i and that n = m.

To see this, note that if y,, is not in the same algebra as x,, 7(yx) vanishes by
freeness, otherwise we may rewrite

(¥x) = WYX )TV 1 " Ym—1X2 " X0) + TV Yo 1 (VX 1) X270 X,)

The last expression vanishes by freeness. We repeat the rewriting with y,, _; and
x, and will either end up with y,, _; in a different algebra than x;, , for some i (in
which case t(yx) is zero) or

T(yx) = T(ymxl)r(ym~1x2)' o T(ym~n+ 1xn)T(ym-—nym-~nvl o yl)

The last factor, if its exists, i.e. m > n, is zero by freeness, thus we must have
n = mto ensure 1(yx) F 0. ,

The computations for t(xy) are similar, thus if n & m or y,,_; is not in the same
algebra as x;,; for some i, we get 7(xy) = ©(yx) = 0.

Assuming n = mand y,_;, X; 4+ € M, for each i, we get by the above compu-
tations
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T(XY) = ‘C(xnyl)r(xn* 1y2) T(xlyn)

and
yx) = Y X))ty Xn— 1) UYnXy).

Wehave y, X+ 1, Xi41Vn- i€ My, foreachi. Since 7 restricts to 7; on each M,
we get

UxY) = 1, (Xa V1) Ta, (X 1))

and

W(yx) = Tk,,()’lxn)' o Tk,(ynx1)-
But the 7, s are traces, thus t(xy) = t(yx).

The support of an element in M° will be a subset of H, the “free semigroup” in
idempotent generators indexed by Z.

Let H be the (free) semigroup with presentation {6;; 67 = 0;};,and unite. That
is, H consists of words over the alphabet {o;};., where no letter is doubled, and
a null word e. The multiplication is juxtaposition combined with the operation
0;0; — o;. We will always consider elements of H in their canonical form (i.e.
with no subwords of the form o;0;).

To any irreducible monomial x = x, - - x,€ M® with x;e M, we may assign an
element h = o(x, " x,) = 6,,0,, "0, . We will call {h} = H the support of
Xyt Xy

The element h simply records the sequence of algebras in which the individual
“factors” x; are elements.

To prove that this “support” does not depend on the particular representation
of x as an irreducible monomial, assume x = x; ***x, = y, *** y, Wwhere x;e M,
and y;e M,, .

We have ||x]|? = t(x*x) = t(yXy*_, - y¥x; - x,). If y¥ is not in the same
sub-algebra as x; we have that yky¥ _,--- y¥x, - x,is anirreducible monomial,
thus by freeness || x|/, = O.

If y* is in the same sub-algebra as x; (i.e. n; =m,;), we can write
[x)I? = ©(yX--- y¥z,x, - x,) where z; = y¥x, € M, , we may rewrite this:

IxI2 = w(y% y321x2 + Xa) + Tz )tk vixs -+ x,) Where 2} = 2, — 1(z,).
The first expression in this sum is 0 by freeness (as z; can not be in the same
sub-algebra as either y, or x,.)

Continuing in this way we see that either x = 0 or y; is in the same subalgebra
as x; for each i (and n = m.) Thus, x, - - - x, has the same support as y, - - y,,. That
is, we may write o(x) for o(x - x,).

Note that for two irreducible monomials x, y with a(x) # o(y), the above
argument shows that 7(x*y) = 0, that is, x and y are t-orthogonal.
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For x a finite sum of irreducible monomials we may write x = ) ;.4 x; Where
each x, is either 0 or a sum of irreducible monomials x}, with o(x}) = h. Note that
Xy is T-orthogonal to x, if h % g.

This representation is unique in the sense that if Z,,GH Xp = Z,,E,, yr We have
0 = Y heu (xn — y4) s0 by orthogonality x, = y,. We call this the canonical repre-
sentation.

As any element x e M° can be written as x = 1(x) + x’ where 7(x’) = 0 and x’
can be written as a sum of irreducible monomials and a scalar (which necessarily
must be 0), by putting x, = 7(x) we see that the canonical representation is unique
for all xe M°.

We define the support of such a sum to be a(x) = U{h: x, + 0}.

We will occasionally refer to the set of generators occurring in a subset § = H.
By this we mean the minimal set of generators o; necessary to build the words of
S. We introduce the notation y(S) for this set. For a set F = M° we adopt the
notation y(F) = y(a(F)).

Foran element x e M° and a subset S of the semigroup H, we define the element
xs as follows. If x = ) .4 X, is the canonical form of x, we define xs = Y jes X
For a subset B < M® we denote by Bj the set {xs: x € B}.

We may now record some facts about o.

LEMMA 4.4. Let x,ye M°.

(1) If t(x) = ©«(y) = 0 and a(x) N 6(y) = @ then x is t-orthogonal to y.

(2) If t(x) = ©(y) = 0 and y(x) N y(y) = @ we have a(xy) < a(x)a(y).

(3) xi¢; = t(x) and for S, T = H with SN T = @, we have xs,r = xs + X7 and
(x + y)s = xs + ys.

(4) If S =« T = H we have | xsll; < lIxr]l.-

Proof of (1). Let x =) x,and y =)y, be the canonical forms. By assump-
tion we never have x;, + 0 and y, + 0 simultaneously, which means that every x,
is orthogonal to every y,, thus ) x, must be orthogonal to Y y,.

Proof of (2). Let x =) x, and y = ).y, be the canonical forms. We have
Xy = Y ng XnY,- Each x, is a sum of irreducible monomials of the form x, - Xy
similarly with y,. Thus, x,y, is a sum of monomials of the form x; - x,y; *** Y.

By assumption x, is not in the same sub-algebra M, as y,. We therefore have
that each monomial in the product x,y, is an irreducible monomial with support
{hg}.

Thus, we may write xy = Y ,, z,, Where h runs over a(x) and g runs over a(y).
Clearly, for hy, h, ea(x) and g,, g, €a(g) we have h g, = h,g, iff h; = h, and
g1 = ¢g,. That s, an element f € H occurs only once as such a product hg. Hence
XY = Y 4g Zng» Where h, g runs over a(x), o(y) respectively, is a canonical form of xy.

By definition of o, we have a(xy) = U{hg: z), + 0}. Hence, hg € (xy) implies
XzY, F 0, thus we must have he a(x) and ge a(y), i.e. hg € a((x)a(y).
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The proofs of (3) and (4) are also easy applications of definitions.

For S a sub-semigroup of H generated by a set of generators of H, the
application x+ xg is a conditional expectation Ep0: M® - M?, ie. we have
(xyz)s = xysz whenever x,ye M.

Thus it is not surprising that the operation x — xg may be extended to the
whole of M. If x,, € (M°),,, (the || x||-ball in M°) is a sequence converging strongly
to x, define x5 = lim(x,)s. The existence and uniqueness of xg follows from the
fact that the strong topology on the unit ball is metrisable and complete by the
metricd(x, y) = ||x — y|.. Wesay x has finite support if there exists a finite S = H
such that xg = x. The support of x is the intersection of all such S.

We shall have occasion to use the last statement of Lemma 4.4 for general x.
Too see that it holds, we let x,, — x be a bounded sequence, so x5 = lim(x,)s. We
have [|xs ||, = lim [[(x,)s ]l < lim ||z, ]| = [x]|.

5. The free shift(s).

Assume M is defined as above.

Let n: Z — Z be a free bijection. For the rest of this work we assume that there
are canonical *-isomorphismms f,: M, — M, such that 7 §, = t forall ke N
and xe M,.

We also assume that there is an automorphism o« on M such that al,, = B with
toa = 7. This is possible at least if the §,’s are unitarily implemented.

REMARK 5.1. Note that since o is defined by means of the general free bijection
7, o is defined by the free bijection n" (by Lemma 2.2); hence “everything” we
prove about a is true for «" as well.

We will study the asymptotic properties of « using a number of results from [5]
summarised in Lemma 2.3. Although the study of centralising sequences involves
the use of the *-strong topology, we will use the || - || ,-norm. Most of our results are
symmetric with respect to the *-operation.

We will work in the dense *-algebra M°. We show that bounded sequences in
M may be approximated from M°.

LEMMA 5.2. For a bounded sequence (x,),€!*(N, M) we may find a bounded
sequence x, e M° such that x, — x|, — 0 *-strongly. If t(x,) = 0 we may choose
7(x,) = 0.

ProoF. Given a sequence (x,), € M bounded by K. If we restrict to My, the
K-ball of M, the *-strong topology is defined by the norm (||x||¥)* = ||x||? +
lx*)12 by [15, IIL, 5.3].
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Given ne N, since (M°)g is *-strongly dense in (M), we may find an x, e (M°)k
such that ||x, — x,||¥ < 1/n.

Given ¢ > 0, let N > 1/e, we have for n > N that ||x, — x,||* < ¢ hence
Xp — X, 75— 0 *-strongly, and the sequence (x,), is bounded by K.

If 7(x,) = 0, let x;, = x; — 7(x,) and use x|, as an approximating sequence.

The free bijection 7 can be viewed as a bijection of the generators g; of H and so
extends to a (semigroup) automorphism of H by letting n(e) = e. By abuse of
notation we call this automorphism .

o can be applied to a subset F = H in the usual way a(F) = {«(f): fe F}.

LEMMA 5.3. If xe M° with t(x) = 0 and S = H, we have

(1) o(a(x)) = a((x)) and a(xs) = Ax)us)-

(2) For ye M°, 1(y) = O there exists N € N such that for |n| > N we have o™(x)
orthogonal to y.

(3) For yi,y,€ M®, 1(y;) = 0, there exists N e N such that for |n| > N we have
a"(x)y, orthogonal to y,.

PrOOF. By linearity, it suffices to consider irreducible monomials to prove (1).
Assume x = x, ‘" x,, with support {o; - 0; }.

We have a(x) = a(x;) - ax,) = f; (x;) - fi (x,) which clearly has support
{Oriy " O} = H0(x)).

By the above we have a(ys) = a(y),s) for y an irreducible monomial and for
y a scalar. For x afinite sum we have a((}x))s) = a(} (x))s) = D a((x)s) =
fo(xi)a(S) = O‘(Z Xi)a(s) = “(Z Xi)a(s) = 0UX)a(s)-

Proofof (2). Assume X = Y .,y Xpand y = Y 4., i are the canonical forms of
x, y respectively.

Let S be the set of generators in the support of x, thatis S = y(x). As 7 acts freely
on these generators, we may find NeN such that for |n| > N we have
"(S) N y(y) = @. By (1) a(a™(x)) = o"(6(x)), so we get that o(y) and a(a"(x)) have no
generators in common and neither contains e, thus because the generators are
free we have o(a"(x)) N a(y) = 0.

Proof of (3). From the proof of (2) we can find an N € N such that for |n| > N we
have y(a"(x)) N y(y) = 0. From Lemma 4.4 we then have: o(«"(x)y) = a("(x))a(y).
But any word in a(a"(x))a(y) must begin with a generator which does not occur in
o(y) thus it has no common elements with a(y).

COROLLARY 5.4. For every non-zero n€ Z, the automorphism o" of M is ergodic.

PrOOF. Letze M bea fixed point for a such that ||z||, = 1 and 7(z) = 0. We will
prove that there is an N e N such that «™(z) # z.

Given ¢>0 we find zoe M° such that ©(z°) =0, ||z—:°|,<e and
120121 —e
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By Lemma 5.3 (2) we can find NeN such that for |m| > N we have a™(z°)
orthogonal to z° For such m we have
la™(z) =zl = lla™(z — 2°) — (z = 2°) + (@"(z°) — 2%l
Z |[la™(z = 2% — (z = 2. — lla™(z°) — 2°||
2 [a"(z%) = 2%, — 2¢
= /212°0 — 26 2 /2 — 4.
Choosing ¢ small we see that a™(z) & z for any |m| > N.
We see from the proof of the corollary that « takes any operator x with 7(x) = 0
approximatively into its orthogonal complement.
6. Asymptotic orthogonality.
We have the following proposition concerning asymptotic orthogonality.

PROPOSITION 6.1. Assume(x,) el (N, M®)is such that 1(x,) = 0. Assume further
that for each finitely generated S = H we have |(x,)s!l. == 0.
Then for each ye M with 1(y) = 0 we have

lim [[1x,5 — yx, 17 = (Ix,01F + lyx,[17)] = 0.

n-—oc
This result also holds if all limits are taken in a free ultrafilter o, in which case we

may write

lim [[x,y — yx,[I? = lim [lx,p[? + lim |lyx, |7

n-w n— o n—-w

as all the limits exists.

PRrROOF. Assume ye M° with 1(y) = 0.

Let S be the sub-semigroup of H generated by the generators of a(y). Denote by
S¢ the complement of S in H. We have by assumption ||(x,)syll. =0 and
[I¥(x,)sll. = O. (Limit in either senses.)

Given ¢ > 0 we may thus find a neighbourhood of infinity F such thatforne F
we have each of

|”(xn)s=y - Y(xn)sr ”3 - ”xny — YXp ”;rzl’
HGewseyl = %1121,

HyGen)sell? = lyxallZ]
less than &/3.
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By Lemma 4.4 we have y(x,)sc orthogonal to (x,)scy for all n, thus
IGn)sey — YoxnsellZ = NGemseyl2 + 1 y0en)sell2.

Thus |[x,y — yxall2 = (%012 + [yx,12)] < ¢ for every neF.

This proves the statement in case ye M°. For general y e M with t(y) = 0 and
¢ > 0 we may approximate y strongly with elements of zero trace and bounded
norm from M°.

We will use the above result to show that the shift automorphism o on
M prevents the existence of central sequences in a-invariant sub-factors of M.

We have the following result, which in conjunction with the previous result
tells us that a,, has no non-trivial fixed points in M,,.

PROPOSITION 6.2. Assume (x,) e (N, M°) with 1(x,) — 0 is an asymptotic fixed
point for a, that is a(x,) — x, — 0 strongly. Then for any finitely generated S < H
we have |(x,)s 0.

g
T noo

PrOOF. Assume ||(x,)s|l. does not converge to 0 in w. Given & > 0, by scaling
the x, we may assume that for each Few, we may find pe F such that
l(xp)sll. > 1 + &. We may also assume that 7(x,) = O for all n; hence that e¢ S.

By applying Lemma 2.2 to the generators of S we may find ge N such that
a®(S) N a¥(S) = P for i + j.

Given ke N. As (x,) is an asymptotic fixed point for each power of a, we may,
for each i with 1 £ i £k, find F; e w such that for ne F;

Hoe®((xns)le = I (ndaars) llel < No®((xn)s) — (enduaics) e

= ”(aqi(xn) - xn)a'i‘(S) ”t <e.

We may find pe n F; such that for 1 £ i = k we have |(x,),ais) . > 1
By orthogonality we have

”xp”12 g "(xp)ua‘ii(s) ”3
= ¥ i I > k.
That is ||x,||? > k. As k is an arbitrary integer and the sequence x, is bounded

in the uniform norm (and thus in the |- ||,-norm) this is a contradiction. Thus we
must have [|(x,)sll: == 0.

In the above lemma we may replace « by any non-zero power of a. This is
merely a consequence of Remark 5.1.

PROPOSITION 6.3. For each xe M we have o"(x) —— t(x) weakly.

PrOOF. By linearity we may consider x with 7(x) = 0.
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Let ¢: M — B(K) be the representation engendered by 7, ¢ is a faithful, normal
representation. Let £ e K be the canonical cyclic, separating vector.

We have t(x) = (¢(x)¢, £); hence if x, ye M are t-orthogonal vectors we have
(@(x)¢, @(y)) = 0.

Define f an automorphism on ¢(M) as B(¢(x)) = ¢(x(x)).

For xe M with (x) = 0 we will show (8"(¢(x)),n) == 0 for any ne K.

It is sufficient to consider # in a dense subspace, i.c. we may restrict attention to
n of the form ¢(y)¢ with y e M°. (Noting that ¢ is cyclic for ¢(M°).)

Assume x,ye M? by Lemma 5.3, we may find N € N such that for n > N we
have o'(x)y t-orthogonal to y. That is (B"(@(x)@(y)¢, @(y)&) = (P(x"(x)y)¢,
@(y)¢) = 0.

Thus, for xe M® we have a*(x) —— 1(x) weakly.

Then assume x e M with 1(x) = 0 and || x| = 1/4.

Given U = My, a convex weak neighbourhood of 0. Since the |- ||, balls in M,
is a base for the strong topology at 0, and the strong topology is finer than the
weak topology, we may find ¢ > Osuch that theset V = {xe M,: ||x|, < ¢} = U.

We may find x’ with finite support and ||x'|| < ||x| such that |x — x'||, < &/2.
Then «"(2(x — x))e V < U for all n.

Since a"(x') —» 0 weakly, we may find NeN such that for n > N we have
a"(2x")e U; hence o"(x) = (1/2)a"(2(x — x')) + (1/2)a"(2x") € U by convexity of U.

This immediately gives us some asymptotic abelian properties as described in
[6].

COROLLARY 6.4.

(1) The state T on M is strongly clustering (with respect to «).
(2) The automorphism « is weak asymptotic abelian.

(3) The group {o"},z is a large group.

By the above proposition we get for every x, ye M with t(x) = 7(y) = 0

lim o"(x)y]. = lim w(y*a"(x*x)y) = |Iyl7 IxII?
because «"(x*x) tends weakly to ||x||21. Thus choosing y in the centre of M with
7(y) = 0 and using Proposition 6.1, we get || x|, [|yll. = 0; hence M is a factor.
If the M,’s are I, -factors with 7, traces, we have that tis a trace by Lemma 4.3;
hence using Proposition 6.1 and Proposition 6.3 we get the explicit formula lim

I (x), Y30 = /2 1 19 i

LEMMA 6.5. Any a-invariant von Neumann sub-algebra N of M is a factor.

PROOF. Let ze Z(N) be an element in the centre of N with 1(z) = 0. We will
prove that z = 0.
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Let xe N, 1(x) = 0O and ||x|| = 1. By Lemma 5.2 find x, € M° with 7(x,) = 0 and
llx.|I < 1 such that x, — a"(x) — O *-strongly.

Let S « H be finitely generated.

For ¢ > 0 find x°e M° with 1(x°) = 0 such that ||x° — x|, < &/2. We clearly
have «"(x®)s —— O strongly.

n—o

For large ne N we have
ICen)slle = N0xn — o"(x°))s + 2"(x°)s ]l
< lloew — #"(xslle + llo"(x%)s
< lxy = 2" (<Ol + Nlo"(xO)s . < &

thus |(xa)sll: == 0.
Since z is in the centre of N we have

Ixnz = 2xule = (2"(x) = x4)z — 2(2"(x) — X,);
= @) = xu)zlle + [l12(a"(x) = xa)llc 5= 0.

Using Proposition 6.1 on the bounded sequence x, and z we then have
lzxulle 555> 0.

T n-w

Furthermore
Hzxplle = Nz = 2(xp — «"CDe ==

hence ||za"(x)||; ~—=> 0.
Again, using the property that z commutes with everything in N, we have

llza"(x)l1? = t(a"(x*)z*za(x))

0;

= t(o"(x*x)z*2) = lIxII7 1z[1?

n— oo

using the strongly clustering property of t.
We thus have ||x|. [|z[. = 0, that is z = 0.

THEOREM 6.6. Let w be a free bijection of Z, M a von Neumann algebra acting in
a separable Hilbert space. Assume 1 is a faithful normal state on M and o an
automorphism of M such that Tooa = 1. Assume M is the free product of von
Neumann algebras M; c M, i€ Z and that o|y, is a *-isomorphism o;: M; — M .

If N is a globally a-invariant von Neumann subalgebra of M, then N is a full
factor not of type 1 or N = C.

Proor. If N = CI we are finished, we assume N # CI. We know from the
previous lemma that N is a factor.

By Corollary 5.4, a is ergodic on M, thus on N; hence «|y can not be inner on N.
That is, N can not be of type I as every automorphism of a type I factor is inner.
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Given o a free ultrafilter on N. By Lemma 2.3, it is sufficient to prove that every
w-centralising sequence of N is trivial.

We have that oy defines a *-automorphism o, on N,,. A fixed point xe N, of a,
is represented by a sequence x, € N such that a(x,) — x, — 0 *-strongly.

Also, (x,) is centralising in N; hence central. That is ||x,y — yx,||¥ —==> 0for
each ye N. Since M? is dense in M, we may, by Lemma 5.2, for each x, find
x, € M° such that ||x, — x, ||, < I/nand ||x;|| £ |x,|. Wehave ||x,y — yx,/l, ——0
for each ye N and a(x;) — x, —=—> 0 *-strongly.

Foreach ye N with 7(y) = 0, we get from Proposition 6.1 and Proposition 6.2,
lim [[yx, |2 + lim [|x,y|> = 0. Letting y be a unitary we see that lim ||x,|, = 0;

hence lim | x,|, = 0. The same argument applies to the sequence (x¥) (with
((x,)*), thus x,, ——> 0 *-strongly.

That is, o, is ergodic on N,,.

By Remark 5.1, it is clear that this holds for any power of «. Any power of «,, is
therefore ergodic. By Lemma 2.4, N, = C.

This theorem immediately specialises to

COROLLARY 6.7. Let L(F;) be the left reqular representation of the free group
with generators y;: i€ Z. Let o be the shift automorphism on L(F;) coming from the
bijection y;— ;4 {.

Then every von Neumann subalgebra of L(F ;) globally invariant under o is either
C or a full 11 -factor.

Proor. We take M; to be the von Neumann algebra generated by A(y;) and the
free bijection w to be i+— i + 1. Define a by 7: a(A(y;)) = A(y;+ ). Let = be the trace
on L(F,). Then L(Fy)is the free product of the M;’s and « is the free shift; hence we
may apply Theorem 6.6.

The above corollary was noted in [12].
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